EXPERIMENTAL SUPPORTING INFORMATION

The Indium Trichloride-Promoted Aza-Prins Reaction

Adrian P. Dobbs,^{a,b*} Sebastien J.J. Guesné,^b Robert J. Parker,^b John Skidmore,^c Richard A. Stephenson^d and Mike B. Hursthouse^d

^aSchool of Biological and Chemical Sciences, Joseph Priestley Building, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom.

^bSchool of Chemistry, University of Exeter, Stocker Road, Exeter, EX4 4QD, United Kingdom.

^cGlaxoSmithKline, New Frontiers Science Park (North), Harlow, Essex CM19 5AD, United Kingdom.

EPSRC National Crystallographic Service, Chemistry, University of Southampton, Southampton SO17 1BJ,

United Kindon.

A.Dobbs@qmul.ac.uk

Contents:

General Information					
Table 1: Unsuccessful Lewis acid Screening Reactions	5				
Table 2. Unsuccessful aza-Prins reactions involving C1 substituted tosylamine					
1. Preparation of alcohol-containing precursors	7				
(Z)-Pent-3-en-1-ol	7				
(±)-Hex-4-yn-2-ol	7				
(±)-(<i>E</i>)-Hex-4-en-2-ol	8				
General procedure for alcohol tosylation	9				
4-(Toluene-4-sulfonyloxy)-but-1-ene 2	9				
(Z)-Pent-3-enyl 4-methylbenzenesulfonate 19	9				
(E)-Pent-3-enyl 4-methylbenzenesulfonate 20	10				
3-Methylbut-3-enyl 4-methylbenzenesulfonate 24	10				
4-Methylpent-3-enyl 4-methylbenzenesulfonate 25	11				
(\pm) - (E) -Hex-4-en-2-yl 4-methylbenzenesulfonate 42	11				
General Procedure for the amination of a tosyl-protected/activated alcohol with 4-methylbenzenesulfonamide, catalysed by sodium iodide	12				
(Z)-4-Methyl-N-(pent-3-enyl)benzenesulfonamide 21	12				
(E)-4-Methyl-N-(pent-3-enyl)benzenesulfonamide 22	13				
4-Methyl- <i>N</i> -(3-methylbut-3-enyl)benzenesulfonamide 24	13				
4-Methyl- <i>N</i> -(4-methylpent-3-enyl)benzenesulfonamide 25	141				
(±)- <i>tert</i> -Butyl pent-4-en-2-yl(tosyl)carbamate 40	14				
(±)-4-Methyl- <i>N</i> -(pent-4-en-2-yl)benzenesulfonamide 41	15				
(\pm) - (E) - N -(Hex-4-en-2-yl)-4-methylbenzenesulfonamide 43	15				

General procedure for amination (tosyl displacement by primary amine)	16
<i>N</i> -Benzyl- <i>N</i> -(3-butenyl)amine 3	16
Benzyl-(3-methyl-but-3-enyl)-amine 13	16
General procedure for the iodine catalysed synthesis of homoallylic amines	18
<i>N</i> -Benzyloxycarbonyl-(±)-1-benzylbut-3-enylamine 6	18
N-Benzyloxycarbonyl-(±)-1-heptylbut-3-enylamine 7	18
4.5. General procedure for the aza-Prins reaction	20
(2R,3R,4S)-4-Chloro-2-heptyl-3-methyl-1-tosylpiperidine/(2S,3S,4R)-4-Chloro-2-heptyl-3-methyl-1-tosylpiperidine and	
(2S,3R)-3- $((S)$ -1-Chloroethyl)-2-heptyl-1-tosylpyrrolidine/ $(2R,3S)$ -3- $((R)$ -1-Chloroethyl)-2-heptyl-1-tosylpyrrolidine	20
(2S,3R)-3- $((S)$ -1-Chloroethyl)-2-heptyl-1-tosylpyrrolidine/ $(2R,3S)$ -3- $((R)$ -1-Chloroethyl)-2-heptyl-1-tosylpyrrolidine	23
(2S, 3R, 4S)-4-Chloro-3-methyl-2-phenyl-1-tosylpiperidine/ $(2R, 3S, 4R)$ -4-Chloro-3-methyl-2-phenyl-1-tosylpiperidine	25
(2R,3R,4S)-4-Chloro-3-methyl-2-phenethyl-1-tosylpiperidine, $(2S,3S,4R)$ -4-Chloro-3-methyl-2-phenethyl-1-	
tosylpiperidine, (2S,3R)-3-((S)-1-Chloroethyl)-2-phenethyl-1-tosylpyrrolidine and (2R,3S)-3-((R)-1-Chloroethyl)-2-	27
phenethyl-1-tosylpyrrolidine	
(2R,3R,4S)-4-Chloro-2-cyclohexyl-3-methyl-1-tosylpiperidine/(2S,3S,4R)-4-Chloro-2-cyclohexyl-3-methyl-1-	
tosylpiperidine and $(2S,3R)$ -3- $((S)$ -1-Chloroethyl)-2-cyclohexyl-1-tosylpyrrolidine/ $(2R,3S)$ -3- $((R)$ -1-Chloroethyl)-2-	32
cyclohexyl-1-tosylpyrrolidine	
(2 <i>S</i> ,3 <i>R</i> ,4 <i>S</i>)-Ethyl-4-chloro-3-methyl-1-tosylpiperidine-2-carboxylate/(2 <i>R</i> ,3 <i>S</i> ,4 <i>R</i>)-Ethyl-4-chloro-3-methyl-1-	
tosylpiperidine-2-carboxylate	37
(2R,3R,4S)-4-Chloro-3-ethyl-2-heptyl-1-tosylpiperidine/ $(2S,3S,4R)$ -4-Chloro-3-ethyl-2-heptyl-1-tosylpiperidine and	
(2S,3R)-3-((S)-1-Chloropropyl)-2-heptyl-1-tosylpyrrolidine/(2R,3S)-3-((R)-1-Chloropropyl)-2-heptyl-1-tosylpyrrolidine	38
(2 <i>R</i> ,3 <i>R</i> ,4 <i>S</i>)-4-Chloro-3-ethyl-2-phenethyl-1-tosylpiperidine/(2 <i>S</i> ,3 <i>S</i> ,4 <i>R</i>)-4-Chloro-3-ethyl-2-phenethyl-1-tosylpiperidine,	
(2S,3R)-3- $((S)$ -1-Chloropropyl)-2-phenethyl-1-tosylpyrrolidine and $(2R,3S)$ -3- $((R)$ -1-Chloropropyl)-2-phenethyl-1-	43
tosylpyrrolidine.	
(2R,3R,4S)-4-chloro-2-cyclohexyl-3-ethyl-1-tosylpiperidine/(2S,3S,4R)-4-chloro-2-cyclohexyl-3-ethyl-1-	
tosylpiperidine, $(2S,3R)$ -3- $((S)$ -1-chloropropyl)-2-cyclohexyl-1-tosylpyrrolidine/ $(2R,3S)$ -3- $((R)$ -1-chloropropyl)-2-	
cyclohexyl-1-tosylpyrrolidine and (2 <i>S</i> ,3 <i>S</i> , <i>E</i>)-2-cyclohexyl-3-(prop-1-enyl)-1-tosylpyrrolidine/(2 <i>S</i> ,3 <i>S</i> , <i>E</i>)-2-cyclohexyl-3-	47
(prop-1-enyl)-1-tosylpyrrolidine.	
(2R,3S,4S)-4-Chloro-2-heptyl-3-methyl-1-tosylpiperidine/ $(2S,3R,4R)$ -4-Chloro-2-heptyl-3-methyl-1-tosylpiperidine	52
(2R,3S,4S)-4-Chloro-3-methyl-2-phenethyl-1-tosylpiperidine/ $(2S,3R,4R)$ -4-Chloro-3-methyl-2-phenethyl-1-	
tosylpiperidine	55
(2 <i>S</i> ,3 <i>R</i>)-3-((<i>S</i>)-1-Chloroethyl)-2-cyclohexyl-1-tosylpyrrolidine/(2 <i>R</i> ,3 <i>S</i>)-3-((<i>R</i>)-1-Chloroethyl)-2-cyclohexyl-1-	
tosylpyrrolidine	57
(2 <i>S</i> ,3 <i>S</i> ,4 <i>S</i>)-Ethyl-4-chloro-3-methyl-1-tosylpiperidine-2-carboxylate/(2 <i>R</i> ,3 <i>R</i> ,4 <i>R</i>)-Ethyl-4-chloro-3-methyl-1-	
tosylpiperidine-2-carboxylate	60
(2S,3S)-2-Phenethyl-3-(prop-1-en-2-yl)-1-tosylpyrrolidine/($2R,3R$)-2-Phenethyl-3-(prop-1-en-2-yl)-1-tosylpyrrolidine	
and (±)-2-Phenethyl-3-(propan-2-ylidene)-1-tosylpyrrolidine	62
(2S,3S)-2-Heptyl-3-(prop-1-en-2-yl)-1-tosylpyrrolidine/($2R,3R$)-2-Heptyl-3-(prop-1-en-2-yl)-1-tosylpyrrolidine and (±)-	
2-Heptyl-3-(propan-2-ylidene)-1-tosylpyrrolidine	65
(\pm) -4-Methyl-2-phenethyl-1-tosyl-1,2,3,6-tetrahydropyridine and (\pm) -4-Methyl-2-phenethyl-1-tosyl-1,2,5,6-tetrahydropyridine	67
(±)-2-Heptyl-4-methyl-1-tosyl-1,2,3,6-tetrahydropyridine and (±)-2-Heptyl-4-methyl-1-tosyl-1,2,5,6-tetrahydropyridine	70
(\pm) -2-rieptyi-4-methyl-1-tosyi-1,2,5,0-tetranydropyridine and (\pm) -2-rieptyi-4-methyl-1-tosyi-1,2,5,0-tetranydropyridine	/0

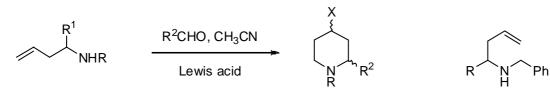
General:

All chemicals were purified by distillation where appropriate. Diethyl ether and tetrahydrofuran were predried over sodium wire and distilled from sodium under nitrogen, with benzophenone ketyl as indicator directly in the reaction vessel. Dichloromethane was distilled over calcium hydride and kept under nitrogen. All reactions were carried out under anhydrous conditions and in an atmosphere of nitrogen unless otherwise stated, using flame-dried glassware with all transfers performed using plastic syringes and needles.

All column chromatography was carried out using Fluka Silica Gel 60 (220-440 mesh) (Brockmann 2-3). TLC analysis was carried out using aluminium-backed plates coated with Merck Kieselgel 60 GF254. Plates were visualised by ultraviolet light and aqueous potassium permanganate spray (KMnO₄:K₂CO₃:water 6:1:100, w/w/v). Another purification technique involved the use of Mass-Directed-Auto-Prep (MDAP), a form of preparative HPLC, performed in the laboratories at GlaxoSmithKline®, Harlow (confidential).

Melting points were determined using a Gallenkamp melting point apparatus.

Optical rotations were measured on an Optical Activity Ltd. AA-1000 polarimeter, values are quoted in 10^{-1} cm²g⁻¹.


Infrared spectra were recorded in the range 4000-600 cm⁻¹ on a Nicolet MAGNA 550 FT-IR spectrometer with internal calibration. Spectra were recorded as thin films between NaCl plates, as KBr disks or as Nujol® pastes.

Proton (¹H) and carbon (¹³C) NMR spectra were recorded at 300 MHz or at 400 MHz and at 75.5 MHz or 100.6 MHz respectively on JNM-LA300 (300 MHz and 75.5 MHz) and on a Bruker ACF-300 or a Advance DRX 400 spectrometers. Chemical shift values ($\delta_{\rm H}$ and $\delta_{\rm C}$) are reported as values in parts per million (ppm) from the residual protic solvent as the internal standard reference for ¹H NMR spectra and from the solvent peaks for ¹³C NMR. ¹H NMR spectra are recorded in the form (integration; multiplicity; coupling constants; assignment). Multiplicities are given as s-singlet, d-doublet, t-triplet, q-quartet, m-multiplet and bs-broad signal. Coupling constants (*J* values) are quoted to one decimal place with values in Hz. ¹³C NMR spectra are recorded in the form $\delta_{\rm C}$ (assignment).

High and low resolution mass spectra were recorded on a Kratos profile instrument or on a VG Analytical ZAB-E instrument (EPSRC Mass Spectrometry Service, Swansea) or on a ThermoQuest Trace GC 2000 series and Agilent 6890 Series GC system, Micromas GCT. Mass spectra data were also acquired using LCMS analysis, performed in the laboratories at GlaxoSmithKline®, Harlow (confidential).

Full characterisation of a compound within this experimental includes, but is not limited to, data on IR, ¹H NMR, ¹³C NMR, low-resolution mass spectra and high-resolution mass spectra. Compounds that have been characterised fully in the literature contain two or more from the previous list. On some occasions, it was not possible to obtain all required data; the reasons for this have been alluded to in the main body of this thesis. Crystal structures have been deposited at the Cambridge Crystallographic Data Centre (CCDC).

Table 1: Unsuccessful Lewis acid Screening Reactions

Lewis Acid	R	R ¹	\mathbf{R}^2	X	Temp	Time	Yield(%)
						(11)	
InCl ₃	<i>n</i> -Bu			Cl	reflux		0
							0
	Bn	Н	CO ₂ Et			48	0
In(OTf) ₃		Н	Bn	OTf		72	0
		Н	<i>n</i> -C ₅ H ₁₁			72	0
AlCl ₃		Н	Bn	Cl		24	0
		Н	<i>n</i> -C ₅ H ₁₁			24	0
TiCl ₄ ^a		Н	Bn	Cl		24	0
		Н	<i>n</i> -C ₅ H ₁₁			24	0
TMSOTf		Н	Bn	OTf	-30°C to rt ^b	72	0
BF ₃ .OEt ₂		Н	<i>n</i> -C ₅ H ₁₁	F		72	0
InCl ₃	CBz	<i>n</i> -C ₇ H ₁₅	<i>n</i> -C ₅ H ₁₁	Cl	reflux	48	0
		Bn	Bn			72	0
						72	0
In(OTf) ₃			<i>n</i> -C ₅ H ₁₁	OTf		72	0
			Bn			72	0
BF ₃ .OEt ₂			<i>n</i> -C ₅ H ₁₁	F	-30°C to rt ^b	72	0
			Bn			72	0
TMSOTf			<i>n</i> -C ₅ H ₁₁	OTf		72	0
			Bn			72	0
SnBr ₄ ^c			<i>n</i> -C ₅ H ₁₁	Br	-78°C to	48	0
			CO ₂ Et		0 °C to		0
					reflux in	48	
					DCM		
	InCl ₃ In(OTf) ₃ AlCl ₃ TiCl ₄ ^a TMSOTf BF ₃ .OEt ₂ InCl ₃ In(OTf) ₃ BF ₃ .OEt ₂ TMSOTf	InCl3 n-Bu InCl3 n-Bu Bn Bn In(OTf)3 H AlCl3 H TiCl4 ^a H TMSOTf EBF3.OEt2 In(OTf)3 CBz In(OTf)3 SBF3.OEt2 In(OTf)3 TMSOTf BF3.OEt2 TMSOTf TMSOTf TMSOTf	InCl3 n -BuHInCl3 n -BuHIn(OTf)3BnHIn(OTf)3HHAlCl3HHTiCl4°HHTiCl4°HHTMSOTfHHBF3.OEt2 n -C7H15BnIn(OTf)3CBz n -C7H15BF3.OEt2SnSnIn(OTf)3SnSnF3.OEt2In(OTf)3SnTMSOTfIn(OTf)3In(OTf)3TMSOTfIn(OTf)3In(OTf)3TMSOTfIn(OTf)3In(OTf)3TMSOTfIn(OTf)3In(OTf)3TMSOTfIn(OTf)3In(OTf)3TMSOTfIn(OTf)3In(OTf)3TMSOTfIn(OTf)3In(OTf)3TMSOTfIn(OTf)3In(OTf)3TMSOTfIn(OTf)3In(OTf)3Inf(OTf)3In(OTf)3In(OTf)3Inf(OTf)3In(OTf)3In(OTf)3Inf(OTf)3In(OTf)3Inf(OTf)3In(OTf)3Inf(OTf)3In(OTf)3Inf(OTf)3In(OTf)3Inf(OTf)3In(OTf)3Inf(OTf)3In(OTf)3Inf(OTf)3In(OTf)3Inf(OTf)3In(OTf)3Inf(OTf)3In(OTf)3Inf(OTf)3In(OTf)3Inf(OTf)3In(OTf)3Inf(OTf)3In(OTf)3Inf(OTf)3In(OTf)3Inf(OTf)3In(OTf)3Inf(OTf)3In(OTf)3Inf(OTf)3In(OTf)3Inf(OTf)3In(OTf)3Inf(OTf)3 <td>InclaInclaInclaInClan-BuHCO2EtHBnHCO2EtIn(OTf)aHRnIn(OTf)aHBnAlClaHBnAlClaHBnTiCl4^aHBnTMSOTfHBnBF3.OEt2n-C3H11In(OTf)aFBRn-C3H11In(OTf)aN-C3H1BnBF3.OEt2n-C3H1BnBF3.OEt2n-C3H1BnIn(OTf)aN-C3H1BnBF3.OEt2n-C3H1BnBF3.OEt2N-C3H1BnIn(OTf)aN-C3H1BnBF3.OEt2N-C3H1BnIn(OTf)aN-C3H1BnTMSOTfN-C3H1BnTMSOTfN-C3H1BnSnBr4^cN-C3H1BnSnBr4^cN-C3H1</td> <td>InclaInclaInclaInclaInclaInclan-BuHCO2EtInclaBnHCO2EtInclaOTfIn(OTf)3HBnOTfAlCl3HBnClaAlCl4HBnClaTiCl4^aHBnClaTiCl4^aHBnClaTiCl4^aHBnClaTinCl3CBzn-C3H11FIn(OTf)3CBzn-C3H11FIn(OTf)3FBnClaIn(OTf)3FN-C3H11FBF3.OEt2N-C3H11FBF3.OEt2N-C3H11SFSnBr4°NNSnBr4°NNSnBr4°NN</td> <td>Incl3 n-Bu H CO2Et CI reflux InCl3 n-Bu H CO2Et CI reflux In(OTf)3 Bn H CO2Et In(OTf)3 In(OTf)3 In(I In(I) In(I)</td> <td>Incl3 n-Bu H CO2Et CI reflux 48 InCl3 n-Bu H CO2Et CI reflux 48 InCl3 n-Bu H CO2Et CI reflux 48 In(OTf)3 Bn H CO2Et CI 72 72 AlCl3 H n-CsH11 CI 24 72 AlCl4 H Bn CI 24 24 TiCl4^a H Bn CI 24 TMSOTf H Bn CI 24 TMSOTf H Bn CI 24 TMSOTf H n-CsH11 F 24 Incl3 CBz n-C7H15 n-CsH11 F 72 Incl4 Bn Bn In 72 72 72 Incl3 CBz n-C7H15 n-CsH11 F 72 72 In(OTf)3 In n-CsH11 OTf</td>	InclaInclaInclaInClan-BuHCO2EtHBnHCO2EtIn(OTf)aHRnIn(OTf)aHBnAlClaHBnAlClaHBnTiCl4 ^a HBnTMSOTfHBnBF3.OEt2n-C3H11In(OTf)aFBRn-C3H11In(OTf)aN-C3H1BnBF3.OEt2n-C3H1BnBF3.OEt2n-C3H1BnIn(OTf)aN-C3H1BnBF3.OEt2n-C3H1BnBF3.OEt2N-C3H1BnIn(OTf)aN-C3H1BnBF3.OEt2N-C3H1BnIn(OTf)aN-C3H1BnTMSOTfN-C3H1BnTMSOTfN-C3H1BnSnBr4 ^c N-C3H1BnSnBr4 ^c N-C3H1	InclaInclaInclaInclaInclaInclan-BuHCO2EtInclaBnHCO2EtInclaOTfIn(OTf)3HBnOTfAlCl3HBnClaAlCl4HBnClaTiCl4 ^a HBnClaTiCl4 ^a HBnClaTiCl4 ^a HBnClaTinCl3CBzn-C3H11FIn(OTf)3CBzn-C3H11FIn(OTf)3FBnClaIn(OTf)3FN-C3H11FBF3.OEt2N-C3H11FBF3.OEt2N-C3H11SFSnBr4°NNSnBr4°NNSnBr4°NN	Incl3 n -Bu H CO2Et CI reflux InCl3 n -Bu H CO2Et CI reflux In(OTf)3 Bn H CO2Et In(OTf)3 In(OTf)3 In(I In(I) In(I)	Incl3 n-Bu H CO2Et CI reflux 48 InCl3 n-Bu H CO2Et CI reflux 48 InCl3 n-Bu H CO2Et CI reflux 48 In(OTf)3 Bn H CO2Et CI 72 72 AlCl3 H n-CsH11 CI 24 72 AlCl4 H Bn CI 24 24 TiCl4 ^a H Bn CI 24 TMSOTf H Bn CI 24 TMSOTf H Bn CI 24 TMSOTf H n-CsH11 F 24 Incl3 CBz n-C7H15 n-CsH11 F 72 Incl4 Bn Bn In 72 72 72 Incl3 CBz n-C7H15 n-CsH11 F 72 72 In(OTf)3 In n-CsH11 OTf

^aBased on aube

^bDecomposition if initial addition performed at 0 or above

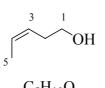
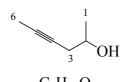

^cBased on Hanessian

Table 2. Unsuccessful aza-Prins reactions involving C1 substituted tosylamine.

_			4 5		Cl	CI			
\sim	$R NHTs + R^{1}CHO \xrightarrow{1.5 \text{ eq.LA},} \text{ solvent} R^{1}R^{1} \text{ and/or } R^{1}R^{1}$								
Entry	= H or Me R ¹	Lewis	Solvent	Temp	Time	Comment			
Entry	K	Acid	Solvent	/°C	Time	Comment			
	NHTs								
1	<i>n</i> -C ₇ H ₁₅	InCl ₃	DCM	Rt and	48 h, then	No reaction, SM			
				reflux	24 h reflux	remained			
2	(CH ₂) ₂ Ph	InCl ₃	DCM	Rt	48 h	No reaction, SM			
						remained			
3	<i>c</i> -Hex	InCl ₃	DCM	Rt	48 h	No reaction, SM			
						remained			
4	<i>n</i> -C ₇ H ₁₅	TMSOTf	DCM	Rt	48 h	No reaction, SM			
						remained			
5	(CH ₂) ₂ Ph	InCl ₃	CH ₃ CN	Rt and	48 h, then	No reaction, SM			
				reflux	72 h reflux	remained			
6	(CH ₂) ₂ Ph	FeCl ₃	DCM	Rt	70 h	90% SM			
		anhydrous				consumed,			
						product trace			
Me	MeNHTs								
7	(CH ₂) ₂ Ph	InCl ₃	DCM	Rt and	72 h, then	No reaction, SM			
				reflux	72 h reflux	remained			
8	(CH ₂) ₂ Ph	InCl ₃	DCM	Rt and	24 h, then	No reaction, SM			
				reflux	24 h reflux	remained			
9	(CH ₂) ₂ Ph	InCl ₃	CH ₃ CN	Reflux	72 h	No reaction, SM			
						remained			

1. Preparation of alcohol-containing precursors

(Z)-Pent-3-en-1-ol

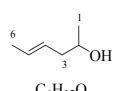


C₅H₁₀O Mol. Wt.: 86.13

A solution of pent-3-yn-1-ol (5.00 g, 59.44 mmol) in methanol (85 mL) was injected into a hydrogenation flask containing a prehydrogenated suspension of Lindlar's catalyst (425 mg) in methanol (10 mL). The hydrogenation was complete in 17 hours. The mixture was filtered through celite, washed with diethyl ether (10 mL) and concentrated *in vacuo*. This gave a pale yellow oil, which was purified by distillation at atmospheric pressure (50 °C, 760mmHg) to give the *title compound* (4.02 g, 46.69 mmol, 79%) as a colourless oil.

 $\delta_{\rm H}$ (300 MHz; CDCl₃) 5.66-5.53 (1H, m, H-C3), 5.43-5.31 (1H, m, H-C4), 3.61 (2H, t, *J* 6.6, H-C1), 2.34-2.26 (2H, m, H-C2), 2.11 (1H, bs, H-OH), 1.64-1.59 (3H, m, H-C5); $\delta_{\rm C}$ (75.5 MHz; CDCl₃) 126.9 (C3), 126.0 (C4), 62.0 (C1), 30.3 (C2), 12.8 (C5).

(±)-Hex-4-yn-2-ol



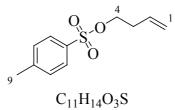
C₆H₁₀O Mol. Wt.: 98.14

A round-bottomed flask was wrapped in aluminium foil and equipped with a dropping funnel and a thermometer. The flask was charged with (\pm)-pent-4-yn-2-ol (5.00 g, 59.43 mmol, 1.00 eq.) and tetrahydrofuran (96 mL). The resulting solution was cooled to -78 °C and a 2.5 M solution of *n*-butyllithium in hexane (47 mL, 118.86 mmol, 2.00 eq.) was added dropwise over 30 minutes. The mixture was stirred at -78 °C for a further 90 minutes and iodomethane (18.6 mL, 297.15 mmol, 5.00 eq.) was added dropwise. The mixture was allowed to warm to room temperature for 1 hour and 1.0 M hydrochloric acid (100 mL) was added dropwise over 30 minutes. The mixture was stirred for a further 30 minutes at room temperature, the organic layer separated and the aqueous layer extracted with diethyl ether (3 x 100 mL). The combined organic layers were dried over magnesium sulfate, filtered and concentrated *in vacuo*. This afforded a yellow oil, which was purified by distillation under reduced pressure (125 °C, 226 mmHg) to give the *title compound* (3.10 g, 31.59 mmol, 53%) as a colourless oil.

 $\delta_{\rm H}$ (300 MHz; CDCl₃) 3.88-3.77 (1H, m, H-C2), 2.37 (1H, bs, H-OH), 2.28-2.18 (2H, m, H-C3), 1.75 (3H, t, *J* 2.2, H-C6), 1.17 (3H, d, *J* 6.2, H-C1); $\delta_{\rm C}$ (75.5 MHz; CDCl₃) 78.2 (C4), 75.3 (C3), 66.4 (C2), 29.2 (C3), 22.1 (C1), 3.4 (C6). All other data in agreement with literature values.

(±)-(*E*)-Hex-4-en-2-ol

C₆H₁₂O Mol. Wt.: 100.16


Following the general procedure X, (\pm)-hex-4-yn-2-ol (966 mg, 9.84 mmol) gave a pale yellow oil, which was purified by distillation under reduced pressure (120 °C, 213mmHg) to give the *title compound* (590 mg, 5.89 mmol, 60%) as a colourless oil.

 $\delta_{\rm H}$ (300 MHz; CDCl₃) 5.62-5.48 (1H, m, H-C4), 5.47-5.35 (1H, m, H-C5), 3.82-3.70 (1H, m, H-C2), 2.24-2.12 (1H, m, H-C3), 2.12-1.99 (1H, m, H-C3), 1.74 (1H, bs, H-OH), 1.70-1.65 (3H, m, H-C6), 1.17 (3H, d, *J* 6.2, H-C1). All other data in agreement with literature values.

General procedure for alcohol tosylation

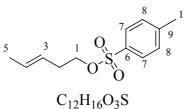
A round-bottomed flask was charged with homoallylic alcohol (69.73 mmol, 1.00 eq.) and dichloromethane (140 mL). The resulting solution was stirred and cooled to 0 °C before adding sequentially 4-dimethylaminopyridine (5.08 g, 41.84 mmol, 0.60 eq.) and *p*-toluenesulfonyl chloride (15.96 g, 83.68 mmol, 1.20 eq.) portionwise and dropwise triethylamine (9.82 mL, 69.73 mmol, 1.00 eq.). The resulting solution was stirred at 0 °C until TLC showed complete consumption of starting material. The resulting suspension was diluted with diethyl ether (150 mL), stirred for a further 30 minutes and the precipitate removed by filtration. The solution was then washed sequentially with 10% aqueous copper sulphate (2 x 75 mL), 10% aqueous sodium hydrogen carbonate (2 x 75 mL) and a saturated aqueous sodium chloride solution (60 mL). The combined organic layers were dried over magnesium sulfate, filtered, and concentrated *in vacuo*.

4-(Toluene-4-sulfonyloxy)-but-1-ene 2

Mol. Wt.: 226.29

Following the general procedure A, 3-buten-1-ol (3.35 g, 46.40 mmol) gave after 22 hours of stirring, a yellow oil which was purified by flash column chromatography (50% petroleum ether 50% diethyl ether) to give the *title compound* (8.22 g, 36.30 mmol, 78%) as a colourless oil.

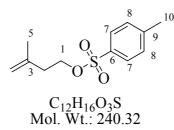
 $δ_{\rm H}$ (300 MHz; CDCl₃) 7.80 (2H, d, *J* 8.3, H-C6), 7.36 (2H, d, *J* 8.3, H-C7), 5.75-5.61 (1H, m, H-C2), 5.13-5.07 (2H, m, H-C1), 4.07 (2H, t, *J* 6.7, H-C4), 2.45 (3H, s, H-C9), 2.44-2.39 (2H, m, H-C3); $δ_{\rm C}$ (75.5 MHz; CDCl₃) 145.2 (C8), 133.5 (C5), 132.8 (C2), 130.3 (C7), 128.3 (C6), 118.7 (C1), 69.8 (C4), 33.6 (C3), 22.1 (C9); *m/z* (CI) 227 (MH⁺, 100), 173 (95), 155 (55).


(Z)-Pent-3-enyl 4-methylbenzenesulfonate 19

Following the general procedure X, (Z)-pent-3-en-1-ol (3.99 g, 46.32 mmol) was consumed based on analysis by TLC after 20 hours of stirring at 0 °C. The work up afforded a yellow oil, which was purified by flash column chromatography (90% petroleum ether, 10% ethyl acetate) to give the *title compound* (9.78 g, 40.71 mmol, 88%) as a colourless oil.

δ_H (300 MHz; CDCl₃) 7.79 (2H, d, *J* 8.3, H-C7), 7.34 (2H, d, *J* 8.3, H-C8), 5.62-5.49 (1H, m, H-C3), 5.31-5.19 (1H, m, H-C4), 4.01 (2H, t, *J* 7.0, H-C1), 2.45 (3H, s, H-C10), 2.44-2.35 (2H, m, H-C2), 1.59-1.54 (3H, m, H-C5); *m/z* (CI) 241 (MH⁺, 17), 213 (20), 173 (100).

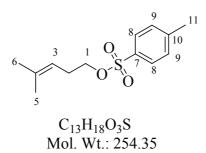
(E)-Pent-3-enyl 4-methylbenzenesulfonate 20



Mol. Wt.: 240.32

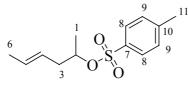
Following the general procedure X, (*E*)-pent-3-en-1-ol (2.10 g, 24.38 mmol) was consumed based on analysis by TLC after 20 hours of stirring at 0 °C. The work up afforded a yellow oil, which was purified by flash column chromatography (90% petroleum ether, 10% ethyl acetate) to give the *title compound* (3.32 g, 13.82 mmol, 57%) as a colourless oil.

δ_H (300 MHz; CDCl₃) 7.77 (2H, d, *J* 8.3, H-C7), 7.33 (2H, d, *J* 8.3, H-C8), 5.55-5.40 (1H, m, H-C3), 5.30-5.17 (1H, m, H-C4), 3.99 (2H, t, *J* 6.8, H-C1), 2.44 (3H, s, H-C10), 2.34-2.26 (2H, m, H-C2), 1.63-1.57 (3H, m, H-C5); *m/z* (CI) 241 (MH⁺, 15), 213 (20), 173 (100).


3-Methylbut-3-enyl 4-methylbenzenesulfonate 24

Following the general procedure X, 3-methylbut-3-en-1-ol (6.01 g, 69.73 mmol) was consumed based on analysis by TLC after 48 hours of stirring at 0 °C. The work up gave the *title compound* (12.63 g, 52.55 mmol, 75%) as a yellow oil which was used in the next step without any further purification.

δ_H (300 MHz; CDCl₃) 7.77 (2H, d, *J* 8.3, H-C7), 7.33 (2H, d, *J* 8.3, H-C8), 4.77 (1H, s, H-C4), 4.66 (1H, s, H-C4), 4.10 (2H, t, *J* 6.8, H-C1), 2.43 (3H, s, H-C10), 2.33 (2H, t, *J* 6.8, H-C2), 1.64 (3H, s, H-C5); *m/z* (CI) 241 (MH⁺, 90), 173 (72), 137 (100).


4-Methylpent-3-enyl 4-methylbenzenesulfonate 25

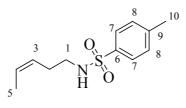
Following the general procedure X, 4-methylpent-3-en-1-ol (250 mg, 2.50 mmol) was consumed based on analysis by TLC after 20 hours of stirring at 0 °C. The work up gave the *title compound* (630 mg, 2.48 mmol, 99%) as a yellow oil which was used in the next step without any further purification.

δ_H (300 MHz; CDCl₃) 7.78 (2H, d, *J* 8.3, H-C8), 7.34 (2H, d, *J* 8.3, H-C9), 4.99-4.91 (1H, m, H-C3), 3.97 (2H, t, *J* 7.1, H-C1), 2.45 (3H, s, H-C11), 2.37-2.28 (2H, m, H-C2), 1.65 (3H, s, H-C6), 1.55 (3H, s, H-C5); *m/z* (CI) 255 (MH⁺, 30), 173 (100), 155 (20).

(±)-(E)-Hex-4-en-2-yl 4-methylbenzenesulfonate 42

C₁₃H₁₈O₃S Mol. Wt.: 254.35

Following the general procedure, (\pm) -(E)-hex-4-en-2-ol (590 mg, 5.90 mmol) was consumed based on analysis by TLC after 40 hours of stirring at 0 °C. The work up afforded a yellow oil, which was purified by flash column chromatography (90% hexane, 10% ethyl acetate) to give the *title compound* (374 mg, 1.47 mmol, 25%) as a colourless oil.

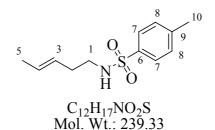

δ_H (300 MHz; CDCl₃) 7.78 (2H, d, *J* 8.2, H-C8), 7.33 (2H, d, *J* 8.2, H-C9), 5.49-5.35 (1H, m, H-C4), 5.20-5.07 (1H, m, H-C5), 4.61-4.50 (1H, m, H-C2), 2.44 (3H, s, H-C11), 2.32-2.12 (2H, m, H-C3), 1.58-1.53 (3H, m, H-C6), 1.25 (3H, d, *J* 6.3, H-C1);

δ_C (75.5 MHz; CDCl₃) 144.3 (C10), 134.4 (C7), 129.6 (C9), 128.3 (C4), 127.7 (C8), 124.7 (C5), 80.1 (C2), 39.6 (C3), 21.6 (C11), 20.4 (C1), 17.9 (C6);

General Procedure for the amination of a tosyl-protected/activated alcohol with 4methylbenzenesulfonamide, catalysed by sodium iodide.

A round-bottomed flask fitted with a reflux condenser was charged with 4-methylbenzenesulfonamide (27.98 g, 160.38 mmol, 2.30 eq.), finely powdered potassium hydroxide (5.06 g, 90.65 mmol, 1.30 eq.) and dimethylsulfoxide (87 mL). The resulting suspension was heated to 50 °C and stirred for 2 hours. The resulting solution was cooled to room temperature and a tosylated alcohol derivative (69.73 mmol, 1.00 eq.) in dimethylsulfoxide (10 mL) added dropwise followed by sodium iodide (3.15 g, 20.92 mmol, 0.30 eq.) in one portion. The mixture was heated to 50 °C and stirred until TLC showed full consumption of starting material. The mixture was cooled to room temperature, ice cold water (100 mL) added, the organic layer separated, and the aqueous layer extracted with dichloromethane (3 x 50 mL). The combined organic layers were washed with a 15 % aqueous solution of potassium hydroxide (100 mL), water (100 mL) and a saturated aqueous solution of sodium chloride (100 mL). The organic layer was dried over magnesium sulfate, filtered and concentrated *in vacuo*.

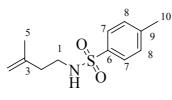
(Z)-4-Methyl-N-(pent-3-enyl)benzenesulfonamide 21



C₁₂H₁₇NO₂S Mol. Wt.: 239.33

Following the general procedure X, (*Z*)-pent-3-enyl 4-methylbenzenesulfonate (1.00 g, 4.16 mmol) was consumed based on analysis by TLC after 20 hours of stirring at 50 °C. The work-up afforded a yellow oil, which was purified by flash column chromatography (80% hexane, 20% ethyl acetate) to give the *title compound* (0.93g, 3.89 mmol, 94%) as a colourless oil.

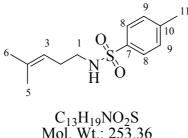
 v_{max} (neat)/cm⁻¹ 3282, 2924, 1598; δ_{H} (300 MHz; CDCl₃) 7.74 (2H, d, *J* 8.3, H-C7), 7.31 (2H, d, *J* 8.3, H-C8), 5.64-5.50 (1H, m, H-C3), 5.25-5.13 (1H, m, H-C4), 4.49-4.39 (1H, m, H-NH), 3.01-2.93 (2H, m, H-C1), 2.43 (3H, s, H-C10), 2.25-2.16 (2H, m, H-C2), 1.59-1.54 (3H, m, H-C5); δ_{C} (75.5 MHz; CDCl₃) 143.3 (C9), 136.8 (C6), 129.7 (C8), 127.7 (C3), 127.1 (C7), 125.5 (C4), 42.6 (C1), 27.0 (C2), 21.5 (C10), 12.9 (C5); *m*/*z* (CI) 240 (MH⁺, 100), 184 (65), 172 (26); HRMS (ES) Found [M+NH₄]⁺ 257.1315, C₁₂H₁₇NO₂S requires 257.1318.


(E)-4-Methyl-N-(pent-3-enyl)benzenesulfonamide 22

Following the general procedure X, (*E*)-pent-3-enyl 4-methylbenzenesulfonate (1.00 g, 4.16 mmol) was consumed based on analysis by TLC after 20 hours of stirring at 50 °C. The work-up afforded a yellow oil, which was purified by flash column chromatography (80% hexane, 20% ethyl acetate) to give the *title compound* (0.97g, 4.04 mmol, 97%) as a colourless oil.

 v_{max} (neat)/cm⁻¹ 3284, 3035, 2918, 1816, 1598; δ_{H} (300 MHz; CDCl₃) 7.74 (2H, d, *J* 8.4, H-C7), 7.31 (2H, d, *J* 8.4, H-C8), 5.52-5.38 (1H, m, H-C3), 5.25-5.13 (1H, m, H-C4), 4.47-4.37 (1H, m, N-NH), 2.96 (2H, dd, *J* 12.7, 6.4, H-C1), 2.43 (3H, s, H-C10), 2.15-2.07 (2H, m, H-C2), 1.64-1.60 (3H, m, H-C5); δ_{C} (75.5 MHz; CDCl₃) 143.3 (C9), 136.9 (C6), 129.6 (C8), 128.9 (C3), 127.1 (C7), 126.6 (C4), 42.5 (C1), 32.4 (C2), 21.4 (C10), 17.9 (C5); *m*/*z* (CI) 240 (MH⁺, 100), 184 (35), 111 (18); HRMS (ES) Found [M+H]⁺ 240.1050, C₁₂H₁₇NO₂S requires 240.1053.

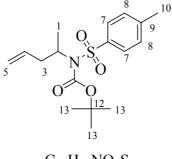
4-Methyl-N-(3-methylbut-3-enyl)benzenesulfonamide 24



C₁₂H₁₇NO₂S Mol. Wt.: 239.33

Following the general procedure X, 3-methylbut-3-enyl 4-methylbenzenesulfonate (12.63 g, 52.55 mmol) was consumed based on analysis by TLC after 20 hours of stirring at 50 °C. The work up afforded a yellow oil, which was purified by flash column chromatography (80% hexane, 20% ethyl acetate) to give the *title compound* (8.59 g, 35.89 mmol, 68%) as a white solid.

M.p. 38-39 °C; $\delta_{\rm H}$ (300 MHz; CDCl₃) 7.70 (2H, d, *J* 8.4, H-C7), 7.25 (2H, d, *J* 8.4, H-C8), 4.89-4.78 (1H, m, N-NH), 4.73-4.69 (1H, m, H-C4), 4.59-4.56 (1H, m, H-C4), 2.98 (2H, dd, *J* 12.9, 6.8, H-C1), 2.36 (3H, s, H-C10), 2.09 (2H, t, *J* 6.8, H-C2), 1.53 (3H, s, H-C5); *m*/*z* (CI) 240 (MH⁺, 62), 184 (100), 157 (18).


4-Methyl-N-(4-methylpent-3-enyl)benzenesulfonamide 25

Following the general procedure X, 4-methylpent-3-enyl 4-methylbenzenesulfonate (630 mg, 2.48 mmol) was consumed based on analysis by TLC after 20 hours of stirring at 50 °C. The work up afforded a yellow oil, which was purified by flash column chromatography (80% hexane, 20% ethyl acetate) to give the *title* compound (317 mg, 1.25 mmol, 50%) as a colourless oil.

ν_{max}(neat)/cm⁻¹ 3521, 3281, 2926, 1598; δ_H (300 MHz; CDCl₃) 7.74 (2H, d, J 8.3, H-C8), 7.30 (2H, d, J 8.3, H-C9), 4.95-4.87 (1H, m, H-C3), 4.48 (1H, t, J 5.8, H-NH), 2.93 (2H, dd, J 13.1, 6.6, H-C1), 2.42 (3H, s, H-C11), 2.19-2.09 (2H, m, H-C2), 1.66 (3H, s, H-C6), 1.55 (3H, s, H-C5); δ_C (75.5 MHz; CDCl₃) 143.3 (C10), 136.8 (C7), 135.6 (C3), 129.6 (C9), 127.1 (C8), 119.6 (C4), 42.9 (C1), 28.1 (C2), 25.7 (C6), 21.5 (C10), 17.8 (C5); m/z (CI) 254 (MH⁺, 100), 184 (38), 155 (12); HRMS (ES) Found $[M+H]^+$ 254.1207, C₁₃H₂₀NO₂S requires 254.1209.

(±)-tert-Butyl pent-4-en-2-yl(tosyl)carbamate 40

C₁₇H₂₅NO₄S Mol. Wt.: 339.45

A round-bottomed flask was charged with (±)-pent-4-en-2-ol (1.00 g, 11.61 mmol, 1.00 eq.) and tetrahydrofuran (160 mL). The resulting solution was stirred at room temperature and triphenylphosphine (9.07 g, 34.83 mmol, 3.00 eq.) added portionwise followed by tert-butyl tosylcarbamate (4.72 g, 17.38 mmol, 1.50 eq.) portionwise and diisopropyl azodicarboxylate (5.67 mL, 28.62 mmol, 2.47 eq.) dropwise. The resulting solution was stirred overnight, filtered over a pad of celite and concentrated in vacuo. This afforded a pale yellow oil which was purified by flash column chromatography (90% hexane 10% ethyl acetate) to afford the *title compound* (2.72 g, 8.01 mmol, 69%) as a sticky colourless oil.

δ_H (300 MHz; CDCl₃) 7.78 (2H, d, J 8.4, H-C7), 7.28 (2H, d, J 8.4, H-C8), 5.74 (1H, tdd, J 17.2, 10.0, 7.2, H-C4), 5.13-5.00 (2H, m, H-C5), 4.69-4.56 (1H, m, H-C2), 2.78-2.66 (1H, m, H-C3), 2.52-2.42 (1H, m, H-C3), 2.43 (3H, s, H-C10), 1.46 (3H, d, J 6.8, H-C1), 1.35 (9H, s, H-C13); δ_C (75.5 MHz; CDCl₃) 150.6

(C11), 143.7 (C9), 137.9 (C4), 135.2 (C6), 129.1 (C8), 127.8 (C7), 117.6 (C5), 83.9 (C12), 54.9 (C2), 39.4 (C3), 27.9 (C13), 21.6 (C10), 19.4 (C1);

(±)-4-Methyl-N-(pent-4-en-2-yl)benzenesulfonamide 41

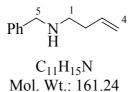


A round-bottomed flask was charged with (\pm) -*tert*-butyl pent-4-en-2-yl(tosyl)carbamate (2.13 g, 6.27 mmol, 1.00 eq.) and dichloromethane (43 mL). The resulting solution was stirred at room temperature and trifluoroacetic acid (3.61 g, 31.66 mmol, 5.00 eq.) added dropwise. The mixture was stirred at room temperature overnight and water (50 mL) was added. The organic layer was separated and the aqueous layer was extracted with dichloromethane (3 x 30 mL). The combined organic layers were dried over magnesium sulfate, filtered, and concentrated *in vacuo*.

This afforded a pale yellow oil which was purified by flash column chromatography (80% hexane 20% ethyl acetate) to afford the *title compound* (1.50 g, 6.27 mmol, *quantitative*) as a colourless oil.

δ_H (300 MHz; CDCl₃) 7.75 (2H, d, *J* 8.3, H-C7), 7.29 (2H, d, *J* 8.3, H-C8), 5.56 (1H, tdd, *J* 17.4, 10.3, 7.2, H-C4), 5.06-4.95 (2H, m, H-C5), 4.53 (1H, d, *J* 7.1, H-NH), 3.43-3.29 (1H, m, H-C2), 2.42 (3H, s, H-C10), 2.14-2.08 (2H, m, H-C3), 1.06 (3H, d, *J* 6.6, H-C1); *m*/*z* (CI) 240 (MH⁺, 45), 198 (100), 155 (10).

(\pm) -(E)-N-(Hex-4-en-2-yl)-4-methylbenzenesulfonamide 43

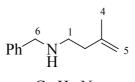

Following the general procedure X, (\pm) -(E)-hex-4-en-2-yl 4-methylbenzenesulfonate (350 mg, 1.38 mmol) was consumed based on analysis by TLC after 20 hours of stirring at 50 °C. The work up afforded a yellow oil, which was purified by flash column chromatography (80% hexane, 20% ethyl acetate) to give the *title compound* (107 mg, 0.42 mmol, 31%) as a colourless oil.

 $δ_{\rm H}$ (300 MHz; CDCl₃) 7.66 (2H, d, *J* 8.3, H-C8), 7.22 (2H, d, *J* 8.3, H-C9), 5.36-5.23 (1H, m, H-C4), 5.08-4.95 (1H, m, H-C5), 4.66 (1H, d, *J* 7.2, H-NH), 3.24-3.11 (1H, m, H-C2), 2.33 (3H, s, H-C11), 1.96-1.89 (2H, m, H-C3), 1.50-1.46 (3H, m, H-C6), 0.97 (3H, d, *J* 6.6, H-C1); *m/z* (CI) 254 (MH⁺, 100), 198 (70), 172 (22).

General procedure for amination (tosyl displacement by primary amine)

A round-bottomed flask equipped with a condenser was charged with primary amine (90 mmol, 5.00 eq.), tosylated alcohol (18 mmol, 1.00 eq.), and ethanol (18ml). The resulting solution was stirred at reflux temperature until TLC showed complete consumption of starting material. The solution was cooled to room temperature, the ethanol removed *in vacuo* and the excess of primary amine carefully distilled under reduced pressure unless otherwise stated. The resulting residue was partitioned between dichloromethane (60 mL) and 1.0 M aqueous sodium hydroxide solution (40mL). The organic layer was separated, the aqueous layer extracted with dichloromethane (3 x 10 mL), the combined organic layers dried over magnesium sulphate, filtered and concentrated *in vacuo*.

N-Benzyl-N-(3-butenyl)amine 3


Mol. Wt.: 161.24 oluene-4-sulfonvloxy)-

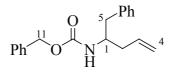
Following the general procedure X, 4-(toluene-4-sulfonyloxy)-but-1-ene (4.07 g, 18.00 mmol), in the presence of benzylamine (9.65 g, 90.00 mmol), was consumed based on analysis by TLC after 20 hours of stirring and heating. The excess of benzylamine was distilled (104 °C, 245 mmHg) and the work up gave a yellow oil, which was purified by flash column chromatography (75% petroleum ether 24% ethyl acetate 1% triethylamine) to give the *title compound* (2.29 g, 14.00 mmol, 50%) as a colourless oil.

δ_H (300 MHz; CDCl₃) 7.38-7.24 (5H, m, ArH) 5.88-5.74 (1H, m, H-C3), 5.15-5.03 (2H, m, H-C4), 3.82 (2H, s, H-C5), 2.73 (2H, t, *J* 6.0, H-C1), 2.31 (2H, dt, *J* 6.0, 6.0

H-C2), 1.66 (1H, bs, H-NH); δ_C (75.5 MHz; CDCl₃) 140.5 (ArC), 136.8 (C3), 128.9 (ArC), 128.5 (ArC), 127.2 (ArC), 116.9 (C4), 54.2 (C5), 48.6 (C1), 34.6 (C2).

Benzyl-(3-methyl-but-3-enyl)-amine 13

C₁₂H₁₇N Mol. Wt.: 175.27

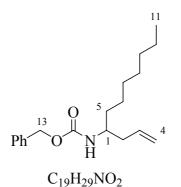

Following the general procedure, 2-methyl-4-(toluene-4-sulfonyloxy)-but-1-ene (2.88 g, 12.00 mmol), in the presence of benzylamine (6.43 g, 60 mmol), was consumed based on analysis by TLC after 18 hours of stirring and heating. The work up gave a yellow oil, which was purified by flash column chromatography (75% petroleum ether 24% ethyl acetate 1% triethylamine) to give the *title compound* (2.55 g, 14.55 mmol, 97%) as a colourless oil.

 $δ_{\rm H}$ (300 MHz; CDCl₃) 7.37-7.23 (5H, m, ArH), 4.79 (1H, s, H-C5), 4.75 (1H, s, H-C5), 3.81 (2H, s, H-C6), 2.76 (2H, t, *J* 6.3, H-C1), 2.26 (2H, t, *J* 6.3, H-C2), 1.72 (3H, s, H-C4); $δ_{\rm C}$ (75.5 MHz; CDCl₃) 143.9 (C3),

General procedure for the iodine catalysed synthesis of homoallylic amines

A round-bottom flask was charged with aldehyde (15.00 mmol, 1 eq.) and acetonitrile (15 ml). To the resulting solution at room temperature was added sequentially iodine (0.38 g, 1.5 mmol, 0.10 eq.), benzyl carbamate (2.38 g, 15.75 mmol, 1.05 eq.) portionwise, and dropwise allyl trimethyl silane (2.38 mL, 15 mmol, 1.00 eq.). The resulting suspension was stirred at room temperature until TLC showed complete consumption of starting material. To the solution was added sodium thiosulfate (0.90 g), distilled water (10 mL) and the reaction mixture stirred for a further 20 minutes. The biphasic solution was diluted with diethyl ether (30 mL), the organic layer washed with saturated aqueous sodium chloride (2 x 25 mL) and combined aqueous layers extracted with diethyl ether (2 x 25 mL). The combined organic layers were dried over sodium thiosulfate, filtered, and concentrated *in vacuo*.

N-Benzyloxycarbonyl-(±)-1-benzylbut-3-enylamine 6



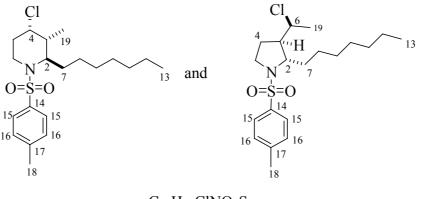
C₁₉H₂₁NO₂ Mol. Wt.: 295.38

Following the general procedure, phenylacetaldehyde (1.80 g, 15.00 mmol), gave after overnight stirring a yellow oil which was purified by flash column chromatography (90% petroleum ether 10% ethyl acetate) to give the *title compound* (2.00 g, 6.76 mmol, 45%) as a colourless oil.

 $\delta_{\rm H}$ (300 MHz; CDCl₃) 7.42-7.18 (10H, m, ArH), 5.88-5.74 (1H, m, H-C3), 5.14-5.07 (2H, m, H-C4), 5.08 (2H, s, H-C11), 4.67-4.64 (1H, m, H-NH), 4.04-3.97 (1H, m, H-C1), 2.89-2.76 (2H, m, H-C2), 2.35-2.28 (1H, m, H-C5), 2.20-2.07 (1H, m, H-C5); $\delta_{\rm C}$ (75.5 MHz; CDCl₃) 156.2 (C10), 138.3 (ArC), 137.0 (C3), 134.6 (ArC), 129.8 (ArC), 129.0 (ArC), 128.7 (ArC), 128.5 (ArC), 128.4 (ArC), 126.9 (ArC), 118.7 (C4), 67.4 (C11), 52.1 (C5), 40.8 (C1), 38.6 (C2).

N-Benzyloxycarbonyl-(±)-1-heptylbut-3-enylamine 7

Mol. Wt.: 303.44

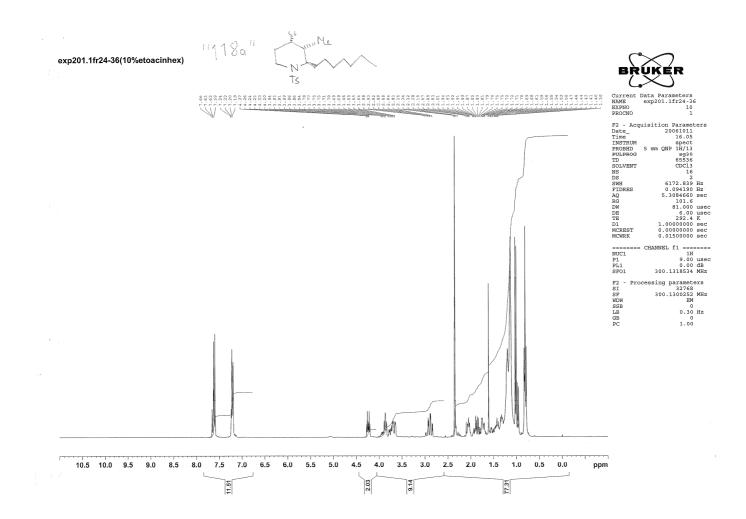

Following the general procedure, octanal (1.80 g, 15.00 mmol), gave after overnight stirring a yellow oil which was purified by flash column chromatography (90% petroleum ether 10% ethyl acetate) to give the *title compound* (1.53 g, 5.03 mmol, 34%) as a white solid.

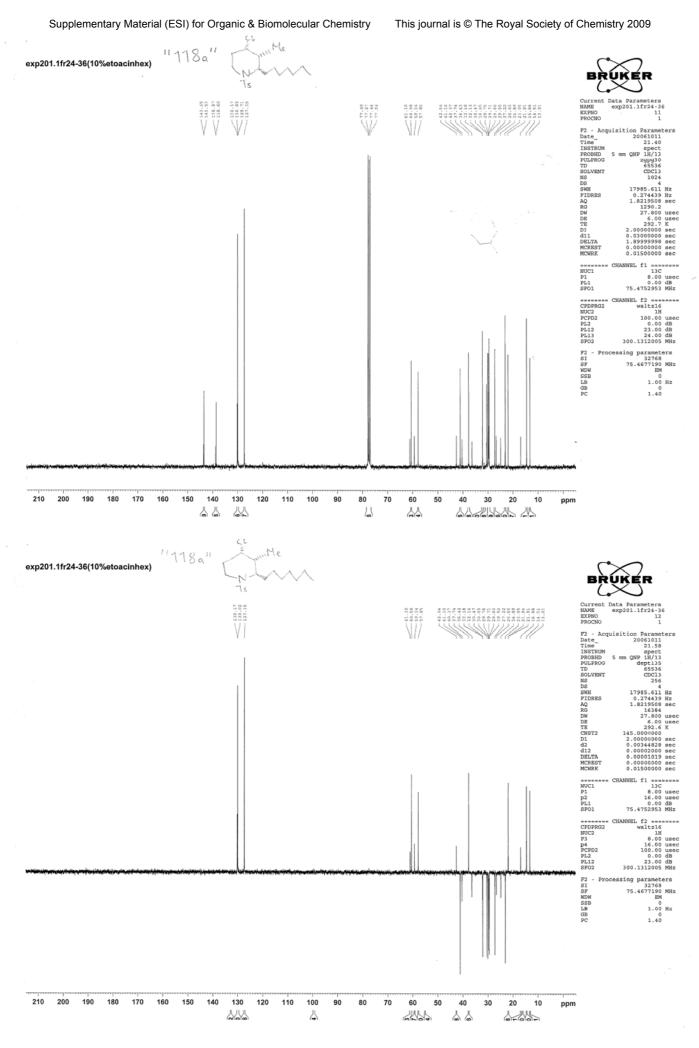
M.p. 52-53°C (Lit.: 51-52°C); $\delta_{\rm H}$ (300 MHz; CDCl₃) 7.38-7.34 (5H, m, ArH), 5.82-5.71 (1H, m, H-C3), 5.10-5.05 (2H, m, H-C4), 5.10 (2H, s, H-C13), 4.57-4.54 (1H, m, H-NH), 3.73-3.71 (1H, m, H-C1), 2.31-2.15 (2H, m, H-C2), 1.32-1.25 (12H, m, H-C5 to C10), 0.89 (3H, t, *J* 6.0, H-C11); $\delta_{\rm C}$ (75.5 MHz; CDCl₃) 156.5 (C12), 137.2 (ArC), 134.8 (C3), 128.9 (ArC), 128.4 (ArC), 118.16 (C4), 66.9 (C13), 51.1 (C5), 39.9 (C1), 35.0 (C2), 32.2 (C6), 29.8 (C7 and C8), 26.3 (C9), 23.1 (C10), 14.5 (C11); *m/z* (CI) 304 (MH⁺, 100), 196 (28), 172 (18).

4.5. General procedure for the aza-Prins reaction

A round-bottomed flask was charged with indium trichloride (642 mg, 2.96 mmol, 1.50 eq.) and dichloromethane (5 mL). To the resulting suspension was added an aldehyde (2.96 mmol, 1.50 eq.) in dichloromethane (1.5 mL). After stirring the mixture for 15 minutes at room temperature, a *N*-tosyl homoallylicamine derivative (1.97 mmol, 1.00 eq.) in dichloromethane (1.5 mL) was added and the resulting mixture stirred until TLC showed complete consumption of starting material. The mixture was diluted with dichloromethane (10 mL) and water (10 mL) and stirred for 30 minutes. The organic layer was separated and the aqueous layer was extracted with dichloromethane (3 x 10 mL). The combined organic layers were dried over magnesium sulfate, filtered and concentrated *in vacuo* and purified by chromatography.

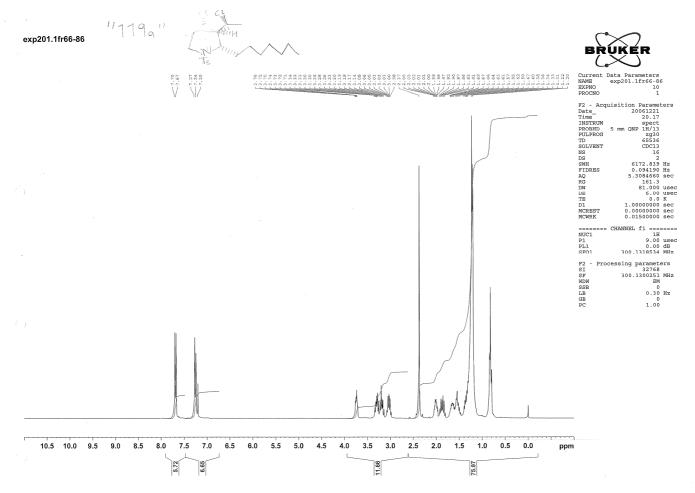
4.5.1 (2*R*,3*R*,4*S*)-4-Chloro-2-heptyl-3-methyl-1-tosylpiperidine/(2*S*,3*S*,4*R*)-4-Chloro-2-heptyl-3-methyl-1-tosylpiperidine (26a) and (2*S*,3*R*)-3-((*S*)-1-Chloroethyl)-2-heptyl-1-tosylpyrrolidine/(2*R*,3*S*)-3-((*R*)-1-Chloroethyl)-2-heptyl-1-tosylpyrrolidine (27a)

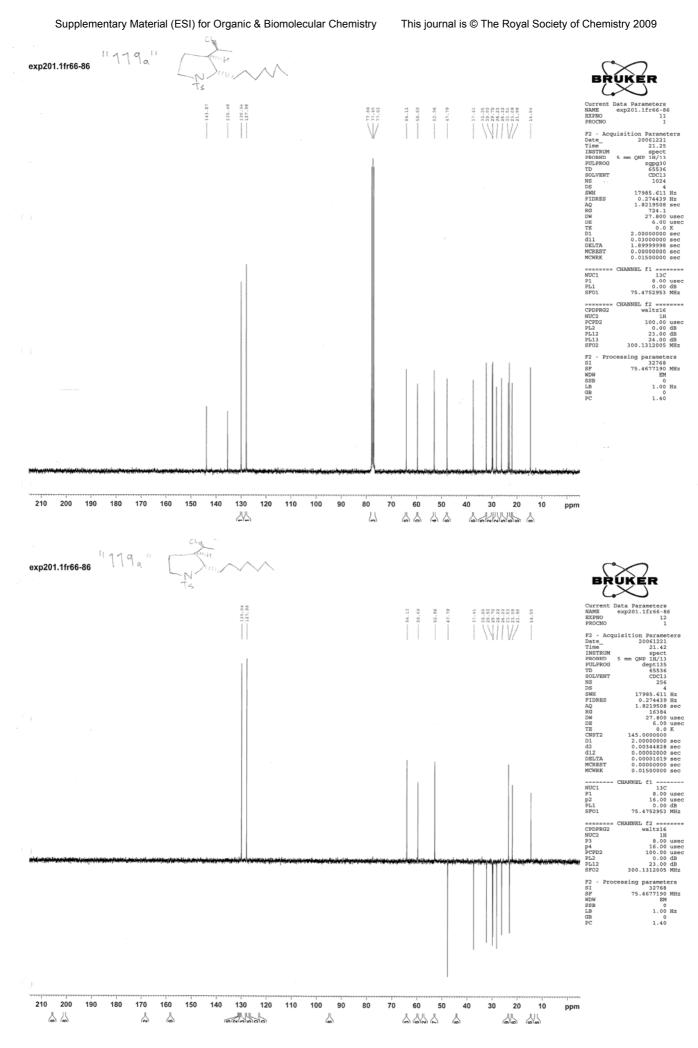

C₂₀H₃₂ClNO₂S Mol. Wt.: 385.99

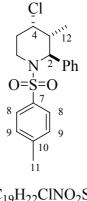

Following the general procedure for the aza-Prins reaction, (*Z*)-4-methyl-*N*-(pent-3-enyl)benzenesulfonamide (150 mg, 0.62 mmol), and octanal (120 mg, 0.94 mmol), were consumed based on analysis by TLC after 17 hours of stirring at room temperature. The work up afforded a yellow oil, which was purified by flash column chromatography (90% hexane, 10% ethyl acetate) to give the two *title compounds*.

(2*R*,3*R*,4*S*)-4-Chloro-2-heptyl-3-methyl-1-tosylpiperidine/(2*S*,3*S*,4*R*)-4-Chloro-2-heptyl-3-methyl-1-tosylpiperidine (26a)

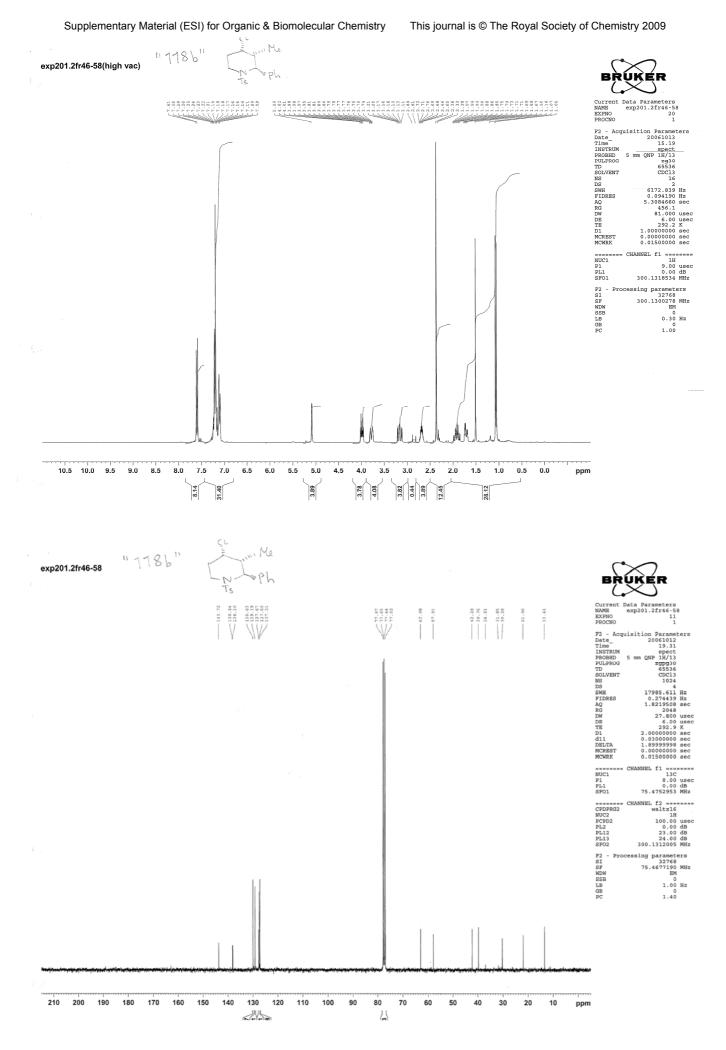
84 mg (0.22 mmol, 35%) as a colourless oil. v_{max} (neat)/cm⁻¹ 2928, 1729, 1598; δ_{H} (300 MHz, CDCl₃) 7.67 (2H, d, *J* 8.2, H-C15), 7.27 (2H, d, *J* 8.2, H-C16), 4.31 (1H, td, *J* 12.6, 4.6, H-C4), 3.96-3.88 (1H, m, H-C2), 3.78-3.69 (1H, m, H-C6), 2.94 (1H, td, *J* 13.6, 3.2, H-C6), 2.41 (3H, s, H-C18) 2.16-2.05 (1H, m, H-C3), 2.01-1.84 (1H, m, H-C5), 1.84-1.74 (1H, m, H-C5), 1.66-1.33 (2H, m, H-C7), 1.32-1.11 (10H, m, H-C8 to H-C12), 1.08 (3H, d, *J* 6.9, H-C19), 0.87 (3H, t, *J* 6.8, H-C13); δ_{C} (75.5 MHz; CDCl₃) 143.1 (C17), 138.1 (C14), 129.5 (C16), 126.9 (C15), 60.1 (C2), 57.4 (C4), 40.6 (C6), 37.3 (C3), 31.7 (C11), 30.0 (C5),

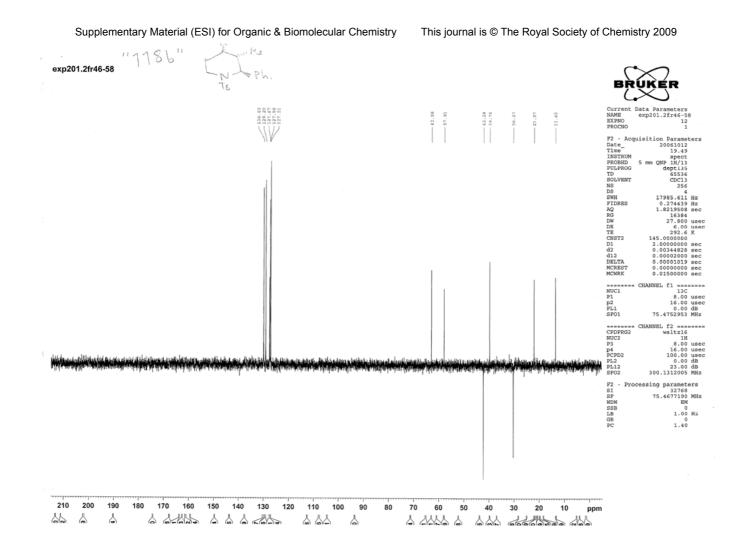

29.4 (C9 and C10), 26.8 (C12), 22.6 (C8), 21.5 (C18), 14.1 (C13), 12.7 (C19); *m/z* (CI) 386 (MH⁺, 100), 350 (60), 286 (42); HRMS (ES) Found [M+H]⁺ 386.1910, C₂₀H₃₃ClNO₂S requires 386.1915.

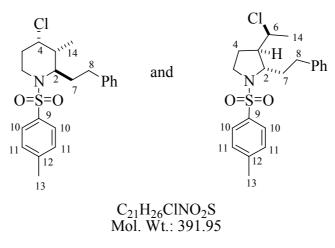



(2S,3R)-3-((S)-1-Chloroethyl)-2-heptyl-1-tosylpyrrolidine/(2R,3S)-3-((R)-1-Chloroethyl)-2-heptyl-1-tosylpyrrolidine (27a)

Further elution (90% hexane 10% ethyl acetate) provided the other *title compound* (84 mg, 0.22 mmol, 35%) as a colourless oil. v_{max} (neat)/cm⁻¹ 2927, 1598; $\delta_{\rm H}$ (300 MHz; CDCl₃) 7.75 (2H, d, *J* 8.3, H-C15), 7.32 (2H, d, *J* 8.3, H-C16), 3.80 (1H, ddd, *J* 7.6, 4.9, 2.9, H-C2), 3.36 (1H, ddd, *J* 10.7, 7.3, 5.7, H-C5), 3.25 (1H, td, *J* 10.7, 7.3, H-C5), 3.09 (1H, qd, *J* 8.8, 6.5, H-C6), 2.43 (3H, s, H-C18), 2.13-2.01 (1H, m, H-C3), 1.93 (1H, dt, *J* 14.6, 7.3, H-C4), 1.79-1.66 (1H, m, H-C7), 1.66-1.51 (1H, m, H-C7), 1.48-1.31 (1H, m, H-C4), 1.27 (3H, d, *J* 6.5, H-C19), 1.33-1.19 (10H, m, H-C8 to H-C12), 0.88 (3H, t, *J* 6.6, H-C13); $\delta_{\rm C}$ (75.5 MHz; CDCl₃) 143.4 (C17), 135.0 (C14), 129.6 (C16), 127.5 (C15), 63.7 (C1), 59.2 (C6), 52.5 (C3), 47.3 (C5), 37.0 (C7), 31.8 (C11), 29.4 (C9 and C10), 27.8 (C4), 25.8 (C8), 23.1 (C19), 22.6 (C12), 21.5 (C18), 14.1 (C13); *m*/*z* (CI) 386 (MH⁺, 100), 350 (25), 286 (27); HRMS (ES) Found [M+NH₄]+ 403.2185, C₂₀H₃₆ClN₂O₂S requires 403.2181.

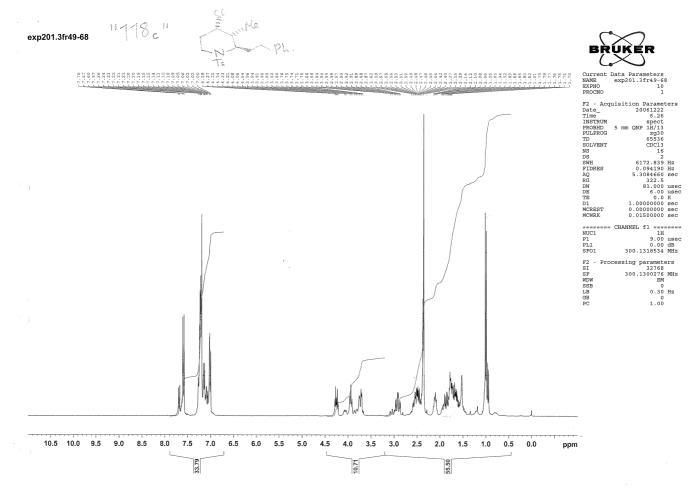


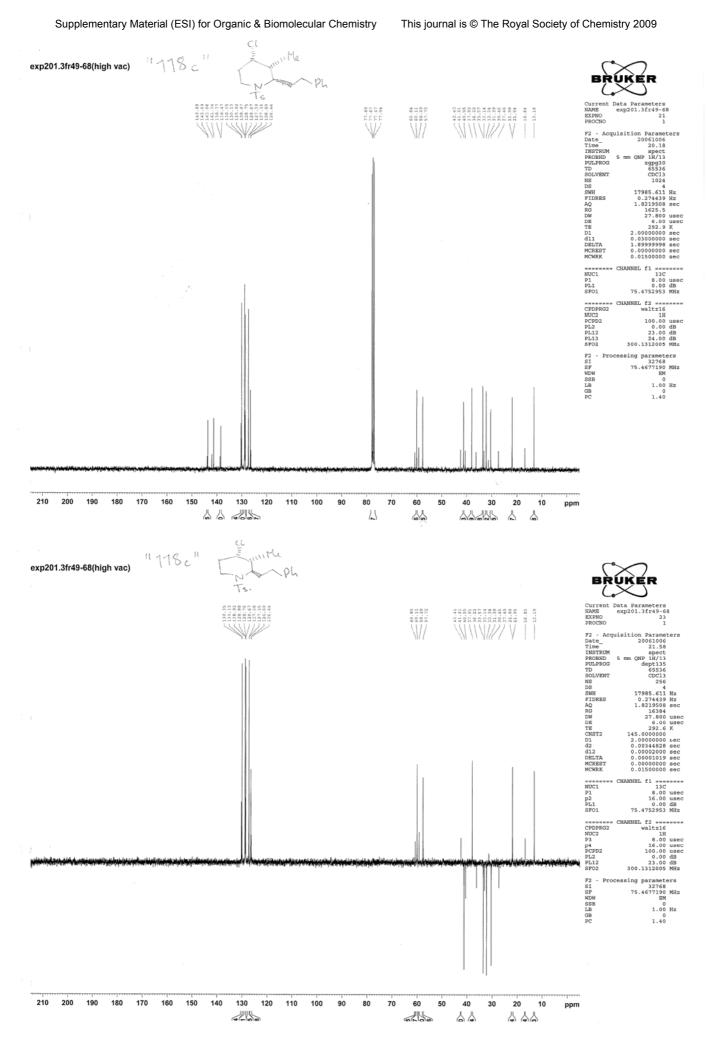

(2*S*,3*R*,4*S*)-4-Chloro-3-methyl-2-phenyl-1-tosylpiperidine/(2*R*,3*S*,4*R*)-4-Chloro-3-methyl-2-phenyl-1-tosylpiperidine (26b)


C₁₉H₂₂ClNO₂S Mol. Wt.: 363.9

Following the general procedure, (*Z*)-4-methyl-*N*-(pent-3-enyl)benzenesulfonamide (150 mg, 0.62 mmol) in the presence of benzaldehyde (99 mg, 0.94 mmol), was consumed based on analysis by TLC after 144 hours of stirring at room temperature. The work up afforded a yellow oil, which was purified by flash column chromatography (90% hexane, 10% ethyl acetate) to give the *title compound* (34 mg, 0.09 mmol, 15%) as a white solid. M.p. 112-114 °C; v_{max} (neat)/cm⁻¹ 3029, 2940, 2344, 1596; δ_{H} (300 MHz; CDCl₃) 7.70 (2H, d, *J* 7.8, H-C8), 7.45-7.27 (5H, m, Ar-H), 7.21 (2H, d, *J* 7.8, H-C9), 5.19 (1H, s, H-C2), 4.09 (1H, td, *J* 11.8, 4.1, H-C4), 3.97-3.80 (1H, m, H-C6), 3.27 (1H, ddd, *J* 13.9, 11.8, 3.5, H-C6), 2.88-2.72 (1H, m, H-C3), 2.47 (3H, s, H-C11), 2.07-1.91 (1H, m, H-C5) 1.85-1.78 (1H, m, H-C5), 1.16 (3H, d, *J* 6.9, H-C12); δ_{C} (75.5 MHz; CDCl₃) 143.8 (C10), 137.8 (C7), 137.7 (ArC), 129.6 (ArC), 128.7 (ArC), 127.2 (ArC), 127.1 (C8), 126.8 (C9), 62.5 (C2), 57.5 (C4), 41.8 (C6), 39.3 (C3), 29.8 (C5), 21.5 (C11), 13.0 (C12); *m/z* (CI) 364 (MH⁺, 64), 328 (30), 210 (55); HRMS (ES) Found [M+H]⁺ 364.1135, C₁₉H₂₃CINO₂S requires 364.1133.

(2R,3R,4S)-4-Chloro-3-methyl-2-phenethyl-1-tosylpiperidine, (2S,3S,4R)-4-Chloro-3-methyl-2-phenethyl-1-tosylpiperidine (26c), (2S,3R)-3-((S)-1-Chloroethyl)-2-phenethyl-1-tosylpyrrolidine (27c) (2R,3S)-3-((R)-1-Chloroethyl)-2-phenethyl-1-tosylpyrrolidine (27c)

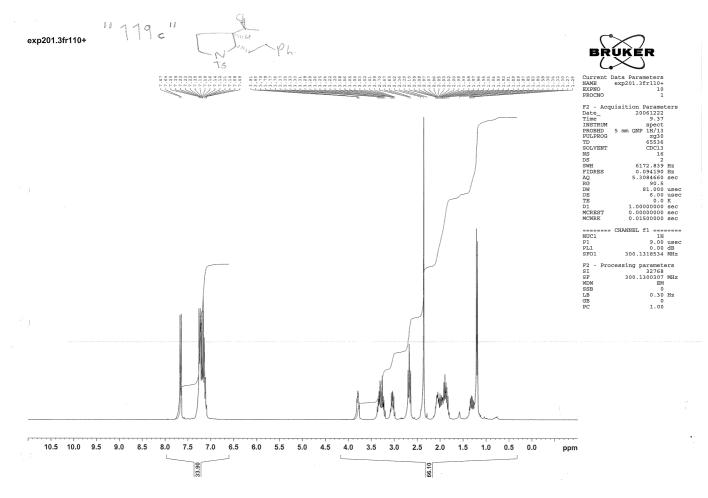

Following the general procedure, (*Z*)-4-methyl-*N*-(pent-3-enyl)benzenesulfonamide (150 mg, 0.62 mmol) in the presence of 3-phenylpropanal (126 mg, 0.94 mmol), was consumed based on analysis by TLC after 17 hours of stirring at room temperature. The work up afforded a yellow oil, which was purified by flash column chromatography (90% hexane, 10% ethyl acetate) to give the two *title compounds*

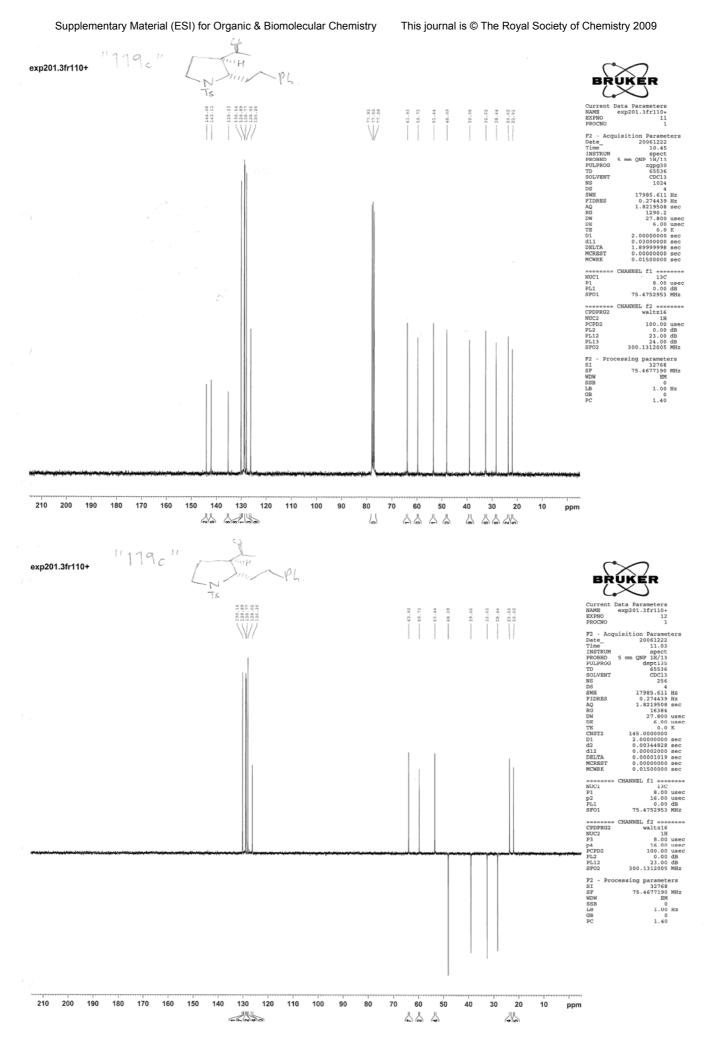

(2R, 3R, 4S) - 4 - Chloro - 3 - methyl - 2 - phenethyl - 1 - tosylpiperidine/(2S, 3S, 4R) - 4 - Chloro - 3 - methyl - 2 - phenethyl - 1 - tosylpiperidine/(2S, 3S, 4R) - 4 - Chloro - 3 - methyl - 2 - phenethyl - 1 - tosylpiperidine/(2S, 3S, 4R) - 4 - Chloro - 3 - methyl - 2 - phenethyl - 1 - tosylpiperidine/(2S, 3S, 4R) - 4 - Chloro - 3 - methyl - 2 - phenethyl - 1 - tosylpiperidine/(2S, 3S, 4R) - 4 - Chloro - 3 - methyl - 2 - phenethyl - 1 - tosylpiperidine/(2S, 3S, 4R) - 4 - Chloro - 3 - methyl - 2 - phenethyl - 1 - tosylpiperidine/(2S, 3S, 4R) - 4 - Chloro - 3 - methyl - 2 - phenethyl - 1 - tosylpiperidine/(2S, 3S, 4R) - 4 - Chloro - 3 - methyl - 2 - phenethyl - 2 - phenethyl - 1 - tosylpiperidine/(2S, 3S, 4R) - 4 - Chloro - 3 - methyl - 2 - phenethyl - 2 - phenethyl

phenethyl-1-tosylpiperidine (26c)

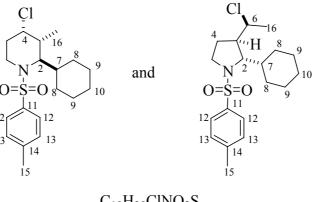
(98 mg, 0.25 mmol, 40%) as a colourless oil.

 v_{max} (neat)/cm⁻¹ 3063, 2938, 1598; δ_{H} (300 MHz; CDCl₃) 7.66 (2H, d, *J* 8.3, H-C10), 7.34-7.13 (5H, m, Ar-H), 7.08 (2H, d, *J* 8.3, H-C11), 4.32 (1H, td, *J* 12.3, 4.6, H-C4), 4.01 (1H, m, H-C2), 3.80 (1H, dd, *J* 13.3, 4.5, H-C6), 2.99 (1H, dt, *J* 13.3, 3.3, H-C6), 2.66-2.47 (2H, m, H-C8), 2.42 (3H, s, H-C13), 2.22-2.13 (1H, m, H-C3), 2.02-1.88 (1H, m, H-C5), 1.89-1.77 (1H, m, H-C5), 1.78-1.52 (2H, m, H-C7), 1.07 (3H, d, *J* 6.9, H-C14); δ_{C} (75.5 MHz; CDCl₃) 143.2 (C12), 140.9 (ArC), 138.0 (C9), 129.7 (C11), 128.5 (ArC), 128.2 (ArC), 126.9 (C10), 126.1 (ArC), 59.6 (C2), 57.2 (C4), 40.7 (C6), 37.4 (C3), 33.1 (C8), 31.8 (C5 or C7), 30.0 (C5 or C7), 21.5 (C13), 12.7 (C14); *m/z* (CI) 392 (MH⁺, 100), 356 (18), 238 (48); HRMS (ES) Found [M+NH₄]⁺ 409.1716, C₂₁H₃₀ClN₂O₂S requires 409.1711.



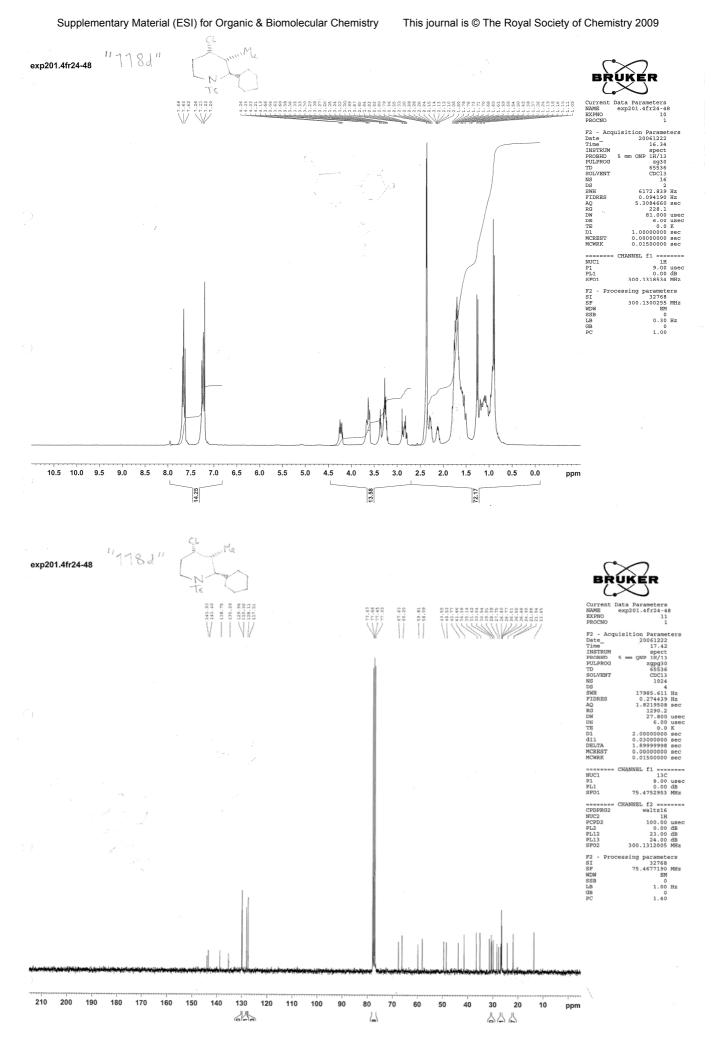


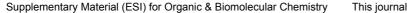
(2S, 3R) - 3 - ((S) - 1 - Chloroethyl) - 2 - phenethyl - 1 - tosylpyrrolidine/(2R, 3S) - 3 - ((R) - 1 - Chloroethyl) - 2 - phenethyl - 1 - tosylpyrrolidine/(2R, 3S) - 3 - ((R) - 1 - Chloroethyl) - 2 - phenethyl - 1 - tosylpyrrolidine/(2R, 3S) - 3 - ((R) - 1 - Chloroethyl) - 2 - phenethyl - 1 - tosylpyrrolidine/(2R, 3S) - 3 - ((R) - 1 - Chloroethyl) - 2 - phenethyl - 1 - tosylpyrrolidine/(2R, 3S) - 3 - ((R) - 1 - Chloroethyl) - 2 - phenethyl - 1 - tosylpyrrolidine/(2R, 3S) - 3 - ((R) - 1 - Chloroethyl) - 2 - phenethyl - 1 - tosylpyrrolidine/(2R, 3S) - 3 - ((R) - 1 - Chloroethyl) - 2 - phenethyl - 1 - tosylpyrrolidine/(2R, 3S) - 3 - ((R) - 1 - Chloroethyl) - 2 - phenethyl - 1 - tosylpyrrolidine/(2R, 3S) - 3 - ((R) - 1 - Chloroethyl) - 2 - phenethyl - 1 - tosylpyrrolidine/(2R, 3S) - 3 - ((R) - 1 - Chloroethyl) - 2 - phenethyl - 1 - tosylpyrrolidine/(2R, 3S) - 3 - ((R) - 1 - Chloroethyl) - 2 - phenethyl - 1 - tosylpyrrolidine/(2R, 3S) - 3 - ((R) - 1 - Chloroethyl) - 2 - phenethyl - 1 - tosylpyrrolidine/(2R, 3S) - 3 - ((R) - 1 - Chloroethyl) - 2 - phenethyl - 1 - tosylpyrrolidine/(2R, 3S) - 3 - ((R) - 1 - Chloroethyl) - 2 - phenethyl - 1 - tosylpyrrolidine/(2R, 3S) - 3 - ((R) - 1 - Chloroethyl) - 2 - phenethyl - 1 - tosylpyrrolidine/(2R, 3S) - 3 - ((R) - 1 - Chloroethyl) - 2 - phenethyl - 1 - tosylpyrrolidine/(2R, 3S) - 3 - ((R) - 1 - Chloroethyl) - 2 - phenethyl - 1 - tosylpyrrolidine/(2R, 3S) - 3 - ((R) - 1 - Chloroethyl) - 2 - phenethyl - 1 - tosylpyrrolidine/(2R, 3S) - 3 - ((R) - 1 - Chloroethyl) - 2 - phenethyl - 2 - phene

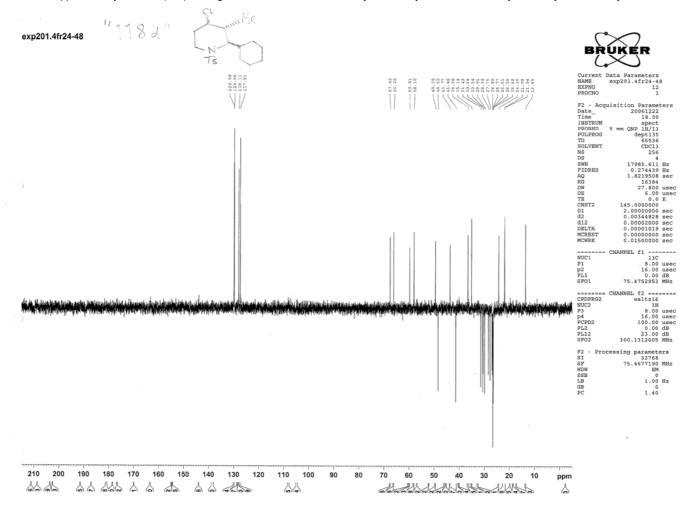

phenethyl-1-tosylpyrrolidine (27c)

Further elution (90% hexane 10% ethyl acetate) provided the other *title compound* (88 mg, 0.22 mmol, 36%) as a white solid. M.p. 122-123 °C; v_{max} (KBr)/cm⁻¹ 3062, 2955, 1664, 1594; δ_{H} (300 MHz; CDCl₃) 7.81 (2H, d, *J* 8.3, H-C10), 7.39 (2H, d, *J* 8.3, H-C11), 7.36-7.24 (5H, m, Ar-H), 3.94 (1H, dt, *J* 6.7, 3.2, H-C2), 3.55-3.31 (2H, m, H-C5), 3.18 (1H, qd, *J* 9.1, 6.6, H-C6), 2.82 (2H, t, *J* 8.3, H-C8), 2.50 (3H, s, H-C13), 2.25-2.17 (1H, m, H-C3), 2.18-2.08 (2H, m, H-C7), 2.19-1.95 (1H, m, H-C4), 1.45 (1H, dt, *J* 13.0, 6.2, H-C4), 1.34 (3H, d, *J* 6.6, H-C14); δ_{C} (75.5 MHz; CDCl₃) 143.6 (C12), 141.6 (ArC), 134.8 (C9), 129.6 (C11), 128.4 (ArC), 128.3 (ArC), 127.5 (C10), 125.7 (ArC), 63.4 (C2), 59.2 (C6), 52.9 (C3), 47.6 (C5), 38.6 (C7), 32.1 (C8), 27.9 (C4), 23.1 (C14), 21.5 (C13); *m*/*z* (CI) 392 (MH⁺, 100), 356 (12), 238 (58); Anal. Calcd. for C₂₁H₂₆CINO₂S requires C, 64.35; H, 6.69; N, 3.57%. Found: C, 64.47; H, 6.58; N, 3.54%.

(2R, 3R, 4S)-4- Chloro-2-cyclohexyl-3-methyl-1-tosylpiperidine/(2S, 3S, 4R)-4- Chloro-2-cyclohexyl-3-methyl-1-tosylpiperidine (26d) and (2S, 3R)-3-((S)-1- Chloroethyl)-2-cyclohexyl-1-tosylpyrrolidine/(2R, 3S)-3-((R)-1- Chloroethyl)-2-cyclohexyl-1-tosylpyrrolidine (27d)

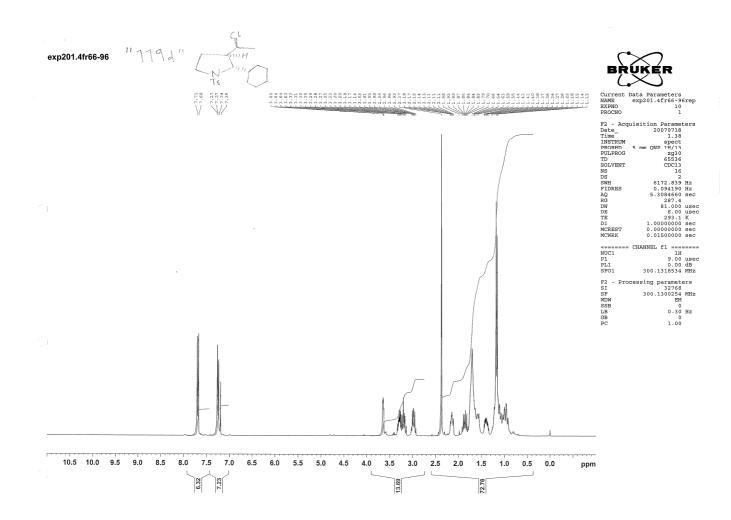


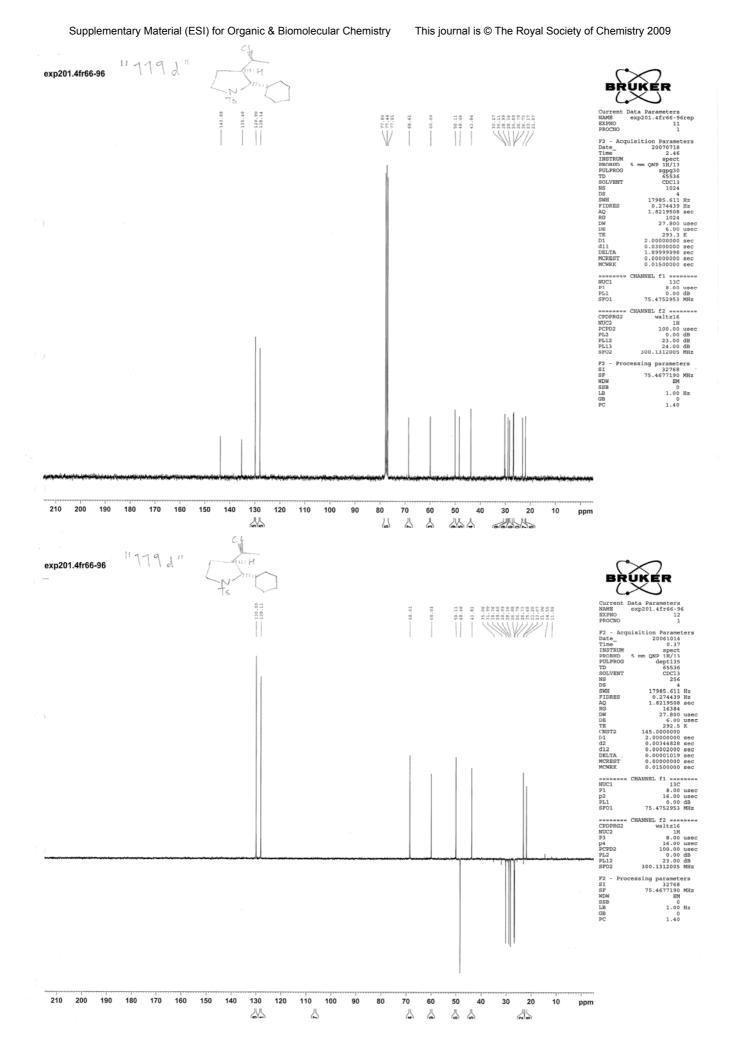

C₁₉H₂₈ClNO₂S Mol. Wt.: 369.95


Following the general procedure, (*Z*)-4-methyl-*N*-(pent-3-enyl)benzenesulfonamide (150 mg, 0.62 mmol) in the presence of cyclohexanecarbaldehyde (105 mg, 0.94 mmol), was consumed based on analysis by TLC after 144 hours of stirring at room temperature. The work up afforded a yellow oil, which was purified by flash column chromatography (90% hexane, 10% ethyl acetate) to give the two *title compounds*.

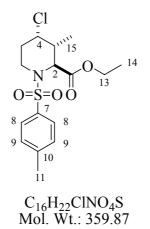
(2*R*,3*R*,4*S*)-4-Chloro-2-cyclohexyl-3-methyl-1-tosylpiperidine/(2*S*,3*S*,4*R*)-4-Chloro-2-cyclohexyl-3-methyl-1-tosylpiperidine (26d)

(60 mg, 0.16 mmol, 26%) as a white solid. M.p. 89-91 °C; v_{max} (KBr)/cm⁻¹ 3044, 2923, 1597; δ_{H} (300 MHz; CDCl₃) 7.70 (2H, d, *J* 8.4, H-C12), 7.27 (2H, d, *J* 8.4, H-C13), 4.34-4.24 (1H, m, H-C4), 3.76-3.64 (2H, m, H-C2 and H-C6), 2.98-2.83 (1H, m, H-C6), 2.42 (3H, s, H-C15), 2.39-2.28 (1H, m, H-C3), 1.85-1.71 (2H, m, H-C5), 1.77-1.53 (5H, m, H-C7 and H-C8), 1.27-0.99 (6H, m, H-C9 and H-C10), 0.95 (3H, d, *J* 6.9, H-C16); δ_{C} (75.5 MHz; CDCl₃) 142.9 (C14), 138.3 (C11), 129.4 (C13), 127.1 (C12), 65.8 (C2), 57.6 (C4), 41.0 (C6), 36.1 (C3), 34.7 (C7), 31.0 (C8), 30.2 (C8), 29.5 (C5), 26.3 (C10), 26.2 (C9), 26.1 (C9), 21.5 (C15), 13.2 (C16); *m*/*z* (CI) 370 (MH⁺, 100), 334 (12), 286 (10); Anal. Calcd. for C₁₉H₂₈ClNO₂S requires C, 61.68; H, 7.63; N, 3.79%. Found: C, 61.44; H, 7.72; N, 3.76%.

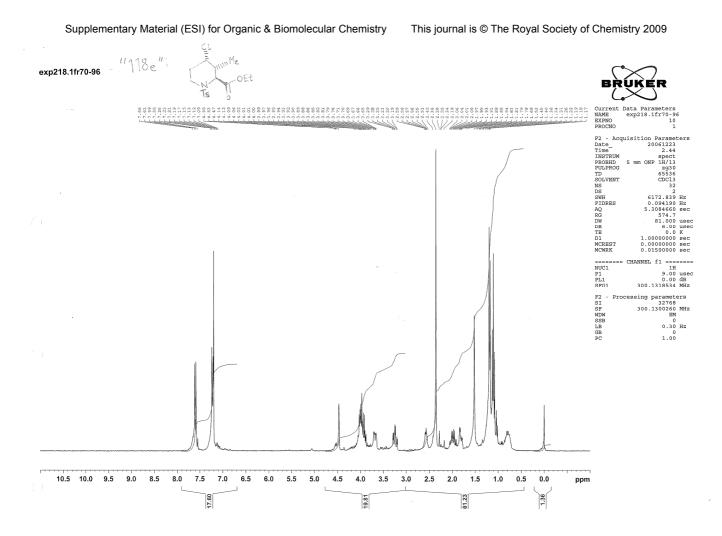



(2*S*,3*R*)-3-((*S*)-1-Chloroethyl)-2-cyclohexyl-1-tosylpyrrolidine/(2*R*,3*S*)-3-((*R*)-1-Chloroethyl)-2-cyclohexyl-1-tosylpyrrolidine (27d)

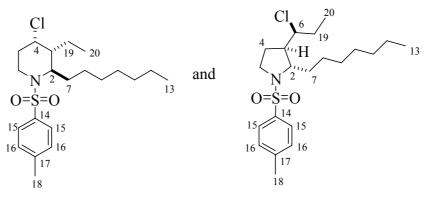
Further elution (90% hexane 10% ethyl acetate) provided the other *title compound* (115 mg, 0.31 mmol, 50%) as a white solid. M.p. 109-112 °C; v_{max} (KBr)/cm⁻¹ 2918, 1670, 1597; δ_{H} (300 MHz; CDCl₃) 7.74 (2H, d, *J* 8.1, H-C12), 7.30 (2H, d, *J* 8.1, H-C13), 3.69 (1H, dd, *J* 4.3, 2.5, H-C2), 3.38-3.30 (1H, m, H-C5), 3.28-3.19 (1H, m, H-C5), 3.02 (1H, qd, *J* 8.8, 6.5, H-C6), 2.41 (3H, s, H-C15), 2.17-2.09 (1H, m, H-C3), 1.98-1.83 (1H, m, H-C4), 1.78-1.58 (5H, m, H-C7 and H-C8), 1.38 (1H, ddd, *J* 16.8, 8.1, 4.8, H-C4), 1.16 (3H, d, *J* 6.5, H-C16), 1.22-0.76 (6H, m, H-C9 and H-C10); δ_{C} (75.5 MHz; CDCl₃) 143.4 (C14), 134.8 (C11), 129.5 (C13), 127.6 (C12), 68.1 (C2), 59.5 (C6), 49.6 (C3), 48.0 (C5), 43.3 (C7), 29.8 (C8), 28.5 (C8), 27.9 (C4), 26.4 (C10), 26.3 (C9), 26.2 (C9), 22.7 (C16), 21.5 (C15); *m/z* (CI) 370 (MH⁺, 100), 334 (28), 286 (20); Anal. Calcd. for C₁₉H₂₈CINO₂S requires C, 61.69; H, 7.63; N, 3.79%. Found: C, 61.65; H, 7.84; N, 3.66%; HRMS (ES) Found [M+H]⁺ 370.1602, C₁₉H₂₉CINO₂S requires 370.1599.


Crystal data. C₁₉H₂₈ClNO₂S; M = 369.93; Orthorhombic; Space group P212121; a = 9.5924(3) Å, b = 12.9905(3) Å, c = 15.0218(4) Å; Volume 1871.87(9) Å³; T = 120 K; Z 4; 16779 reflections measured, 4283 unique [$R_{int} = 0.0484$]. The final R values RI = 0.0376, wR2 = 0.0826 (observed) and RI = 0.0516, wR2 = 0.0516, wR2 = 0.0826 (observed) and RI = 0.0516 (observed) and wR2 = 0.0826 (observed) and wR2 = 0.082

0.0886 (all).



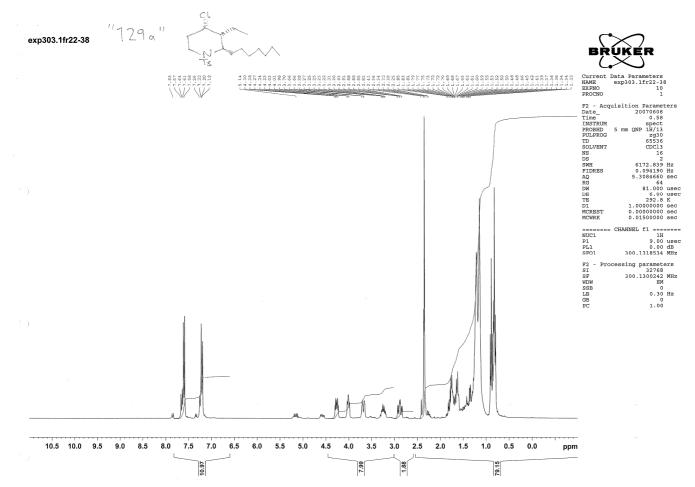
(2*S*,3*R*,4*S*)-Ethyl-4-chloro-3-methyl-1-tosylpiperidine-2-carboxylate/(2*R*,3*S*,4*R*)-Ethyl-4-chloro-3-methyl-1-tosylpiperidine-2-carboxylate (26e)

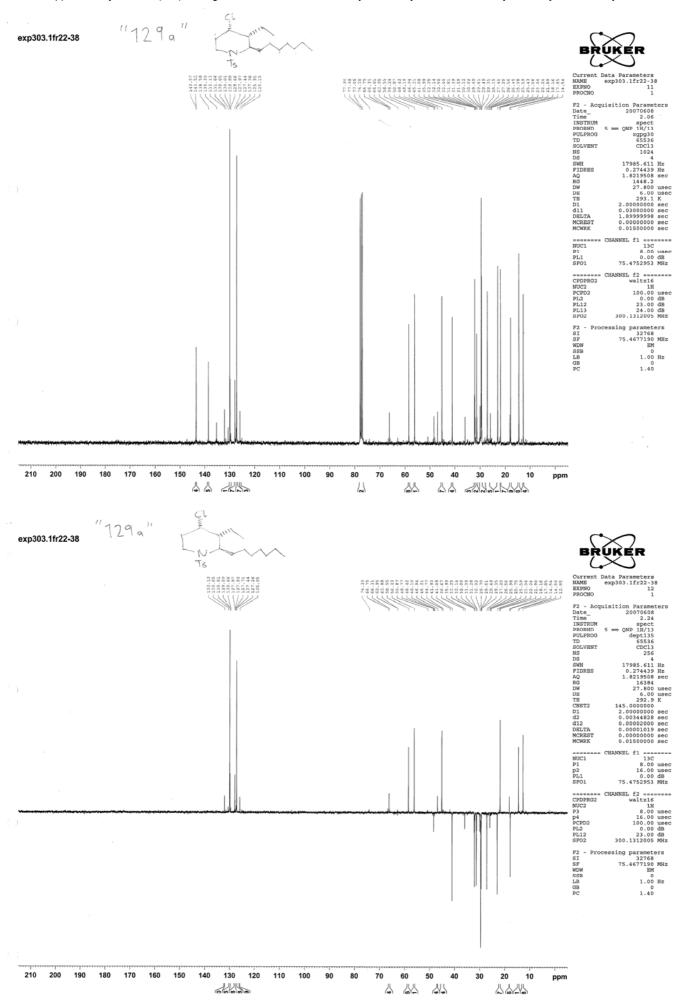


Following the general procedure, (*Z*)-4-methyl-*N*-(pent-3-enyl)benzenesulfonamide (40 mg, 0.17 mmol), in the presence of a pre-heated 33% solution of ethyl 2-oxoacetate in toluene (76 mg, 0.25 mmol, 1.50 eq.), was consumed based on analysis by TLC after 1 hour of stirring at room temperature. The work up afforded a yellow oil, which was purified by flash column chromatography (90% hexane, 10% ethyl acetate) to give the *title compound* (12 mg, 0.03 mmol, 20%) as a pale yellow oil.

 v_{max} (neat)/cm⁻¹ 2927, 1736, 1598; δ_{H} (300 MHz; CDCl₃) 7.66 (2H, d, *J* 8.3, H-C8), 7.29 (2H, d, *J* 8.3, H-C9), 4.54 (1H, d, *J* 1.2, H-C2), 4.13-4.02 (1H, m, H-C4), 4.04-3.94 (2H, m, H-C13), 3.79-3.70 (1H, m, H-C6), 3.31 (1H, td, *J* 12.4, 3.4, H-C6), 2.69-2.58 (1H, m, H-C3), 2.42 (3H, s, H-C11), 2.13-1.97 (1H, m, H-C5), 1.94-1.82 (1H, m, H-C5), 1.25 (3H, d, *J* 6.9, H-C15), 1.16 (3H, t, *J* 7.1, H-C14); δ_{C} (75.5 MHz; CDCl₃) 169.9 (C12), 143.4 (C10), 136.3 (C7), 129.4 (C9), 127.2 (C8), 61.6 (C13), 61.0 (C2), 57.2 (C4), 42.3 (C6), 37.2 (C3), 29.3 (C5), 21.5 (C11), 13.9 (C14), 11.9 (C15); *m/z* (CI) 360 (MH⁺, 90), 286 (45), 206 (100); HRMS (ES) Found [M+H]⁺ 360.1027, C₁₆H₂₃ClNO₄S requires 360.1031.

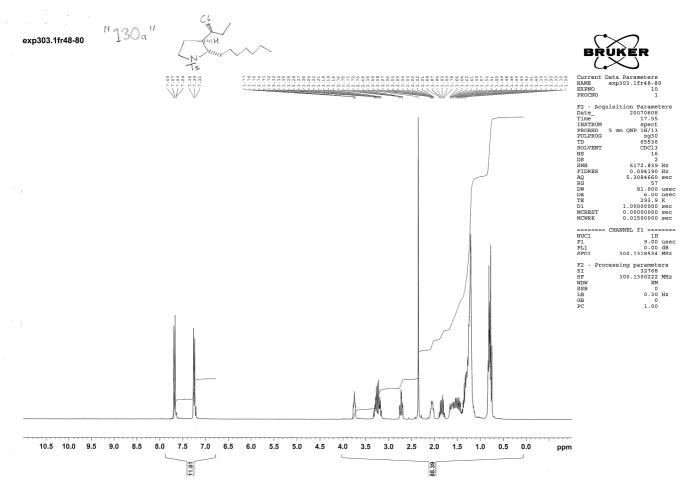
(2*R*,3*R*,4*S*)-4-Chloro-3-ethyl-2-heptyl-1-tosylpiperidine/(2*S*,3*S*,4*R*)-4-Chloro-3-ethyl-2-heptyl-1-tosylpiperidine (28a) and (2*S*,3*R*)-3-((*S*)-1-Chloropropyl)-2-heptyl-1-tosylpyrrolidine/(2*R*,3*S*)-3-((*R*)-1-Chloropropyl)-2-heptyl-1-tosylpyrrolidine (29a)

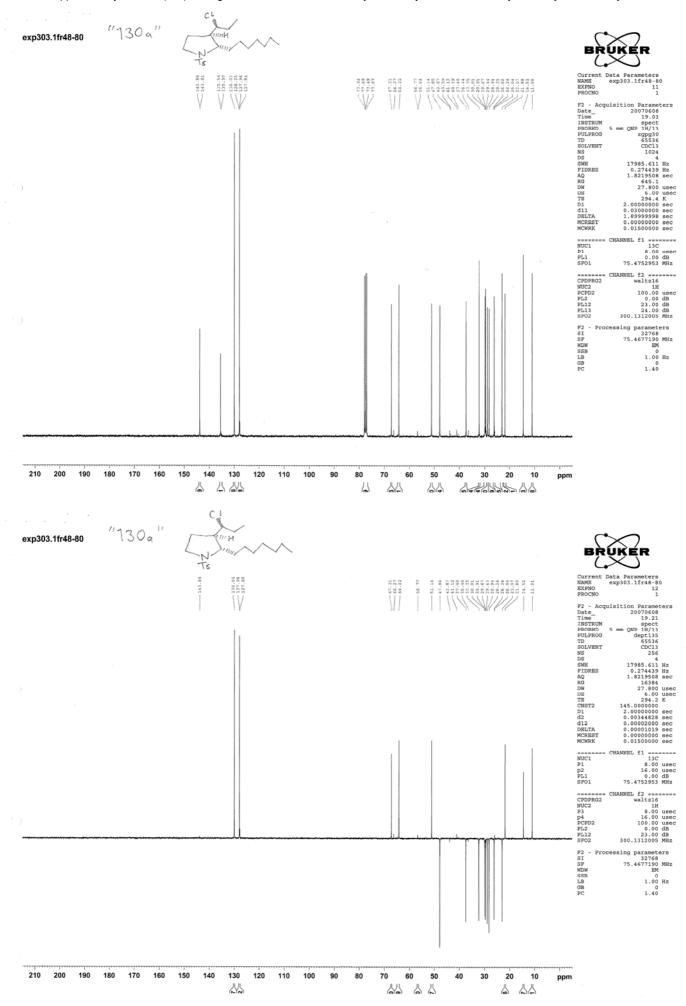

C₂₁H₃₄ClNO₂S Mol. Wt.: 400.02


Following the general procedure, (*Z*)-*N*-(hex-3-enyl)-4-methylbenzenesulfonamide (500 mg, 1.97 mmol), in the presence of octanal (379 mg, 2.96 mmol), was consumed based on analysis by TLC after 17 hours of stirring at room temperature. The work up afforded a yellow oil, which was purified by flash column chromatography (90% hexane, 10% ethyl acetate) to give two title compounds.

(2*R*,3*R*,4*S*)-4-Chloro-3-ethyl-2-heptyl-1-tosylpiperidine/(2*S*,3*S*,4*R*)-4-Chloro-3-ethyl-2-heptyl-1-tosylpiperidine (28a)

323 mg, (0.81 mmol, 41%) as a colourless oil.

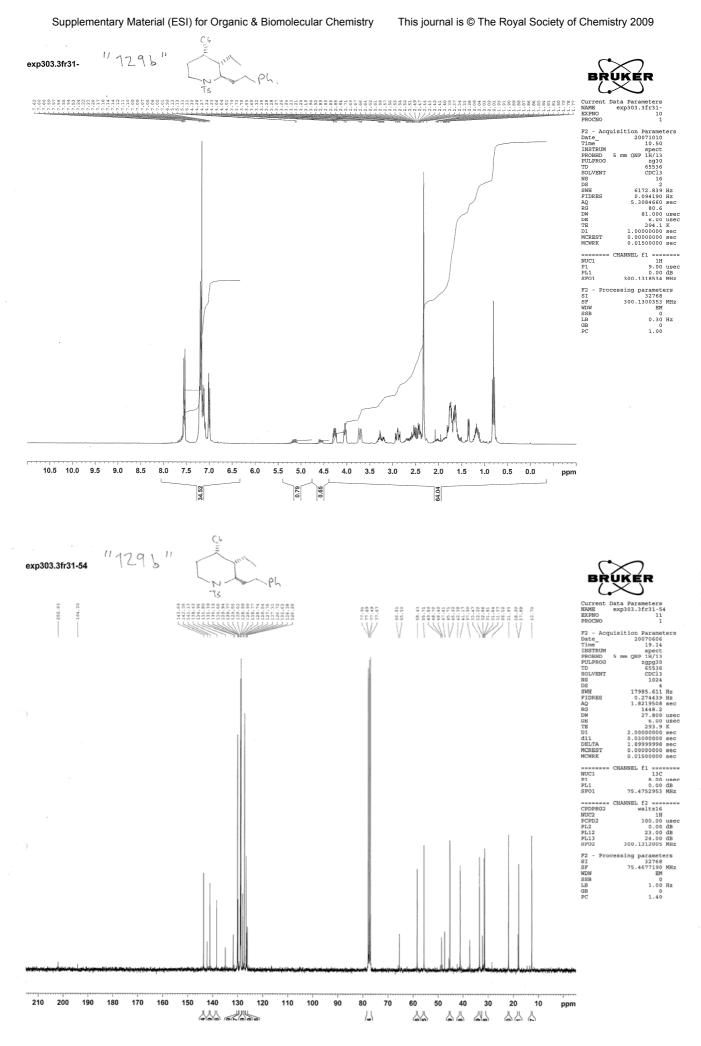

 v_{max} (neat)/cm⁻¹ 2957, 1729, 1598; δ_{H} (300 MHz; CDCl₃) 7.66 (2H, d, *J* 8.4, H-C15), 7.26 (2H, d, *J* 8.4, H-C16), 4.37-4.28 (1H, m, H-C4), 4.11-4.03 (1H, m, H-C2), 3.79-3.69 (1H, m, H-C6), 3.01-2.87 (1H, m, H-C6), 2.40 (3H, s, H-C18), 1.91-1.74 (2H, m, H-C5), 1.75-1.63 (1H, m, H-C3), 1.59-1.29 (2H, m, H-C7), 1.32-1.23 (8H, m, H-C8 to H-C11), 1.23-1.16 (4H, m, H-C19 and H-C12), 0.94 (3H, t, *J* 7.3, H-C20), 0.87 (3H, t, *J* 6.8, H-C13); δ_{C} (75.5 MHz; CDCl₃) 143.0 (C17), 138.1 (C14), 129.5 (C16), 126.8 (C15), 58.1 (C4), 55.8 (C2), 44.7 (C3), 40.6 (C6), 31.7 (C11), 30.9 (C5), 29.1 (C9 and C10), 26.7 (C8), 22.6 (C12), 22.6 (C7), 21.4 (C18), 17.4 (C19), 14.0 (C13), 12.3 (C20); *m/z* (C1) 400 (MH⁺, 100), 364 (78), 300 (42); HRMS (ES) Found [M+H]⁺ 400.2073, C₂₁H₃₅CINO₂S requires 400.2072.

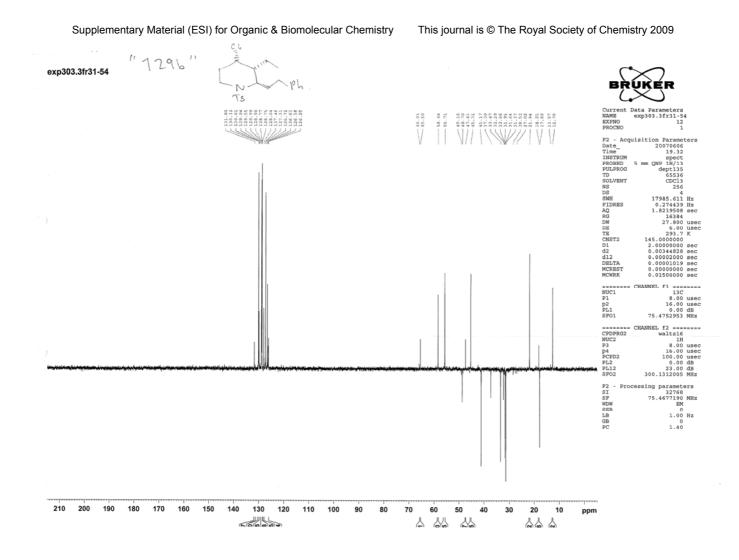


(2*S*,3*R*)-3-((*S*)-1-Chloropropyl)-2-heptyl-1-tosylpyrrolidine/(2*R*,3*S*)-3-((*R*)-1-Chloropropyl)-2-heptyl-1-tosylpyrrolidine (29a)

Further elution (90% hexane 10% ethyl acetate) provided the other *title compound* (339 mg, 0.85 mmol, 43%) as a colourless oil. v_{max} (neat)/cm⁻¹ 2954, 1597, δ_{H} (300 MHz; CDCl₃) 7.73 (2H, d, *J* 8.3, H-C15), 7.30 (2H, d, *J* 8.3, H-C16), 3.83-3.77 (1H, m, H-C2), 3.39-3.20 (2H, m, H-C5), 2.78 (1H, dt, *J* 9.1, 2.8, H-C6), 2.41 (3H, s, H-C18), 2.16-2.05 (1H, m, H-C3), 1.96-1.82 (1H, m, H-C4), 1.73-1.54 (2H, m, H-C7), 1.60-1.39 (2H, m, H-C19), 1.43-1.29 (1H, m, H-C4), 1.31-1.19 (10H, m, H-C8 to H-C12), 0.86 (3H, t, *J* 6.5, H-C13), 0.83 (3H, t, *J* 7.2, H-C20); δ_{C} (75.5 MHz; CDCl₃) 143.4 (C17), 135.0 (C14), 129.5 (C16), 127.5 (C15), 66.7 (C6), 63.7 (C2), 50.7 (C3), 47.4 (C5), 36.9 (C7), 31.8 (C11), 29.3 (C9 and C10), 28.5 (C19), 27.8 (C4), 25.8 (C8), 22.6 (C12), 21.4 (C18), 14.0 (C20), 10.5 (C13); *m*/*z* (CI) 400 (MH⁺, 100), 364 (40), 300 (25); Anal. Calcd. for C₂₁H₃₄ClNO₂S requires C, 63.05; H, 8.57; N, 3.50%.

(2*R*,3*R*,4*S*)-4-Chloro-3-ethyl-2-phenethyl-1-tosylpiperidine/(2*S*,3*S*,4*R*)-4-Chloro-3-ethyl-2-phenethyl-1-tosylpiperidine (28b) , (2*S*,3*R*)-3-((*S*)-1-Chloropropyl)-2-phenethyl-1-tosylpyrrolidine and (2*R*,3*S*)-3-((*R*)-1-Chloropropyl)-2-phenethyl-1-tosylpyrrolidine (29b)

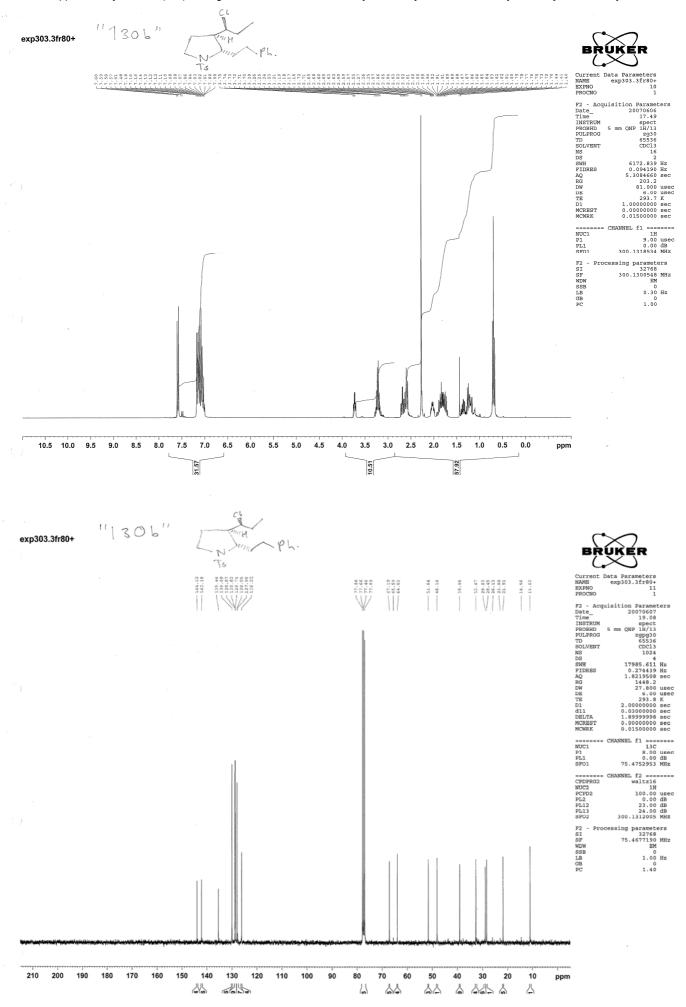

C₂₂H₂₈ClNO₂S Mol. Wt.: 405.98

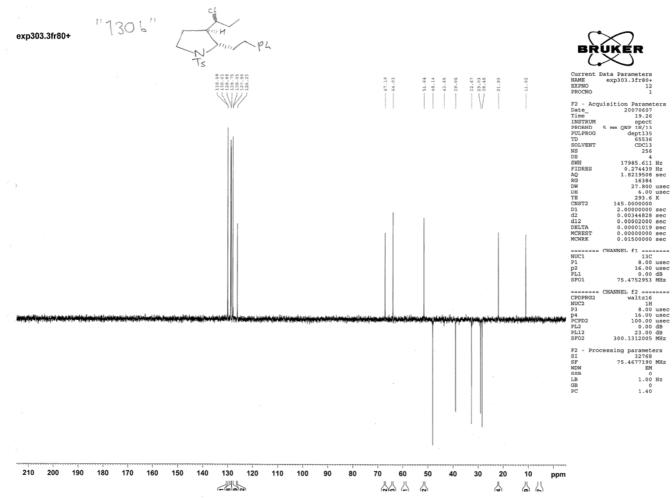

Following the general procedure, (*Z*)-*N*-(hex-3-enyl)-4-methylbenzenesulfonamide (500 mg, 1.97 mmol), in the presence of 3-phenylpropanal (398 mg, 2.96 mmol), was consumed based on analysis by TLC after 17 hours of stirring at room temperature. The work up afforded a pale yellow oil, which was purified by flash column chromatography (90% hexane, 10% ethyl acetate) to give the two *title compounds*.

(2*R*,3*R*,4*S*)-4-Chloro-3-ethyl-2-phenethyl-1-tosylpiperidine/(2*S*,3*S*,4*R*)-4-Chloro-3-ethyl-2-phenethyl-1-tosylpiperidine (28b)

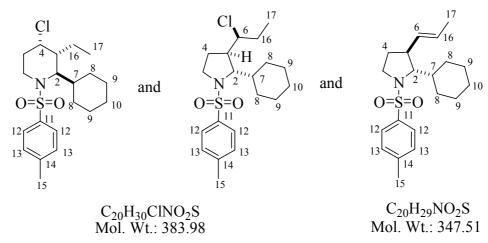
328 mg (0.81 mmol, 41%) as a white solid. M.p. 95-97 °C; v_{max} (neat)/cm⁻¹ 3032, 1941, 1598; δ_{H} (300 MHz; CDCl₃) 7.58 (2H, d, *J* 8.3, H-C10), 7.29-7.11 (5H, m, Ar-H), 7.04 (2H, d, *J* 8.3, H-C11), 4.35-4.25 (1H, m, H-C4), 4.11-4.04 (1H, m, H-C2), 3.81-3.70 (1H, m, H-C6), 2.99-2.85 (1H, m, H-C6), 2.64-2.39 (2H, m, H-C8), 2.37 (3H, s, H-C13), 1.88-1.73 (2H, m, H-C5), 1.73-1.62 (1H, m, H-C3), 1.73-1.50 (2H, m, H-C7), 1.30-1.11 (1H, m, H-C14), 0.84 (3H, t, *J* 7.3, H-C15); δ_{C} (75.5 MHz; CDCl₃) 143.2 (C12), 140.6 (ArC), 137.9 (C9), 129.6 (C11), 128.4 (ArC), 128.3 (ArC), 126.8 (C10), 126.1 (ArC), 57.9 (C4), 55.2 (C2), 44.8 (C3), 40.7 (C6), 33.0 (C8), 31.2 (C5 or C7), 30.9 (C7 or C5), 21.4 (C13), 17.4 (C14), 12.2 (C15); *m/z* (CI) 406 (MH⁺, 20), 216 (90), 111 (100); HRMS (ES) Found [M+H]⁺ 406.1606, C₂₂H₂₉ClNO₂S requires 406.1602.

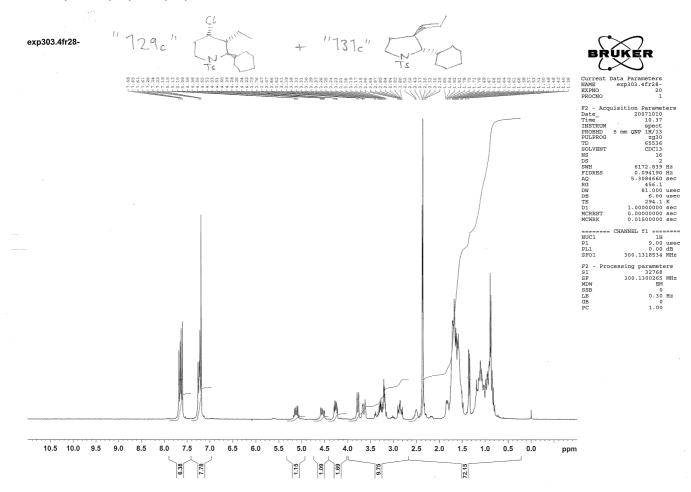
Crystal data. C₂₂H₂₈ClNO₂S; M = 405.96; Monoclinic; a = 8.9411(3) Å, b = 11.0719(3) Å, c = 10.9373(4) Å; Volume 1066.91(6) Å³; T = 120 K; Z 2, 13213 reflections measured, 4663 unique [$R_{int} = 0.0367$]. The final R values RI = 0.0404, wR2 = 0.1043 (observed) and RI = 0.0470, wR2 = 0.1078 (all data). Flack parameter 0.44(6).

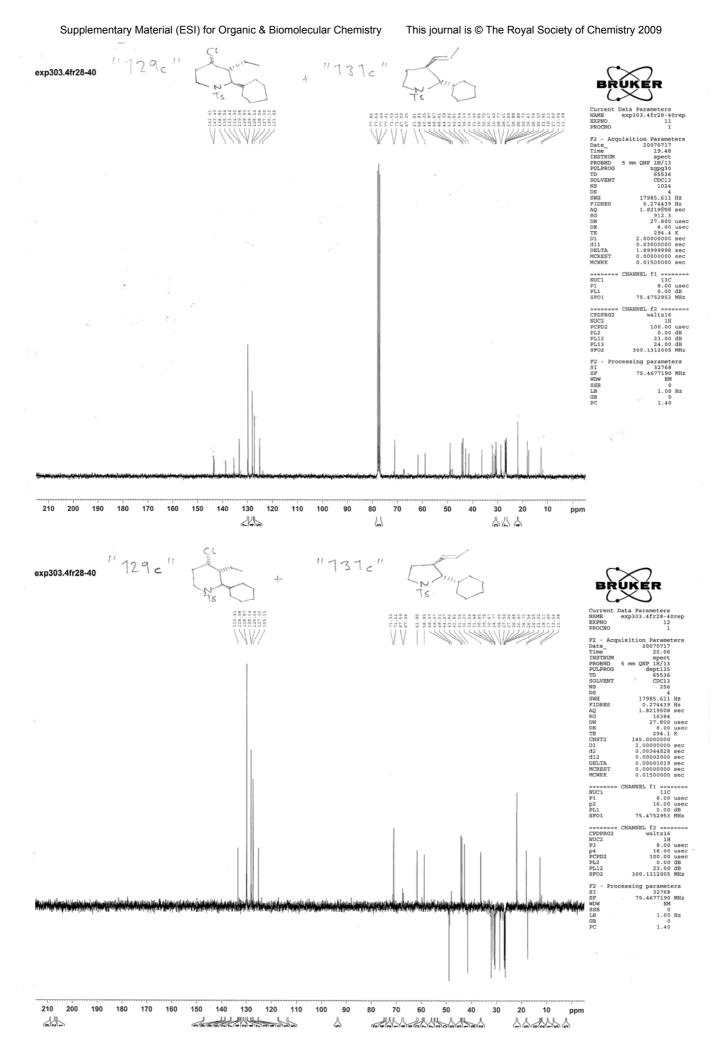



(2*S*,3*R*)-3-((*S*)-1-Chloropropyl)-2-phenethyl-1-tosylpyrrolidine and (2*R*,3*S*)-3-((*R*)-1-Chloropropyl)-2-phenethyl-1-tosylpyrrolidine (29b)

Further elution (90% hexane 10% ethyl acetate) provided the other *title compound* (392 mg, 0.97 mmol, 49%) as a white solid. M.p. 69-71 °C; v_{max} (neat)/cm⁻¹ 3088, 2936, 1598; δ_{H} (300 MHz; CDCl₃) 7.75 (2H, d, *J* 8.3, H-C10), 7.35-7.16 (5H, m, Ar-H), 7.23 (2H, d, *J* 8.3, H-C11), 3.89 (1H, dt, *J* 6.2, 3.1, H-C2), 3.45-3.30 (2H, m, H-C5), 2.84 (1H, dt, *J* 9.1, 2.9, H-C6), 2.80-2.71 (2H, m, H-C8), 2.43 (3H, s, H-C13), 2.24-2.14 (1H, m, H-C3), 2.09-1.84 (2H, m, H-C7), 1.97-1.85 (1H, m, H-C4), 1.59-1.44 (1H, m, H-C14), 1.44-1.29 (2H, m, H-C14 and H-C4), 0.85 (3H, t, *J* 7.2, H-C15); δ_{C} (75.5 MHz; CDCl₃) 143.6 (C12), 141.7 (ArC), 135.0 (C9), 129.6 (C11), 128.4 (ArC), 128.3 (ArC), 127.6 (C10), 125.8 (ArC), 66.7 (C6), 63.6 (C2), 51.2 (C3), 47.7 (C5), 38.6 (C7), 32.2 (C8), 28.6 (C14), 28.0 (C4), 21.5 (C13), 10.6 (C15); *m/z* (CI) 406 (MH⁺, 92), 252 (52), 216 (100); HRMS (ES) Found [M+H]⁺ 406.1602, C₂₂H₂₉CINO₂S requires 406.1606. Crystal Data. C₂₂H₂₈CINO₂S; M = 405.96; Orthorhombic; *a* = 14.7643(7) Å, *b* = 13.3490(6) Å, *c* = 10.3953(3) Å; Volume 2048.80(15) Å3; Space group *Pna2*₁; T = 120 K; *Z* 4, 16800 reflections measured, 4515 unique [*R_{int}* = 0.0836]. The final R values *R1* = 0.0504, *wR2* = 0.1017 (observed) and *R1* = 0.0832, *wR2* = 0.1143 (all data). Flack parameter 0.10(8).


Supplementary Material (ESI) for Organic & Biomolecular Chemistry

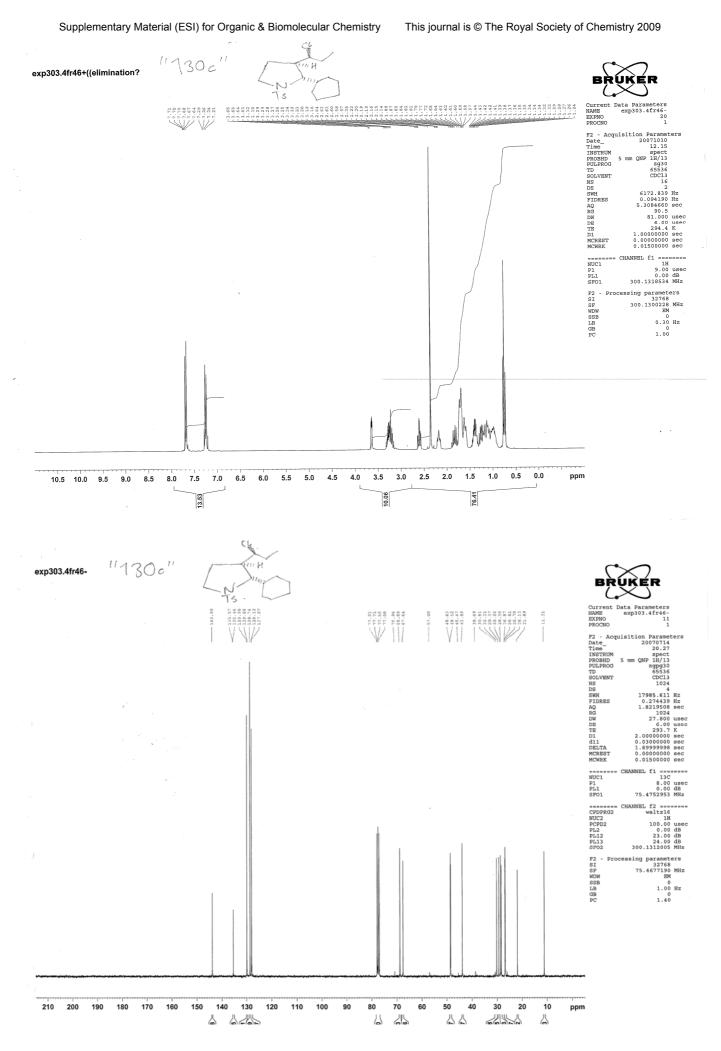

(2R,3R,4S)-4-chloro-2-cyclohexyl-3-ethyl-1-tosylpiperidine/(2S,3S,4R)-4-chloro-2-cyclohexyl-3-ethyl-1-tosylpiperidine (28c), (2S,3R)-3-((S)-1-chloropropyl)-2-cyclohexyl-1-tosylpyrrolidine/(2R,3S)-3-((R)-1-chloropropyl)-2-cyclohexyl-1-tosylpyrrolidine (29c) and (2S,3S,E)-2-cyclohexyl-3-(prop-1-enyl)-1-tosylpyrrolidine (30c).



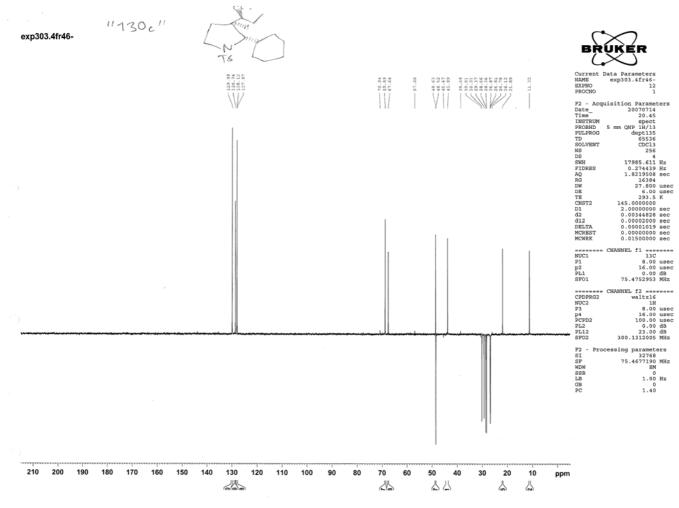
Following the general procedure, (*Z*)-*N*-(hex-3-enyl)-4-methylbenzenesulfonamide (500 mg, 1.97 mmol), in the presence of cyclohexanecarbaldehyde (332 mg, 2.96 mmol), was consumed based on analysis by TLC after 72 hours of stirring at room temperature. The work up afforded a yellow oil, which was purified by flash column chromatography (90% hexane, 10% ethyl acetate) to give the three *title compounds*.

(2*R*,3*R*,4*S*)-4-chloro-2-cyclohexyl-3-ethyl-1-tosylpiperidine/(2*S*,3*S*,4*R*)-4-chloro-2-cyclohexyl-3-ethyl-1-tosylpiperidine (28c)

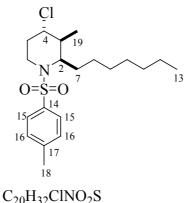
182 mg (0.47 mmol, 24%) as a white solid. M.p. 151-153°C (mixture); v_{max} (neat)/cm⁻¹ 3035, 2928, 1815 (mixture); δ_{H} (300 MHz; CDCl₃) 7.68 (2H, d, *J* 8.3, H-C12), 7.27 (2H, d, *J* 8.3, H-C13), 4.37-4.28 (1H, m, H-C4), 3.84 (1H, d, *J* 10.5, H-C2), 3.76-3.65 (1H, m, H-C6), 2.99-2.85 (1H, m, H-C6), 2.42 (3H, s, H-C15), 1.94-1.84 (1H, m, H-C3), 1.85-1.51 (5H, m, H-C7 and H-C8), 1.75-1.54 (2H, m, H-C5), 1.29-0.88 (6H, m, H-C9 and H-C10), 1.09-0.82 (2H, m, H-C16), 0.97-0.92 (3H, m, H-C17); δ_{C} (75.5 MHz; CDCl₃) 142.9 (C14), 138.4 (C11), 129.4 (C13), 126.9 (C12), 61.4 (C2), 58.5 (C4), 43.8 (C3), 41.1 (C6), 35.9 (C7), 31.0 (C8), 30.4 (C8), 28.3 (C5), 26.5 (C10), 26.4 (C9), 26.2 (C9), 21.5 (C15), 17.2 (C16), 12.2 (C17); *m/z* (C1) 384 (MH⁺, 100), 348 (78), 300 (22); Anal. Calcd. for C₂₀H₃₀ClNO₂S requires C, 62.56; H, 7.88; N, 3.65%. Found: C, 62.66; H, 8.01; N, 3.69%.


(2*S*,3*S*,*E*)-2-cyclohexyl-3-(prop-1-enyl)-1-tosylpyrrolidine/(2*S*,3*S*,*E*)-2-cyclohexyl-3-(prop-1-enyl)-1-tosylpyrrolidine (30c; only partially separable from piperidine product)

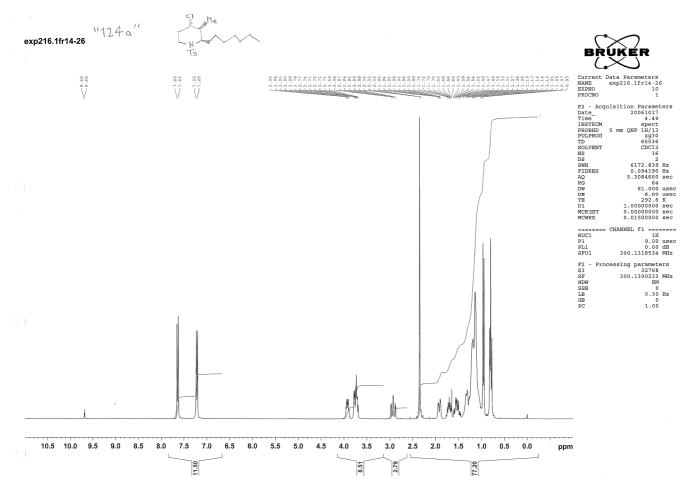
 $δ_{\rm H}$ (300 MHz; CDCl₃) 7.73 (2H, d, *J* 8.2, H-C12), 7.31 (2H, d, *J* 8.2, H-C13), 5.25-5.11 (1H, m, H-C16), 4.66-4.55 (1H, m, H-C6), 3.40-3.30 (1H, m, H-C5), 3.31-3.25 (1H, m, H-C5), 3.27-3.21 (1H, m, H-C2), 2.62-2.51 (1H, m, H-C3), 2.43 (3H, s, H-C15), 1.84-1.68 (5H, m, H-C7 and H-C8), 1.69-1.56 (2H, m, H-C4), 1.41 (3H, dd, *J* 6.4, 1.3, H-C17), 1.29-1.03 (6H, m, H-C9 and H-C10); $δ_{\rm C}$ (75.5 MHz; CDCl₃) 143.2 (C14), 135.1 (C6), 133.0 (C11), 129.5 (C13), 127.7 (C12), 124.7 (C16), 70.7 (C2), 48.5 (C5), 43.4 (C3), 42.0 (C7), 31.7 (C8), 30.2 (C8), 26.6 (C4), 26.4 (C10), 26.3 (C10), 26.1 (C9), 21.5 (C15), 17.7 (C17); *m/z* (CI) 348 (MH⁺, 100), 264 (10), 194 (35).

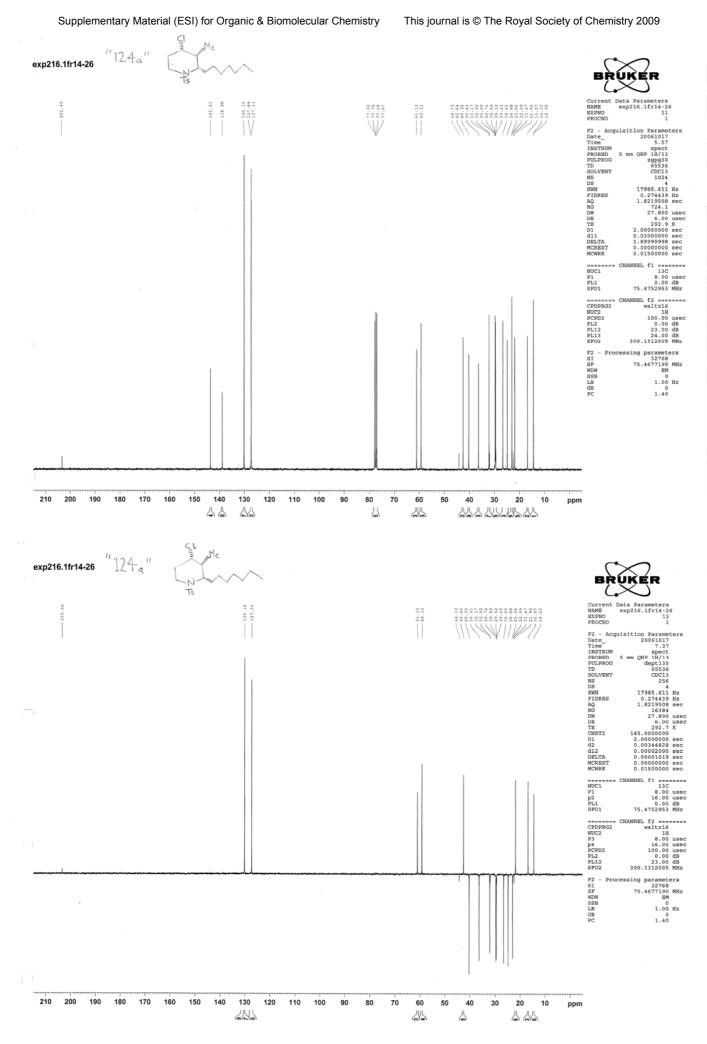

Crystal data. $C_{20}H_{29}NO_2S$; M = 347.50; Monoclinic; a = 7.7257(2) Å, b = 21.1223(7) Å, c = 11.5315(2) Å; Volume 1869.09(9) Å³; Space group P21/c; T = 120 K; Z 4; 20906 reflections measured, 4239 unique [$R_{int} = 0.0585$]. The final R values RI = 0.0678, wR2 = 0.1531 (observed) and RI = 0.0950, wR2 = 0.1737 (all data).

(2*S*,3*R*)-3-((*S*)-1-chloropropyl)-2-cyclohexyl-1-tosylpyrrolidine/(2*R*,3*S*)-3-((*R*)-1-chloropropyl)-2-cyclohexyl-1-tosylpyrrolidine (29c)

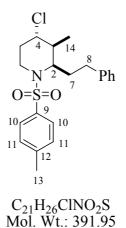

Further elution (90% hexane 10% ethyl acetate) provided the *title compound* (470 mg, 1.22 mmol, 62%) as a white solid. M.p. 102-103 °C; v_{max} (neat)/cm⁻¹ 3034, 2927, 1597; δ_{H} (300 MHz; CDCl₃) 7.75 (2H, d, *J* 8.3, H-Cl2), 7.31 (2H, d, *J* 8.3, H-Cl3), 3.70 (1H, dd, *J* 4.8, 2.3, H-C2), 3.40-3.20 (2H, m, H-C5), 2.67 (1H, dt, *J* 9.2, 2.6, H-C6), 2.42 (3H, s, H-Cl5), 2.29-2.19 (1H, m, H-C3), 1.96-1.82 (1H, m, H-C4), 1.83-1.71 (4H, m, H-C8), 1.71-1.60 (1H, m, H-C7), 1.54-1.37 (2H, m, H-C4 and H-C16), 1.37-1.24 (1H, m, H-C16), 1.28-0.96 (6H, m, H-C9 and H-C10), 0.81 (3H, t, *J* 7.2, H-C17); δ_{C} (75.5 MHz; CDCl₃) 143.4 (C14), 135.0 (C11), 129.5 (C13), 127.6 (C12), 68.4 (C2), 67.1 (C6), 48.1 (C3), 48.0 (C5), 43.4 (C7), 29.7 (C8), 28.9 (C8), 28.2 (C16), 27.9 (C4), 26.4 (C10), 26.3 (C9), 26.3 (C9), 21.4 (C15), 10.7 (C17); *m/z* (CI) 384 (MH⁺, 100), 348 (45), 300 (25); HRMS (ES) Found [M+NH₄]⁺ 401.2021, C₂₀H₃₄CIN₂O₂S requires 401.2024. Crystal data. C₂₀H₃₀CINO₂S; M = 383.96; Orthorhombic; *a* = 13.0538(3) Å, *b* = 15.5288(3) Å, *c* = 19.1088(4) Å; Volume 3873.54(14) Å³; Space group *Pbca*; T = 120 K; *Z* 8, 31418 reflections measured, 4422 unique [*R_{int}* = 0.0516]. The final R values *R1* = 0.0406, *wR2* = 0.1017 (observed) and *R1* = 0.0550, *wR2* = 0.1096 (all data).

(2*R*,3*S*,4*S*)-4-Chloro-2-heptyl-3-methyl-1-tosylpiperidine/(2*S*,3*R*,4*R*)-4-Chloro-2-heptyl-3-methyl-1-tosylpiperidine (31a)

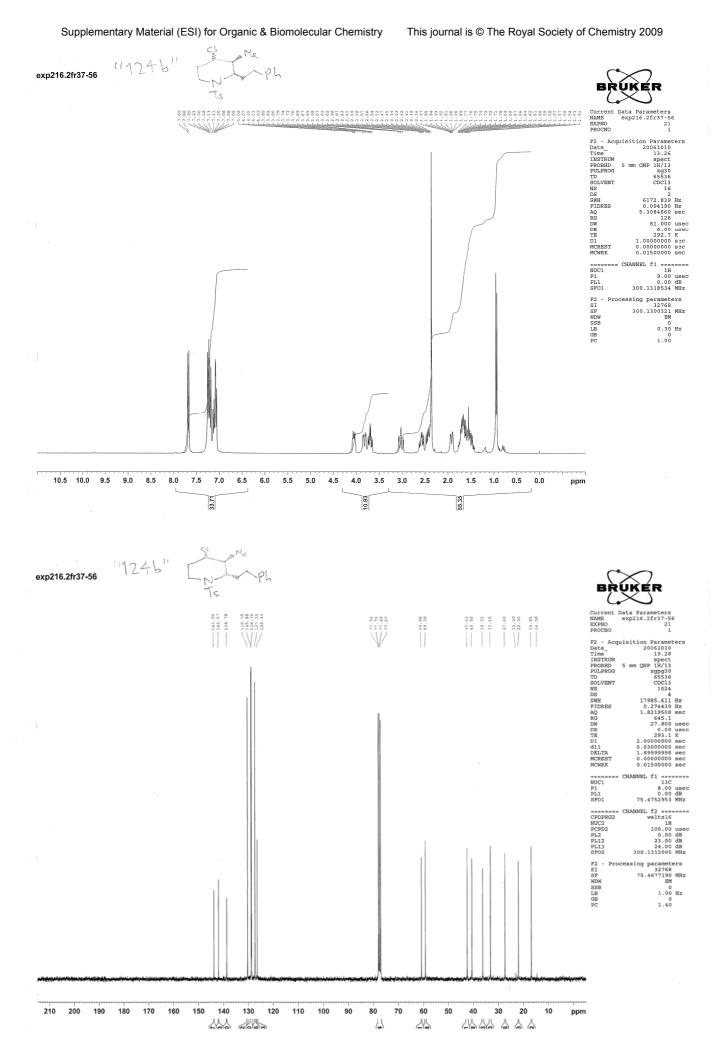


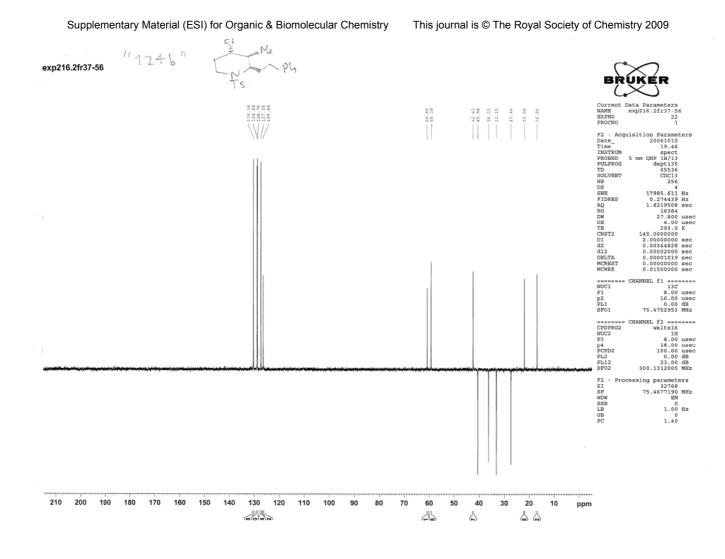

Mol. Wt.: 385.99

Following the general procedure, (*E*)-4-methyl-*N*-(pent-3-enyl)benzenesulfonamide (150 mg, 0.62 mmol)), in the presence of octanal (120 mg, 0.94 mmol), was consumed based on analysis by TLC after 17 hours of stirring at room temperature. The work up afforded a yellow oil, which was purified by flash column chromatography (90% hexane, 10% ethyl acetate) to give the *title compound* (159 mg, 0.41 mmol, 66%) as a white solid.

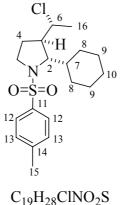

M.p. 56-57 °C; v_{max} (neat)/cm⁻¹ 2925, 1712, 1461; δ_{H} (300 MHz; CDCl₃) 7.69 (2H, d, *J* 8.4, H-C15), 7.27 (2H, d, *J* 8.4, H-C16), 3.98 (1H, td, *J* 9.7, 4.4, H-C2), 3.84-3.82 (1H, m, H-C4), 3.81-3.75 (1H, m, H-C6),

2.99 (1H, td, *J* 15.1, 2.7, H-C6), 2.40 (3H, s, H-C18), 2.03-1.93 (1H, m, H-C5), 1.83-1.69 (1H, m, H-C3), 1.67-1.50 (1H, m, H-C5), 1.47-1.34 (2H, m, H-C7), 1.33-1.10 (10H, m, H-C8 to H-C12), 1.01 (3H, d, *J* 6.9, H-C19), 0.86 (3H, t, *J* 6.8, H-C13); $\delta_{\rm C}$ (75.5 MHz; CDCl₃) 143.1 (C17), 138.4 (C14), 129.7 (C16), 126.8 (C15), 60.6 (C4), 58.8 (C2), 42.1 (C3), 39.9 (C6), 35.9 (C5), 31.7 (C11), 29.2 (C9 and C10), 26.2 (C8), 24.4 (C7), 22.6 (C12), 21.4 (C18), 16.4 (C19), 14.0 (C13); *m/z* (CI) 386 (MH⁺, 100), 350 (42), 286 (40); HRMS (ES) Found [M+NH₄]⁺ 403.2176, C₂₀H₃₆ClN₂O₂S requires 403.2181.


(2*R*,3*S*,4*S*)-4-Chloro-3-methyl-2-phenethyl-1-tosylpiperidine/(2*S*,3*R*,4*R*)-4-Chloro-3-methyl-2-phenethyl-1-tosylpiperidine (31b)

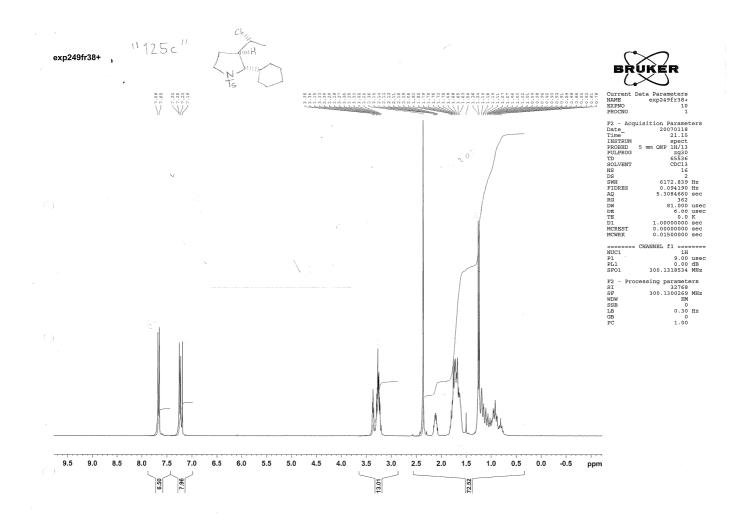


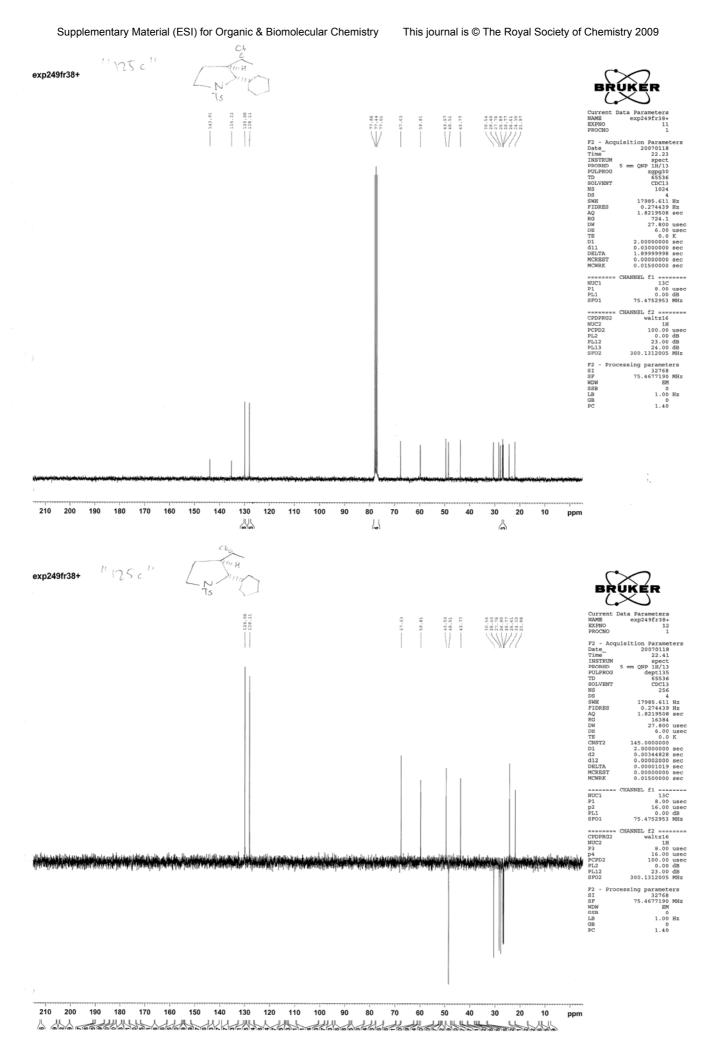
Following the general procedure, (*E*)-4-methyl-*N*-(pent-3-enyl)benzenesulfonamide (150 mg, 0.62 mmol) in the presence of 3-phenylpropanal (126 mg, 0.94 mmol), was consumed based on analysis by TLC after 17 hours of stirring at room temperature. The work up afforded a yellow oil, which was purified by flash column chromatography (90% hexane, 10% ethyl acetate) to give the *title compound* (157 mg, 0.40 mmol, 64%) as a white solid.


M.p. 105-106 °C; v_{max} (KBr)/cm⁻¹ 3030, 2955, 1596; δ_{H} (300 MHz; CDCl₃) 7.83 (2H, d, *J* 8.1, H-C10), 7.39 (2H, d, *J* 8.1, H-C11), 7.36-7.18 (5H, m, Ar-H), 4.26-4.15 (1H, m, H-C2), 3.97 (1H, dd, *J* 15.0, 4.9, H-C6), 3.85 (1H, dt, *J* 11.6, 4.5, H-C4), 3.25-3.11 (1H, m, H-C6), 2.79-2.66 (1H, m, H-C8), 2.65-2.52 (1H, m, H-C8), 2.51 (3H, s, H-C13), 2.13-2.00 (1H, m, H-C5), 1.95-1.71 (1H, m, H-C3), 1.87-1.63 (2H, m, H-C7), 1.74-1.56 (1H, m, H-C5), 1.09 (3H, d, *J* 6.8, H-C14); δ_{C} (75.5 MHz; CDCl₃) 143.4 (C12), 141.6 (ArC), 138.3 (C9), 129.9 (C11), 128.4 (ArC), 128.3 (ArC), 126.9 (C10), 125.9 (ArC), 60.4 (C4), 58.8 (C2), 41.9 (C3), 40.1 (C6), 35.7 (C5), 32.7 (C8), 26.9 (C7), 21.5 (C13), 16.4 (C14); *m*/*z* (CI) 392 (MH⁺, 40), 238 (20), 202 (74); Anal. Calcd. for C₂₁H₂₆CINO₂S requires C, 64.35; H, 7.08; N, 3.57%. Found: C, 64.15; H, 6.70; N, 3.50%; HRMS (ES) Found [M+H]⁺ 392.1446, C₂₁H₂₇CINO₂S requires 392.1444.

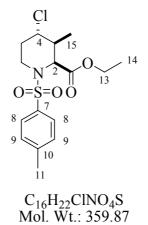
Crystal data. $C_{21}H_{26}CINO_2S$; M = 391.94; Monoclinic; a = 24.2931(8) Å, b = 11.7455(3) Å, c = 14.3281(4) Å; Volume 3937.7(2) Å³; Space group C12/c1; T = 120 K; Z 8; 22425 reflections measured, 4514 unique $[R_{int} = 0.0566]$. The final R values RI = 0.0494, wR2 = 0.1195 (observed) and RI = 0.0830, wR2 = 0.1356 (all data).

(2*S*,3*R*)-3-((*S*)-1-Chloroethyl)-2-cyclohexyl-1-tosylpyrrolidine/(2*R*,3*S*)-3-((*R*)-1-Chloroethyl)-2-cyclohexyl-1-tosylpyrrolidine (32c)

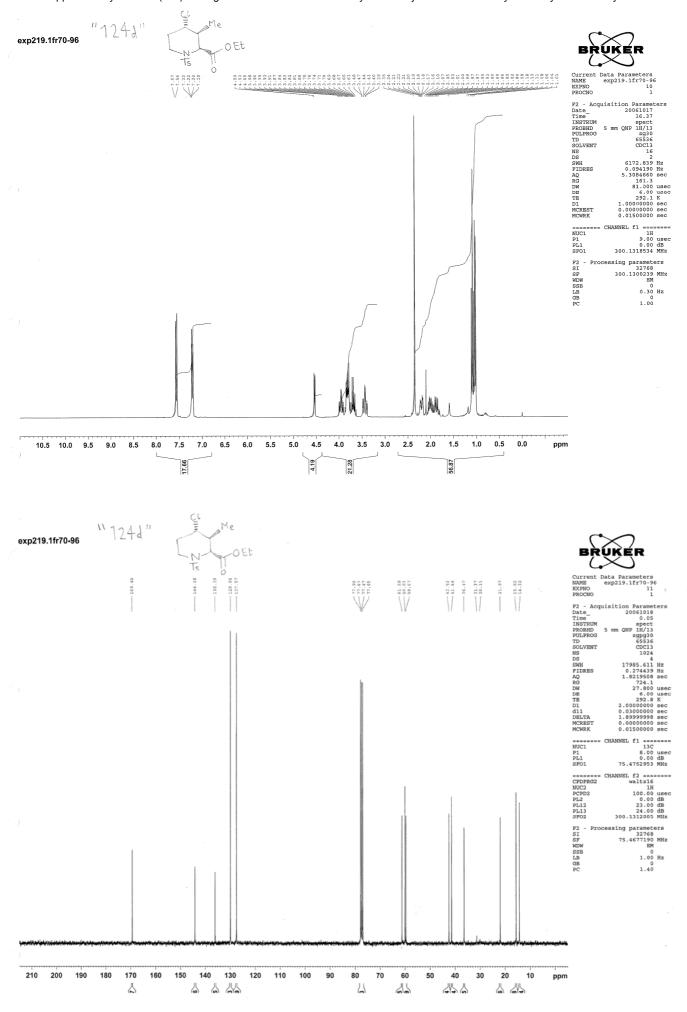

Mol. Wt.: 369.95


Following the general procedure, (*E*)-4-methyl-*N*-(pent-3-enyl)benzenesulfonamide (150 mg, 0.62 mmol) in the presence of cyclohexanecarbaldehyde (105 mg, 0.94 mmol), was consumed based on analysis by TLC after 240 hours of stirring at room temperature. The work up afforded a yellow oil, which was purified by flash column chromatography (90% hexane, 10% ethyl acetate) to give the *title compound* (162 mg, 0.44 mmol, 70%) as a white solid.

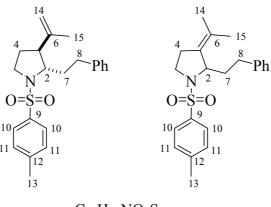
M.p. 116-118 °C; ν_{max}(neat)/cm⁻¹ 2927, 1669, 1599; δ_H (300 MHz; CDCl₃) 7.73 (2H, d, *J* 8.4, H-C12), 7.31 (2H, d, *J* 8.4, H-C13), 3.45-3.41 (1H, m, H-C2), 3.38-3.28 (3H, m, H-C6 and H-C5), 2.43 (3H, s, H-C15),


2.23-2.14 (1H, m, H-C3), 1.91-1.63 (7H, m, H-C4, H-C7 and H-C8), 1.32 (3H, d, *J* 6.6, H-C16), 1.28-0.81 (6H, m, H-C9 and H-C10); $\delta_{\rm C}$ (75.5 MHz; CDCl₃) 143.5 (C14), 134.9 (C11), 129.5 (C13), 127.7 (C12), 67.2 (C2), 59.4 (C6), 49.1 (C3), 48.1 (C5), 43.3 (C7), 30.1 (C8), 28.0 (C8), 27.3 (C4), 26.5 (C10), 26.3 (C9), 26.2 (C9), 23.9 (C16), 21.5 (C15); *m/z* (CI) 370 (MH⁺, 100), 334 (55), 286 (62); HRMS (ES) Found [M+NH₄]⁺ 387.1871, C₁₉H₃₂ClN₂O₂S requires 387.1868.

Crystal data. $C_{19}H_{28}CINO_2S$; M = 369.93; Orthorhombic; a = 15.4076 (3) Å, b = 12.9924(4) Å, c = 9.3800(3) Å; Volume 1877.70(9) Å³; Space group $Pna2_1$; T = 120 K; Z 4; 10624 reflections measured, 4506 unique [$R_{int} = 0.0506$]. The final R values RI = 0.0699, wR2 = 0.1726 (observed) and RI = 0.0743, wR2 = 0.1761 (all data). Flack parameter 0.40(12).



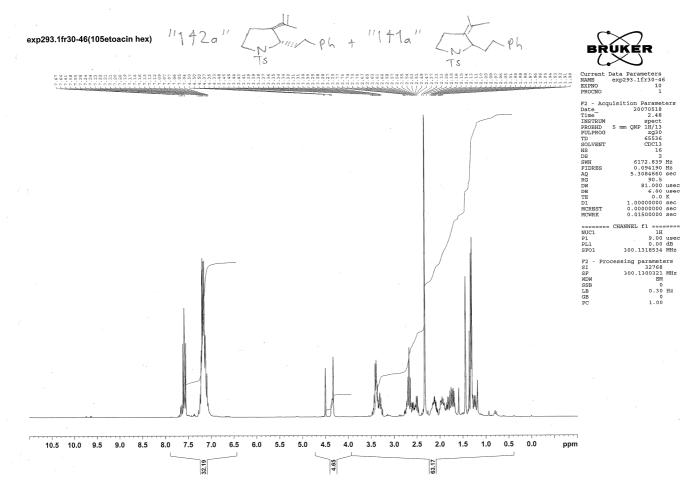
(2*S*,3*S*,4*S*)-Ethyl-4-chloro-3-methyl-1-tosylpiperidine-2-carboxylate/(2*R*,3*R*,4*R*)-Ethyl-4-chloro-3-methyl-1-tosylpiperidine-2-carboxylate (31d)

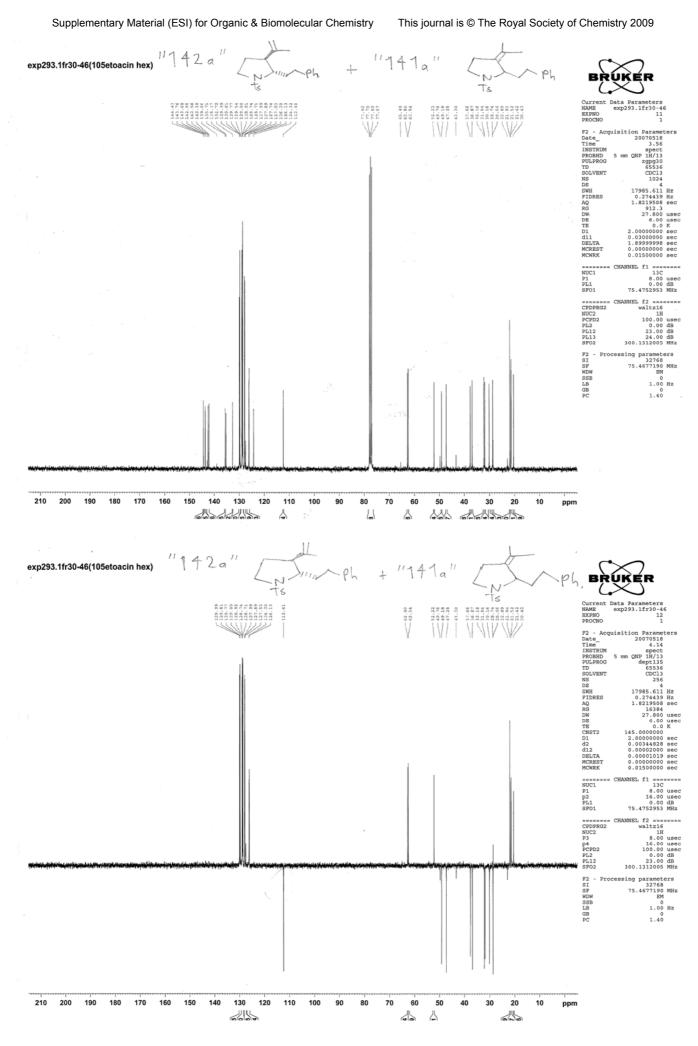

Following the general procedure, (*E*)-4-methyl-*N*-(pent-3-enyl)benzenesulfonamide (150 mg, 0.62 mmol), in the presence of a pre-heated 33% solution of ethyl 2-oxoacetate in toluene (287 mg, 0.94 mmol, 1.50 eq.), was consumed based on analysis by TLC after 1 hour of stirring at room temperature. The work up afforded a yellow oil, which was purified by flash column chromatography (90% hexane, 10% ethyl acetate) to give the *title compound* (47 mg, 0.13 mmol, 21%) as a pale yellow oil.

 v_{max} (neat)/cm⁻¹ 2980, 1733, 1598; δ_{H} (300 MHz; CDCl₃) 7.62 (2H, d, *J* 8.4, H-C8), 7.27 (2H, d, *J* 8.4, H-C9), 4.59 (1H, d, *J* 5.8, H-C2), 4.01 (1H, td, *J* 11.6, 4.4, H-C4), 3.93-3.81 (1H, m, H-C6), 3.81-3.66 (2H, m, H-C13), 3.49 (1H, td, *J* 12.8, 2.8, H-C6), 2.41 (3H, s, H-C10), 2.26 (1H, tdd, *J* 9.5, 5.1, 2.8, H-C5), 2.14-2.01 (1H, m, H-C3), 2.01-1.85 (1H, m, H-C5), 1.14 (3H, t, *J* 7.2, H-C14), 1.08 (3H, d, *J* 6.9, H-C15); δ_{C} (75.5 MHz; CDCl₃) 168.9 (C12), 143.7 (C10), 135.6 (C7), 129.5 (C9), 127.1 (C8), 60.8 (C13), 59.6 (C2), 59.2 (C4), 42.1 (C6), 41.0 (C3), 36.0 (C5), 21.5 (C11), 15.2 (C15), 13.9 (C14); *m/z* (CI) 360 (MH⁺, 100), 286 (65), 206 (87); HRMS (ES) Found [M+H]⁺ 360.1029, C₁₆H₂₃ClNO₄S requires 360.1031.

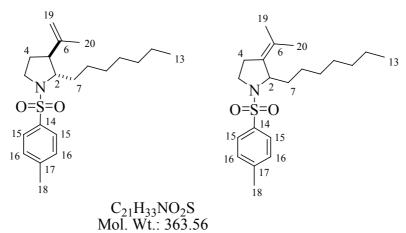
 $(2S,3S)-2-Phenethyl-3-(prop-1-en-2-yl)-1-tosylpyrrolidine/(2R,3R)-2-Phenethyl-3-(prop-1-en-2-yl)-1-tosylpyrrolidine and (\pm)-2-Phenethyl-3-(propan-2-ylidene)-1-tosylpyrrolidine$

C₂₂H₂₇NO₂S Mol. Wt.: 369.52


Following the general procedure, 4-methyl-*N*-(4-methylpent-3-enyl)benzenesulfonamide (100 mg, 0.39 mmol), in the presence of 3-phenylpropanal (80 mg, 0.59 mmol), was consumed based on analysis by TLC after 6 hours of stirring at room temperature. The work up afforded a yellow oil, which was purified by flash column chromatography (90% hexane, 10% ethyl acetate) to give the two regioisomer *title compounds* as only a partially separable mixture (108 mg, 0.29 mmol, 75%) as a colourless oil.

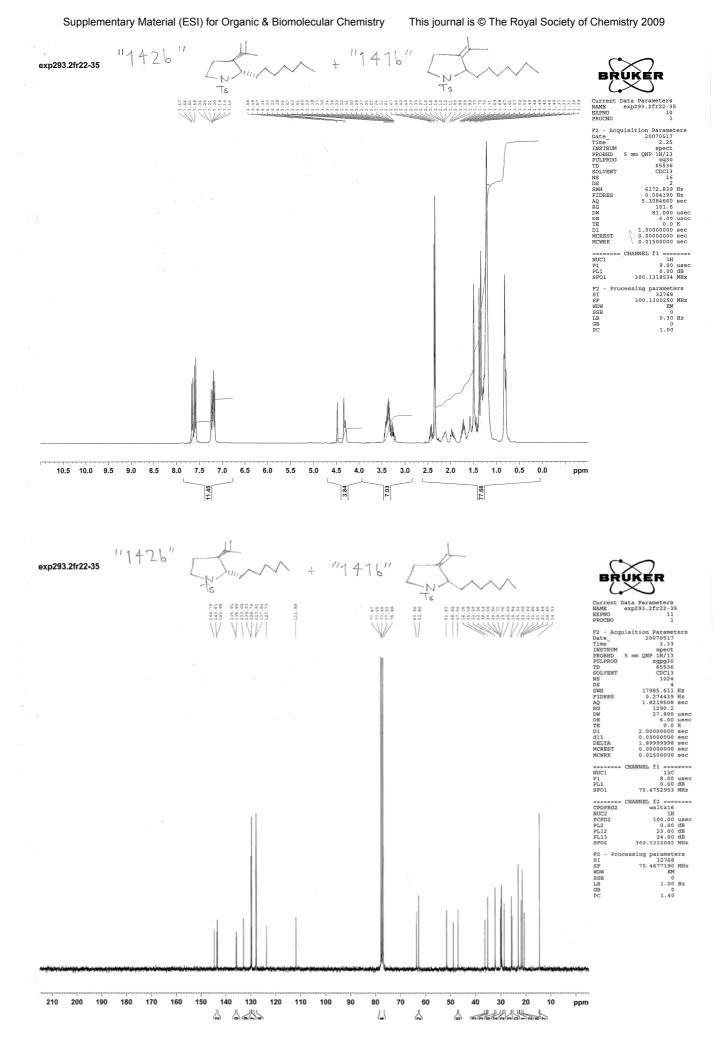

(2*S*,3*S*)-2-Phenethyl-3-(prop-1-en-2-yl)-1-tosylpyrrolidine/(2*R*,3*R*)-2-Phenethyl-3-(prop-1-en-2-yl)-1-tosylpyrrolidine (major regioisomer)

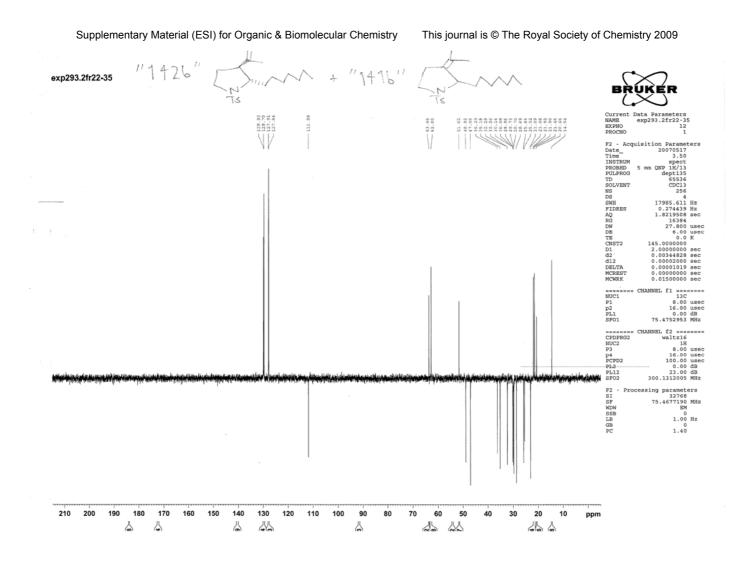
 v_{max} (neat)/cm⁻¹ 3026, 2925, 1644, 1599 (mixture); δ_{H} (300 MHz; CDCl₃) 7.69-7.61 (2H, m, H-C10), 7.30-7.24 (2H, m, H-C11), 7.27-7.13 (5H, m, Ar-H), 4.46-4.40 (1H, m, H-C2), 3.47-3.32 (2H, m, H-C5), 2.71-2.58 (2H, m, H-C8), 2.40 (3H, s, H-C13), 2.28-2.10 (1H, m, H-C4), 2.09-1.94 (1H, m, H-C4), 1.95-1.81 (2H, m, H-C7), 1.39 (3H, s, H-C15), 1.37 (3H, s, H-C14); δ_{C} (75.5 MHz; CDCl₃) 143.2 (C12), 142.1 (ArC), 135.2 (C9), 132.2 (C3), 129.3 (C11), 128.4 (ArC), 128.2 (ArC), 127.4 (C10), 125.6 (ArC), 123.8 (C6), 62.0 (C2), 48.7 (C5), 37.2 (C4), 36.4 (C7), 31.7 (C8), 21.4 (C13), 21.0 (C15), 19.9 (C15); *m/z* (CI) 370 (MH⁺, 100), 264 (18), 216 (35); HRMS (ES) Found [M+H]⁺ (mixture) 370.1837, C₂₂H₂₈NO₂S requires 370.1835.


(±)-2-Phenethyl-3-(propan-2-ylidene)-1-tosylpyrrolidine (minor regioisomer)

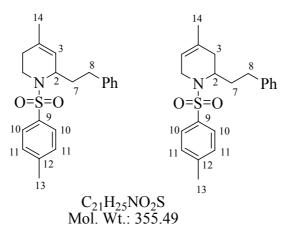
 $δ_{\rm H}$ (300 MHz; CDCl₃) 7.69-7.61 (2H, m, H-C10), 7.30-7.24 (2H, m, H-C11), 7.30-7.24 (5H, m, Ar-H), 4.59-4.56 (1H, m, H-C14), 4.41-4.39 (1H, m, H-C14), 3.51-3.41 (1H, m, H-C2), 3.54-3.38 (2H, m, H-C5), 2.83-2.65 (2H, m, H-C8), 2.66-2.50 (1H, m, H-C3), 2.40 (3H, s, H-C13), 2.28-2.10 (1H, m, H-C4), 2.09-1.94 (1H, m, H-C4), 1.87-1.70 (2H, m, H-C7), 1.51 (3H, s, H-C15); $δ_{\rm C}$ (75.5 MHz; CDCl₃) 143.9 (C6), 143.3 (C12), 141.7 (ArC), 134.9 (C9), 129.5 (C11), 128.5 (ArC), 128.2 (ArC), 127.5 (C10), 125.7 (ArC), 111.9 (C14), 62.3 (C2), 51.7 (C3), 46.8 (C5), 31.4 (C8), 29.7 (C7), 28.2 (C4), 21.4 (C13), 20.9 (C15); *m/z* (CI) 370 (MH⁺, 100), 264 (15), 216 (40).

 $(2S,3S)-2-Heptyl-3-(prop-1-en-2-yl)-1-tosylpyrrolidine/(2R,3R)-2-Heptyl-3-(prop-1-en-2-yl)-1-tosylpyrrolidine and (\pm)-2-Heptyl-3-(propan-2-ylidene)-1-tosylpyrrolidine$


Following the general procedure, 4-methyl-*N*-(4-methylpent-3-enyl)benzenesulfonamide (100 mg, 0.39 mmol), in the presence of octanal (76 mg, 0.59 mmol), was consumed based on analysis by TLC after 6 hours of stirring at room temperature. The work up afforded a yellow oil, which was purified by flash column chromatography (90% hexane, 10% ethyl acetate) to give the two *title compounds* as a partially separable mixture (85 mg, 0.23 mmol, 60%) as a colourless oil.

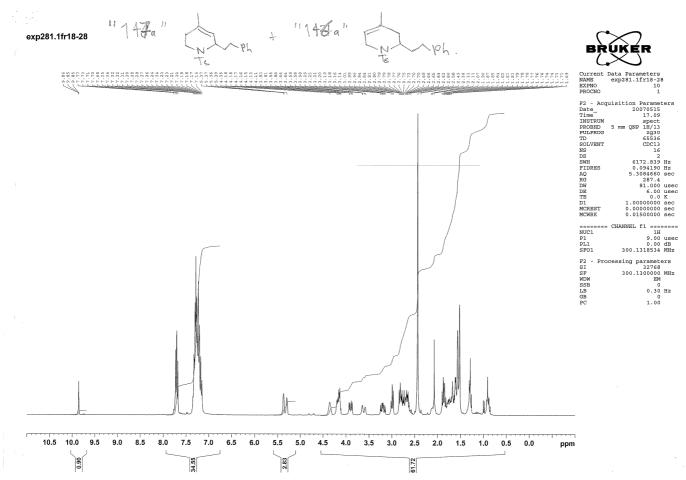

(2*S*,3*S*)-2-Heptyl-3-(prop-1-en-2-yl)-1-tosylpyrrolidine/(2*R*,3*R*)-2-Heptyl-3-(prop-1-en-2-yl)-1-tosylpyrrolidine (major regioisomer)

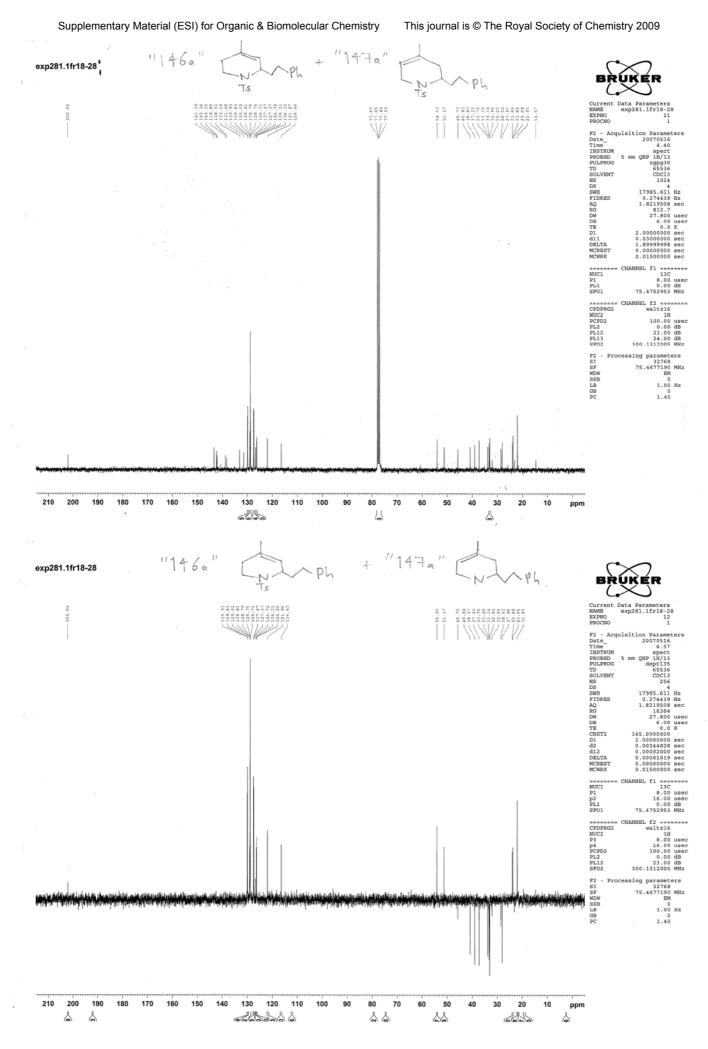
 v_{max} (neat)/cm⁻¹ 2926, 1735, 1645, 1598 (mixture); δ_{H} (300 MHz; CDCl₃) 7.72 (2H, d, *J* 8.3, H-C15), 7.29 (2H, d, *J* 8.3, H-C16), 4.39-4.33 (1H, m, H-C2), 3.52-3.37 (2H, m, H-C5), 2.42 (3H, s, H-C18), 1.86-1.70 (2H, m, H-C4), 1.70-1.57 (2H, m, H-C7), 1.43 (3H, s, H-C20), 1.39 (3H, s, H-C19), 1.37-1.17 (10H, m, H-C8 to H-C12), 0.91-0.84 (3H, m, H-C13); δ_{C} (75.5 MHz; CDCl₃) 143.0 (C17), 135.5 (C14), 132.5 (C3), 129.2 (C16), 127.4 (C15), 123.3 (C6), 62.3 (C2), 46.6 (C5), 34.7 (C4), 31.8 (C11), 29.6 (C7), 29.4 (C9 and C10), 25.4 (C8), 22.6 (C12), 21.5 (C18), 21.0 (C20), 20.2 (C19), 14.1 (C13); *m/z* (CI) 364 (MH⁺, 100), 264 (40), 210 (38); HRMS (ES) Found [M+NH₄]⁺ (mixture) 381.2569, C₂₁H₃₇N₂O₂S requires 381.2570.


(±)-2-Heptyl-3-(propan-2-ylidene)-1-tosylpyrrolidine (minor regioisomer)

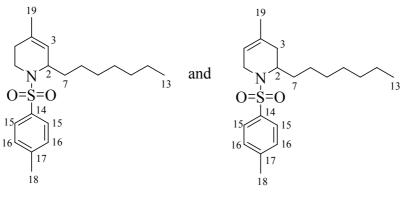
 $δ_{\rm H}$ (300 MHz; CDCl₃) 7.65 (2H, d, *J* 8.4, H-C15), 7.24 (2H, d, *J* 8.4, H-C16), 4.56-4.52 (1H, m, H-C19), 4.43-4.37 (1H, m, H-C19), 3.52-3.39 (1H, m, H-C2), 3.40-3.25 (2H, m, H-C5), 2.49 (1H, dd, *J* 13.2, 6.8, H-C3), 2.40 (3H, s, H-C18), 2.27-2.12 (1H, m, H-C4), 2.08-1.94 (1H, m, H-C4), 1.55 (3H, s, H-C20), 1.54-1.43 (2H, m, H-C7), 1.37-1.17 (10H, m, H-C8 to H-C12), 0.91-0.84 (3H, m, H-C13); $δ_{\rm C}$ (75.5 MHz; CDCl₃) 144.2 (C6), 143.2 (C17), 135.4 (C14), 129.5 (C16), 127.5 (C15), 111.4 (C19), 63.2 (C2), 51.2 (C3), 48.5 (C5), 35.8 (C4), 31.8 (C11), 29.7 (C7), 29.3 (C9), 28.2 (C10), 25.1 (C8), 22.6 (C12), 21.5 (C18), 21.0 (C20), 14.1 (C13); *m/z* (CI) 364 (MH⁺, 100), 264 (30), 210 (44).

(±)-4-Methyl-2-phenethyl-1-tosyl-1,2,3,6-tetrahydropyridine (33a) and (±)-4-Methyl-2-phenethyl-1-tosyl-1,2,5,6-tetrahydropyridine (34a)


Following the general procedure, 4-methyl-*N*-(3-methylbut-3-enyl)benzenesulfonamide (250 mg, 1.04 mmol), in the presence of 3-phenylpropanal (210 mg, 1.56 mmol), was consumed based on analysis by TLC after 2 hours of stirring at room temperature. The work up afforded a yellow oil, which was purified by flash column chromatography (90% hexane, 10% ethyl acetate) to give the *title compounds* as an inseparable mixture (331 mg, 0.93 mmol, 90%) as a pale yellow oil.


(±)-4-Methyl-2-phenethyl-1-tosyl-1,2,3,6-tetrahydropyridine (33a)

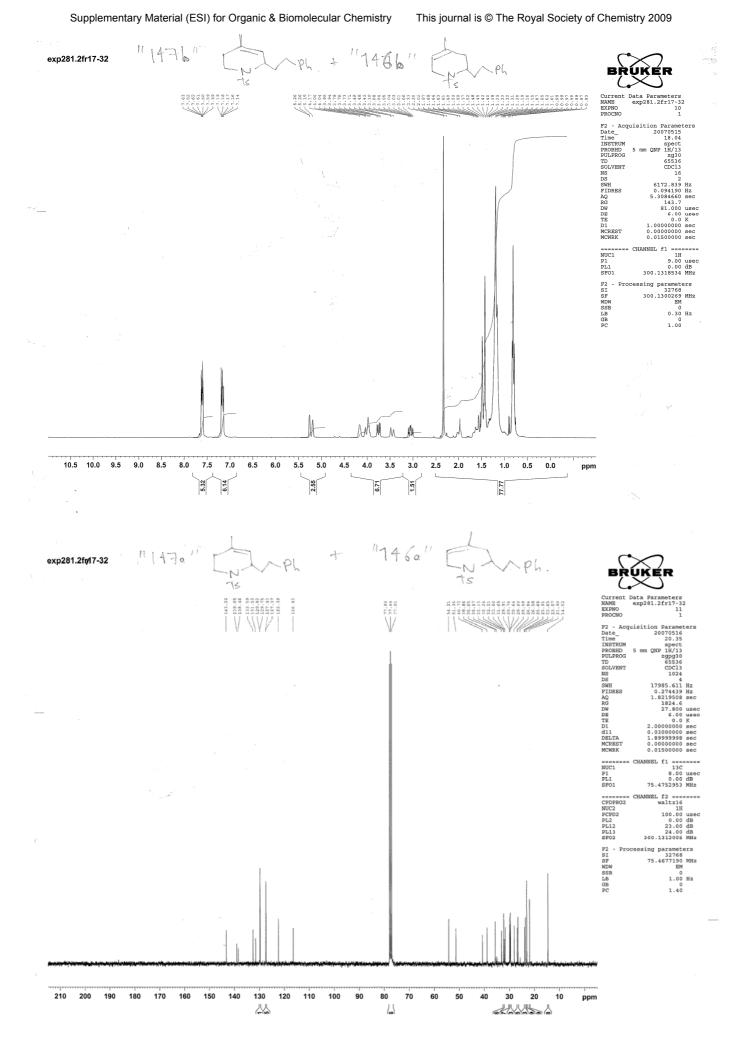
 v_{max} (neat)/cm⁻¹ 3026, 2929, 1736, 1598 (mixture); δ_{H} (300 MHz; CDCl₃) 7.82-7.79 (2H, m, H-C10), 7.44-7.39 (2H, m, H-C11), 7.39-7.23 (5H, m, Ar-H), 5.48-5.42 (1H, m, H-C3), 4.50-4.37 (1H, m, H-C2), 3.98 (1H, dd, *J* 14.6, 6.1, H-C6), 3.28 (1H, ddd, *J* 14.6, 11.8, 4.8, H-C6), 3.07 (1H, t, *J* 7.5, H-C8), 2.95-2.86 (1H, m, H-C8), 2.51 (3H, s, H-C13), 2.00-1.89 (2H, m, H-C7), 1.87-1.72 (2H, m, H-C5), 1.64 (3H, s, H-C14); δ_{C} (75.5 MHz; CDCl₃) 142.9 (C12), 141.9 (ArC), 138.4 (C9), 132.7 (C4), 129.4 (C11), 128.3 (ArC), 128.3 (ArC), 127.0 (C10), 125.7 (ArC), 121.5 (C3), 53.6 (C2), 40.4 (C6), 36.8 (C5), 32.8 (C8), 28.1 (C7), 23.2 (C14), 21.5 (C13); *m*/*z* (CI) (mixture) 356 (MH⁺, 100), 250 (25), 202 (37); HRMS (ES) Found [M+H]⁺ (mixture) 356.1682, C₂₁H₂₆NO₂S requires 356.1679.

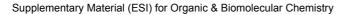

(±)-4-Methyl-2-phenethyl-1-tosyl-1,2,5,6-tetrahydropyridine (34a)

 $δ_{\rm H}$ (300 MHz; CDCl₃) 7.79-7.75 (2H, m, H-C10), 7.38-7.34 (2H, m, H-C11), 7.39-7.23 (5H, m, Ar-H), 5.40-5.35 (1H, m, H-C5), 4.31-4.23 (1H, m, H-C2), 4.26-4.18 (1H, m, H-C6), 3.77-3.62 (1H, m, H-C6), 2.88-2.70 (2H, m, H-C8), 2.51 (3H, s, H-C13), 2.24-2.12 (1H, m, H-C3), 1.87-1.71 (2H, m, H-C7), 1.77-1.65 (1H, m, H-C3), 1.60 (3H, s, H-C14); $δ_{\rm C}$ (75.5 MHz; CDCl₃) 142.9 (C12), 141.7 (ArC), 137.9 (C9), 131.0 (C4), 129.5 (C11), 128.4 (ArC), 128.3 (ArC), 126.9 (C10), 125.9 (ArC), 116.0 (C5), 50.7 (C2), 45.3 (C6), 38.5 (C3), 32.7 (C8), 27.5 (C7), 23.4 (C14), 21.5 (C13).

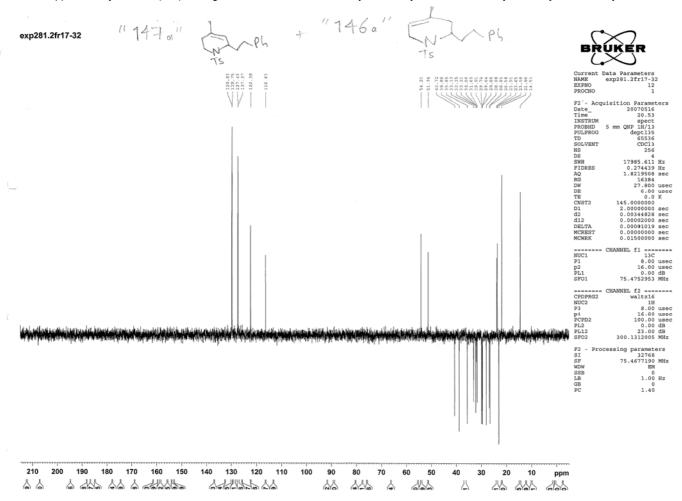
(±)-2-Heptyl-4-methyl-1-tosyl-1,2,3,6-tetrahydropyridine (33b) and (±)-2-Heptyl-4-methyl-1-tosyl-1,2,5,6-tetrahydropyridine (34b)

C₂₀H₃₁NO₂S Mol. Wt.: 349.53


Following the general procedure, 4-methyl-*N*-(3-methylbut-3-enyl)benzenesulfonamide (250 mg, 1.04 mmol), in the presence of octanal (200 mg, 1.56 mmol), was consumed based on analysis by TLC after 2 hours of stirring at room temperature. The work up afforded a yellow oil, which was purified by flash column chromatography (90% hexane, 10% ethyl acetate) to give the *title compounds* (265 mg, 0.76 mmol, 73%) as a pale yellow oil.


(±)-2-Heptyl-4-methyl-1-tosyl-1,2,3,6-tetrahydropyridine (33b, major regioisomer)

 v_{max} (neat)/cm⁻¹ 2927, 1598 (mixture); δ_{H} (300 MHz; CDCl₃) 7.73-7.68 (2H, m, H-C15), 7.27-7.23 (2H, m, H-C16), 5.36-5.30 (1H, m, H-C3), 4.31-4.16 (1H, m, H-C2), 3.82 (1H, dd, *J* 14.6, 6.2, H-C6), 3.11 (1H, ddd, *J* 14.6, 11.9, 4.7, H-C6), 2.40 (3H, s, H-C18), 1.77-1.58 (1H, m, H-C5), 1.58-1.44 (1H, m, H-C5), 1.55 (3H, s, H-C19), 1.46-1.34 (2H, m, H-C7), 1.38-1.11 (10H, m, H-C8 to H-C12), 0.91-0.84 (3H, m, H-C13); δ_{C} (75.5 MHz; CDCl₃) 142.8 (C17), 138.6 (C14), 132.1 (C4), 129.3 (C16), 127.0 (C15), 121.9 (C3), 53.8 (C2), 38.4 (C6), 32.7 (C5), 31.8 (C11), 31.6 (C7), 29.5 (C9), 29.2 (C10), 26.2 (C8), 23.2 (C19), 22.6 (C12), 21.5 (C18), 14.1 (C13); *m*/*z* (CI) (mixture) 350 (MH⁺, 100), 250 (12), 196 (40); HRMS (ES) Found [M+H]⁺ (mixture) 350.2148, C₂₀H₃₂NO₂S requires 350.2149.


(±)-2-Heptyl-4-methyl-1-tosyl-1,2,5,6-tetrahydropyridine (34b, minor regioisomer)

 $δ_{\rm H}$ (300 MHz; CDCl₃) 7.68-7.64 (2H, m, H-C15), 7.23-7.19 (2H, m, H-C16), 5.29-5.22 (1H, m, H-C5), 4.14-4.03 (1H, m, H-C6), 4.09-4.01 (1H, m, H-C2), 3.58-3.46 (1H, m, H-C6), 2.40 (3H, s, H-C18), 2.16-1.98 (1H, m, H-C3), 1.58-1.47 (1H, m, H-C3), 1.49 (3H, s, H-C19), 1.55-1.41 (2H, m, H-C7), 1.38-1.11 (10H, m, H-C8 to H-C12), 0.91-0.84 (3H, m, H-C13); $δ_{\rm C}$ (75.5 MHz; CDCl₃) 142.8 (C17), 138.0 (C14), 131.1 (C4), 129.4 (C16), 126.9 (C15), 116.0 (C5), 50.9 (C2), 40.3 (C6), 35.2 (C3), 31.8 (C11), 31.2 (C7), 29.3 (C9), 29.2 (C10), 26.4 (C8), 23.5 (C19), 22.7 (C12), 21.5 (C18), 14.1 (C13).

This journal is © The Royal Society of Chemistry 2009

