ELECTRONIC SUPPORTING INFORMATION

The UDP-Galp mutase catalyzed isomerization: Synthesis and Evaluation of 1,4-anhydro- β -D-galactopyranose and its [2.2.2] methylene homologue

Ali Sadeghi-Khomami^a, Tatiana J. Forcada^a, Claire Wilson^a, David A. R. Sanders^b and Neil R. Thomas^{a*}

^a School of Chemistry, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom. *E-mail: neil.thomas@nottingham.ac.uk.

^b Department of Chemistry, University of Saskatchewan, Saskatoon, S7N 5C9, Canada.

Table of Contents

Details for the synthesis of compounds 5-11 and 13-18.	2
Enzyme assay	5
1,4-Anhydro- β -D-galactopyranose (1,5-Anhydro- α -D-galactofuranose) 2	
¹ H-NMR	6
¹ H- ¹ H COSY	
¹³ C-NMR	9
DEPT	11
¹ H- ¹³ C HMQC	
(1R,3S,4R,7R,8S)-3-hydroxymethyl-2,6-dioxa-bicyclo-[2.2.2]octane-7,8-diol 4	
¹ H-NMR	
¹ H- ¹ H COSY	14
¹³ C-NMR	
DEPT	
¹ H- ¹³ C HMOC	
¹ H Chemical shifts (ppm), J (Hz) and multiplicity of 1,4-anhydrohexopyranoses	
¹³ C Chemical shifts (ppm), J (Hz) and multiplicity of 1.4-anhydrohexopyranoses	
Acidic ring opening of 2	

Methyl 4,6-O-(S)-benzylidene-α-D-galactopyranoside 5

Methyl α-D-galactopyranoside (2 g, 10.3 mmol) and camphor-10-sulfonic acid (30 mg, 0.13 mmol) were suspended in anhydrous chloroform (150 ml). Distilled benzaldehyde dimethyl acetal (2 ml, 14.2 mmol) was added dropwise to this suspension. The reaction mixture (initially a suspension) was distilled at 65 °C for 2 h. The distillate (*ca.* 60 ml) was collected as a mixture of chloroform and methanol. The residue (pale yellow solution) was neutralized by addition of triethylamine (1 ml, 7 mmol), washed with water (50 ml) and concentrated *in vacuo* to give a yellow solid. This solid was then washed with hexanes (20 ml) and EtOAc (20 ml) to give a white solid (2.8 g, 100%). Based on NMR and TLC analysis, the sample was free of any other impurities and was used without further purification in the next step. For analytical purposes a fraction of the sample was purified by column chromatography on silica gel (ethyl acetate-ethanol, 11:1) and crystallized very slowly as fine white needles from hot water on storage at 4 °C. R₁ 0.4 (ethyl acetate-ethanol, 9:1); mp 166-168 °C (lit, ⁸² 171.0-171.5 °C, lit, ⁸³ 168.9-170.5 °C); [a]_D²⁵+133.9 (*c* 1 in CHCl₃), (lit, ⁸² +141, *c* 0.59 in CHCl₃); *v*_{max} (CHCl₃)/cm⁻¹ 3566m sharp (hydrogen bonded OH), 2910m (C-H), 2840 (OC-H), 1950w, 1870w, 1810w, 1730w (overtone, comb, Ar), 1602w, 1496w (C-C, Ar), 1454m sharp (CH₂), 1144m, 1090vs, 1072vs, 1042vs, 980s; $\delta_{\rm H}$ (CDCl₃) 2.12 (2H, br. s, OH-2 and OH-3), 3.41 (3H, s, -OCH₃), 3.66 (1H, app. d, J 1.3, 5-H), 3.84 (1H, dd, J_{3.2} 9.9 and J_{2.1} 3.1, 2-H), 4.04 (H, dd, J_{6.6.5} 1.5, 6b-H), 4.88 (1H, d, J_{1.2} 3.1, 1-H), 5.51 (1H, s, CHPh), 7.30-7.33 (3H, m, *meta-* and *para-*Ph), 7.43-7.46 (2H, m, *ortho-*Ph); $\delta_{\rm C}$ (CDCl₃) 5.5.7 (CH₃, -OCH₃), 62.7 (CH, C-5), 69.4 (CH₂, C-6), 69.7 and 69.8 (each CH, C-2 or C-3), 76.0 (CH, C-4), 100.3 (CH, C-1), 101.3 (CH, CHPh), 126.3 (2xCH, *meta-*Ph), 128.3 (2xCH, *ortho-*Ph), 129.2 (CH, *para-*Ph), 137.6 (C, Ph); *m/z* (70 ev, EI) 282 (29%, M⁺), 251 (10, M-

Methyl 3,4-O-benzylidene-α-D-galactopyranosides 6&7

Methyl α -D-galactopyranoside (2.91 g, 15 mmol) was added to a mixture of benzaldehyde dimethyl acetal (2.25 ml, 15.2 mmol) and *p*-toluenesulfonic acid (14.55 mg, 0.08 mmol) in anhydrous DMF (14.5 ml). The suspension was rotated at 60-70 °C on a rotary evaporator under a moderate vacuum to remove the methanol generated in the reaction. After 2 h, 4 Å molecular sieves (*ca.* 20) were added and the reaction mixture refluxed in an oil bath under nitrogen for 18 h. The resulting mixture was filtered, concentrated *in vacuo* and neutralised with solid sodium carbonate (20 mg) and diluted with water (50 ml). The solution was extracted with ethyl acetate (2 x 100 ml). The organic extracts were washed with brine (25 ml), dried over anhydrous sodium sulfate, evaporated *in vacuo* and purified by silica gel (pre-treated with triethylamine) column chromatography (EtOAc-EtOH, 9:1). Without attempting a quantitative recovery, the first fraction (R_f 0.7) was identified as a diastereomeric mixture of **6** and **7**. HRMS (ESI): found (M+Na)⁺ 305.1017, C₁₄H₁₈O₆ requires (M+Na)⁺ 305.1001. The ratio of diastereoisomers in CDCl₃ was determined by NMR spectroscopy, *exo/endo* 2.5/1. The second fraction (R_f 0.4) was identified as **5** (30% yield). Another unknown by-product (~ 5% yield, R_f 0.3) also formed and was separated from the reaction mixture under these conditions, HRMS (ESI⁺): found 337.1251.

Exo 6

 $δ_{\rm H}$ (CDCl₃) 3.43 (3H, s, -OCH₃), 3.81 (1H, dd, $J_{6a,6b}$ 11.8 and $J_{6a,5}$ 4.2, 6a-H), 3.89 (1H, dd, $J_{2,3}$ 7.2 and $J_{2,1}$ 3.9, 2-H), 3.94 (1H, dd, $J_{5,6b}$ 6.1 11.8 and $J_{6b,5}$ 6.6, 6b-H), 4.01 (1H, ddd, $J_{5,6b}$ 6.6, $J_{5,6a}$ 4.2 and $J_{5,4}$ 2.2, 5-H), 4.2 (1H, dd, $J_{4,3}$ 5.6 and $J_{4,5}$ 2.2, 4-H), 4.4 (1H, dd, $J_{3,2}$ 7.2 and $J_{3,4}$ 5.6, 3-H), 4.83 (1H, d, $J_{1,2}$ 3.9, 1-H), 6.11 (1H, s, CHPh), 7.31-7.37 (5H, m, Ph); $\delta_{\rm C}$ (CDCl₃) 55.8 (CH₃, -OCH₃), 62.8 (CH₂, C-6), 67.8 and 68.1 (each CH, C-5 or C-2), 74.2 (CH, C-4), 77.8 (CH, C-3), 98.9 (CH, C-1), 103.5 (CH, CHPh), 126.2-129.3 (all CH, Ph), 138.6 (C, Ph).

Endo 7

 $δ_{\rm H}$ (CDCl₃) 3.45 (3H, s, -OC*H*₃), 3.81-3.97 (3H, m, 6a-H, 2-H and 6b-H), 4.11 (1H, ddd, $J_{5,6b}$ 6.7, $J_{5,6a}$ 4.3 and $J_{5,4}$ 2.3, 5-H), 4.28 (1H, dd, $J_{4,3}$ 6.6 and $J_{4,5}$ 2.4, 4-H), 4.36 (1H, dd, $J_{3,2}$ ~ 6.6 and $J_{3,4}$ 6.6, 3-H), 4.78 (1H, d, $J_{1,2}$ 3.9, 1-H), 5.83 (1H, s, C*H*Ph), 7.38-7.47 (5H, m, Ph); $\delta_{\rm C}$ (CDCl₃) 55.7 (CH₃, -OCH₃), 62.7 (CH₂, C-6), 68.4 and 69.2 (each CH, C-5 or C-2), 75.5 (CH, C-4), 76.2 (CH, C-3), 98.3 (CH, C-1), 104.4 (CH, CHPh), 126.2-129.3 (all CH, Ph), 129.7 (C, Ph).

Methyl 2,3-di-O-benzyl-4,6-O-(S)-benzylidene-α-D-galactopyranoside 8

Methyl 4,6-*O*-benzylidene- α -D-galactopyranoside **5** (4.5 g, 15.9 mmol) was added to a stirred suspension of sodium hydride (2.5 g, 60% dispersion in oil, 62.5 mmol) in anhydrous DMF (60 ml) at room temperature. After stirring for 30 min, the reaction mixture was cooled to 0 °C and tetrabutylammonium iodide (1.85 g, 4.9 mmol) was added, followed by benzyl bromide (6 ml, 49 mmol) in a dropwise fashion. The resulting suspension was stirred at room temperature for 18 h. The reaction was then quenched by the addition of methanol (50 ml) and evaporated to dryness. Water (100 ml) was added and the resulting mixture was extracted with DCM (3 × 100 ml). The combined organic extracts were successively washed with water (40 ml) and brine (20 ml), dried (anhydrous Na₂SO₄) and filtered. The filtrate was concentrated *in vacuo* to give a yellow solid which was crystallised from methanol to afford **8** (6.27 g, 85% yield) as white blocks (CCDC 287123[‡], X-ray diffraction data). R_f 0.24 (hexanes-EtOAc, 7:3); mp 175-176 °C (lit.,⁸⁴ 174-175 °C); [α]_D²⁵ +76 (*c* 1 in CHCl₃), (lit.,⁸⁴ +77, *c* 2.4 in CHCl₃); [Found: C, 72.60; H, 6.44%; (M+Na)⁺ 462.2055. C₂₈H₃₀O₆ requires C, 72.70; H, 6.54%; (M+Na)⁺ 462.2042]; v_{max} (CHCl₃)/cm⁻¹ 2910m (C-H), 2862m (OC-H), 1950w, 1870w, 1810w, 1730w (overtone, comb, Ph), 1602w, 1454m sharp (CH₂), 1361m, 1151m, 1096vs, 1049vs, 986s; $\delta_{\rm H}$ (CDCl₃) 3.40 (3H, s, -OCH₃), 3.60 (1H, app. br. d, *J* 1.2, 5-H), 4.00 (1H, dd, *J*_{2.3} 10.1 and *J*_{2.1} 3.5, 2-H), 4.02 (1H, dd, *J*_{6a,6b} 12.4 and *J*_{6a,5} 1.8, 6a-H), 4.08 (1H, dd, *J*_{3.2} 10.1 and *J*_{3.4} 3.5, 3-H), 4.19 (1H, dd, *J*_{4.3} 3.5 and *J*_{4.5} 0.9,

4-H), 4.23 (1H, dd, $J_{6b,6a}$ 12.4 and $J_{6b,5}$ 1.6, 6b-H), 4.70 and 4.90 (AB, each 1H, d, $J_{A,B}$ 12.0, CH_AH_BPh), 4.76 and 4.85 (AB, each 1H, d, $J_{A,B}$ 12.3, CH_AH_BPh), 4.79 (1H, d, $J_{1,2}$ 3.5, 1-H), 5.41 (1H, s, CHPh), 7.25-7.44 (15H, m, 3xPh); δ_C (CDCl₃) 55.6 (CH₃, -OCH₃), 62.5 (CH, C-5), 69.5 (CH₂, C-6), 72.2 and 73.9 (each CH₂, 2x CH₂Ph), 74.9 (CH, C-4), 75.5 (CH, C-3), 76.1 (CH, C-2), 99.6 (CH, C-1), 101.2 (CH, CHPh), 126.4, 127.6, 127.7, 127.8, 128.1, 128.2, 128.4, 128.9 (all CH, 3xPh), 137.9, 138.7, 138.9 (each C, 3xPh); m/z (MeOH, EI) 462 (1%, M⁺), 430 (8, M-OMe), 371 (26), 177 (52), 121 (37), 91 (100).

Crystallographic Data

Crystal data for methyl-2,3-di-*O*-benzyl-4,6-*O*-(S)- benzylidene- α -D-galactopyranoside **8** (CCDC 287123): C28H30O6, *M* = 462.52, monoclinic, space group *P*₂₁, *a* = 11.497(Å), *b* = 9.1335(12) (Å), *c* = 11.666(2) (Å), *β* = 101.688(2)°, *U* = 1199.6(3) (Å)³, *Z*=2, *D_c* = 1.280 Mg/m³, μ (Mo-*K* α) = 0.089 mm⁻¹, *T* = 150(2) K. 2758 unique reflections (*R*_{int} = 0.035). Final *R*₁ [2731 *I* > 2 σ (*I*)] = 0.0409, *wR*₂ (all data) = 0.101. This was recorded on a Bruker SMART1000 CCD area-detector diffractometer.

Methyl 2,3,6-tri-O-benzyl-a-D-galactopyranoside 9

To a round bottom flask containing the benzylidene acetal 8 (2 g, 4.3 mmol) and 3Å molecular sieves (ca. 40), was added anhydrous THF (60 ml) followed by sodium cyanoborohydride (2.84 g, 43 mmol). The resulting suspension was stirred at room temperature until the sodium cyanoborohydride had completely dissolved, it was then cooled to 0 °C. Hydrogen chloride in diethyl ether (2 M) was added (ca. 20 ml) until gas evolution had ceased. After 10 min at room temperature TLC (hexanes-EtOAc, 1:1) indicated that all the starting material had been consumed. The mixture was diluted with DCM (50 ml), filtered and washed successively with cold water (2 x 30 ml), a saturated solution of NaHCO3 (20 ml) and dried over MgSO4. The sample was filtered and concentrated in vacuo. The resulting syrup was purified by column chromatography on silica (hexanes-EtOAc, 4:1) to give **9** (1.4 g, 70%) as a pale yellow oil. $R_f 0.56$ (hexanes-EtOAc, 3:2); $[\alpha]_D^{25}$ +30.9 (*c* 1.8 in CHCl₃), (lit.,⁸⁵ +34, c 3 in CHCl₃), (lit.,⁸⁶ +33.4, c 1.67 in CHCl₃); v_{max} (CHCl₃)/cm⁻¹ 3570m (hydrogen bonded OH in 5-membered ring), ~3500sh,w (hydrogen bonded OH in 6-membered ring), 2912s (CH), 2872s (OC-H), 1951w, 1870w, 1810w, 1730w (overtone, comb, Ph), 1603w, 1496w (C-C, Ar), 1454m sharp (CH₂), 1354m, 1090vs, 1049vs; δ_{H} (CDCl₃) 2.56 (1H, app. t, J_{OH-4,5} - J_{OH-4,5} 1.3, 4-OH), 3.35 (3H, s, -OCH₃), 3.63 (1H, dd, J_{6a,6b} 10 and J_{6a,5} 6.3, 6a-H), 3.70 (1H, dd, J_{6b,6a} 10 and J_{6b,5} 5.4, 6b-H), 3.841 (1H, obscured dd, J_{3,2} 10 and J_{3,4} 2.9, 3-H), 3.84 (1H, obscured dd, J_{2,3} 10 and J_{2,1} 1.9, 2-H), 3.86 (1H, app. br. t, J 5.9, 5-H), 4.01 (1H, ddd, J_{4,3} 2.9 and J_{4,5} ~ J_{4,4-OH} 1.3, 4-H), 4.51 and 4.56 (AB, each 1H, d, J_{A,B} 11.9, CH_AH_BPh), 4.63 and 4.78 (AB, each 1H, d, J_{A,B} 12.1, CH_AH_BPh), 4.64 (1H, obscured d, J_{1,2} 1.9, 1-H), 4.67 and 4.76 (AB, each 1H, d, J_{A,B} 11.6, CH_AH_BPh), 7.27-7.32 (15H, m, 3xPh); δ_C (CDCl₃) 55.4 (CH₃, -OCH₃), 68.2 (CH, C-4), 68.4 (CH, C-5), 69.7 (CH₂, C-6), 72.8, 73.6, 73.7 (each CH₂, 3xCH₂Ph), 75.8 (CH, C-3), 77.7 (CH, C-2), 98.7 (CH, C-1), 127.7, 127.9, 128.1, 128.4₆, 128.5 (all CH, 3xPh), 138.1, 138.3, 138.5 (each C, 3xPh); HRMS (ESI): found (M+Na)⁺ 487.2052. C₂₈H₃₂O₆ requires (M+Na)⁺, 487.2097.

Methyl 2,3,4-tri-O-benzyl-α-D-galactopyranoside 10

Compound **10** was separated as a by-product in the synthesis of **9**. Column chromatography on silica (hexanes-EtOAc, 4:1) gave **10** (0.2 g, 10%) as a colourless oil. $R_f 0.3$ (hexanes-EtOAc, 2:3); $[\alpha]_D^{25} + 1.8$ (*c* 1 in CHCl₃), (lit., ⁷⁵ +4, *c* 1.38 in CHCl₃), (lit., ⁸⁷ +7, *c* 1 in CHCl₃); ν_{max} (CHCl₃)/cm⁻¹ 3592m (free OH), 3500sh, w (hydrogen bonded OH in 6-membered ring), 2912m (CH), 2900m (OC-H), 1950w, 1870w, 1810w, 1730w (overtone, comb, Ph), 1496w (C-C, Ar), 1454m sharp (CH₂), 1350m, 1090vs, 1048vs; δ_H (CDCl₃) 1.6 (1H, br. s, 6-OH), 3.25 (3H, s, -OCH₃), 3.44 (1H, ddd, $J_{6a,6b}$ 15, $J_{6a,5}$ 6.5 and $J_{6a,6-OH}$ 2, 6a-H), 3.66 (1H, obscured dd, $J_{5,6a} \sim J_{5,6b}$ 6.5 and $J_{5,4}$ 0, 5-H), 3.68 (1H, obscured ddd, $J_{6b,6a}$ 15, $J_{6b,5}$ 6.5 and $J_{6b,6-OH}$ 1, 6b-H), 3.83 (1H, br. d, $J_{4,3}$ 2.8 and $J_{4,5}$ 0, 4-H), 3.90 (1H, dd, $J_{3,2}$ 10 and $J_{3,4}$ 2.8, 3-H), 4.01 (1H, dd, $J_{2,3}$ 10 and $J_{2,1}$ 3.6, 2-H), 4.59 and 4.93 (AB, each 1H, d, $J_{A,B}$ 11.6, CH_AH_BPh), 4.65 and 4.80 (AB, each 1H, d, $J_{A,B}$ 12.1, CH_AH_BPh), 4.66 (1H, obscured d, $J_{1,2}$ 3.4, 1-H), 4.71 and 4.85 (AB, each 1H, d, $J_{A,B}$ 11.8, CH_AH_BPh), 7.23-7.37 (15H, m, 3xPh); δ_C (CDCl₃) 55.4 (CH₃, -OCH₃), 62.5 (CH₂, C-6), 70.3 (CH, C-5), 73.6_6, 73.7_0, 74.5 (each CH₂, 3xCH₂Ph), 75.1 (CH, C-4), 76.6 (CH, C-2), 79.2 (CH, C-3), 98.9 (CH, C-1), 127.6, 127.7, 127.8, 128.1, 128.2, 128.4, 128.5_1, 128.5_5, 128.7 (all CH, 3xPh), 138.2, 138.5, 138.8 (each C, 3xPh); HRMS (ESI): found (M+Na)⁺ 487.2107. C₂₈H₃₂O₆ requires (M+Na)⁺, 487.2097.

Methyl 2,3-di-O-benzyl-a-D-galactopyranoside 11

Compound **11** was separated as a by-product in the synthesis of **9**. Column chromatography on silica (hexanes-EtOAc, 4:1) gave **11** (0.1 g, 6%) as a colourless oil. $R_f 0.1$ (hexanes-EtOAc, 1:1), $R_f 0.38$ (EtOAc); $[\alpha]_D^{25}$ +43.0 (*c* 0.74 in CHCl₃), (lit.,⁸⁸ +47, *c* 3.7 in CHCl₃); v_{max} (CHCl₃)/cm⁻¹ 3578m br (hydrogen bonded OH in 5-membered ring), 2905m (CH), 2850m (OC-H), 1954w, 1882w, 1810w, 1730w (overtone, comb, Ph), 1602w, 1496w (C-C, Ar), 1454m sharp (CH₂), 1355s, 1141s, 1092vs, 1048vs; δ_H (CDCl₃) 3.39 (3H, s, -OCH₃), 3.69-3.73 (2H, m, $J_{5,6a}$ 2.4, 5-H and 6a-H), 3.78 (1H, dd, $J_{2,3}$ 9.8 and $J_{2,1}$ 3.1, 2-H), 3.82 (1H, dd, $J_{3,2}$ 9.8 and $J_{3,4}$ 3.1, 3-H), 3.85 (1H, dd, $J_{6b,5}$ and $J_{6b,5}$ 7.0, 6b-H), 4.0 (1H, dd, $J_{4,3}$ 3.1 and $J_{4,5}$ 2.0, 4-H), 4.68 and 4.83 (AB, each 1H, d, $J_{A,B}$ 12.5, *CH_AH_B*Ph), 4.71 (1H, d, $J_{1,2}$ 3.1, 1-H), 4.71 and 4.83 (AB, each 1H, d, $J_{A,B}$ 11.7, *CH_AH_B*Ph), 7.29-7.39 (10H, m, 2xPh); δ_C (CDCl₃) 55.4 (CH₃, -OCH₃), 63.1 (CH₂, C-6), 68.8 (CH, C-5), 69.2 (CH, C-4), 72.9, 73.5 (each CH₂, CH₂Ph), 75.5 (CH, C-3), 77.3 (CH, C-2), 98.6 (CH, C-1), 127.8, 127.9, 128.0, 128.1, 128.4, 128.6 (all CH, 2xPh), 138.0, 138.2 (each C, 2xPh); HRMS (ESI): found (M+Na)⁺ 397.1632. C₂₁H₂₆O₆ requires (M+Na)⁺ 397.1627.

Methyl 4,6-O-(R)-benzylidene-α-D-glucopyranoside 13

This compound was prepared using the same procedure as **5** (see above) from methyl- α -D-glucopyranoside (8.0 g; 41 mmol) to get a yellow solid, which was recrystallised from EtOAc to produce **13** as a colourless lath (10.6 g, 92%). R_f 0.6 (EtOAc-MeOH, 21:4); mp 165-166 °C (crystallised from H₂O), (lit.,⁸³ 165.4-166.8 °C, lit.,⁸⁹ 156-158 °C); [α]_D²⁵ +114.1 (*c* 1.06, in CHCl₃), (lit.,⁸⁹ +111.5, *c* 2 in CHCl₃); *v*_{max} (CHCl₃)/cm⁻¹ 3592m sharp (free OH), 2937m (C-H), 2842m (OC-H), 1954w, 1882w, 1810, 1730w (overtone, comb, Ar), 1602w, 1456m sharp (CH₂), 1141m, 1067vs, 1044vs, 993vs (lit.,⁹⁰ 3574, 3462, 3005, 2941, 1467); $\delta_{\rm H}$ (CDCl₃) 2.72 and 3.11 (each 1H, br. s, O*H*-2 and O*H*-3), 3.48 (3H, s, -OC*H*₃), 3.51 (1H, app. t, *J*_{4,3} ~ *J*_{4,5} 9.2, 4-H), 3.65 (1H, dd, *J*_{2,3} 9.2 and *J*_{2,1} 4, 2-H), 3.76 (1H, dd, *J*_{66,5} 10 and *J*_{66,5} 9.6, 6a-H), 3.83 (1H, ddd, *J*_{5,64} 10, *J*_{5,4} 9.2 and *J*_{5,65} 3.6, 5-H), 3.95 (1H, app. t, *J*_{3,4} ~ *J*_{3,2} 9.2, 3-H), 4.31 (1H, dd, *J*_{6b,6a} 9.6 and *J*_{6b,5} 3.6, 6b-H), 4.82 (1H, d, *J*_{1,2} 4, 1-H), 5.55 (1H, s, C*H*Ph), 7.36-7.40 (3H, m, *meta*- and *para*-Ph), 7.48-7.52 (2H, m, *ortho*-Ph); $\delta_{\rm C}$ (CDCl₃) 55.3 (CH₃, -OCH₃), 62.0 (CH, C-5), 68.6 (CH₂, C-6), 71.5 (CH, C-3), 72.6 (CH, C-2), 80.6 (CH, C-4), 99.4 (CH, C-1), 101.6 (CH, *C*HPh), 126.0, 128.0, 129.0 (all CH, Ph), 136.7 (C, Ph); HRMS (ESI): found (M+Na)⁺ 305.0983. C₁₄H₁₈O₆ requires (M+Na)⁺ 305.1001.

Methyl 2,3-di-O-benzyl-4,6-O-(R)-benzylidene-α-D-glucopyranoside 14

This compound was prepared using the same procedure as **8** (see above) from **13** (6.0 g; 21 mmol). The solid obtained was crystallised from MeOH to give **14** as a white solid (8.3 g, 84%). R_f 0.39 (hexanes-EtOAc, 3:2); mp 94-95 °C (crystallised from MeOH), (lit.⁹¹ 93 °C (crystallised from aq-EtOH)); $[\alpha]_D^{25}$ –29.6 (*c* 1.31 in CHCl₃), (lit.⁹² –30, *c* 0.25 in CHCl₃); v_{max} (CHCl₃)/cm⁻¹ 2934m (C-H), 2869 (OC-H), 1954w, 1883w, 1811w, 1730w (overtone, comb, Ar), 1602w, 1496w (C-C, Ar), 1454m sharp (CH₂), 1369s, 1087vs, 1053vs, 995vs; δ_H (CDCl₃) 3.42 (3H, s, -OCH₃), 3.57 (1H, dd, $J_{2,3}$ 9.2 and $J_{2,1}$ 3.6, 2-H), 3.62 (1H, app. t, $J_{4,3} \sim J_{4,5}$ 9.2, 4-H), 3.72 (1H, app. t, $J_{6a,6b}$ 10 and $J_{5,6b}$ 4.8, 5-H), 4.06 (1H, app. t, $J_{3,2} \sim J_{3,4}$ 9.2, 3-H), 4.28 (1 H, dd, $J_{6b,6a}$ 10 and $J_{6b,5}$ 4.8, 6b-H), 4.61 (1H, d, $J_{1,2}$ 3.6, 1-H), 4.71 and 4.87 (AB, each 1H, d, $J_{A,B}$ 12.0, CH_AH_B Ph), 4.85 and 4.93 (AB, each 1H, d, $J_{A,B}$ 11.4, CH_AH_B Ph), 5.56 (1H, s, CHPh), 7.30-7.41 (3H, m, *meta*- and *para*-Ph), 7.49-7.51 (2H, m, *ortho*-Ph); δ_C (CDCl₃) 55.8 (CH₃, -OCH₃), 62.7 (CH, C-5), 69.5 (CH₂, C-6), 74.2, 75.8 (each CH₂, CH₂Ph), 79.0 (CH, C-3), 79.6 (CH, C-2), 82.6 (CH, C-4), 99.7 (CH, C-1), 101.7 (CH, CHPh), 126.5, 128.0, 128.4, 128.5, 128.6, 128.7, 128.8, 128.9, 129.4 (all CH, 3xPh), 137.8, 138.6, 139.1 (each C, 3xPh); HRMS (ESI): found (M+Na)⁺ 485.1929. C₂₈H₃₀O₆ requires (M+Na)⁺ 485.1940.

Methyl 2,3,6-tri-O-benzyl-a-D-glucopyranoside 15

This compound was prepared using the same procedure as **9** (see above) from **14** (6.0 g; 13 mmol). The resulted syrup was purified by column chromatography on silica gel eluting with pet. ether-EtOAc (from 99:1 to 2:3), to yield **15** (5.0 g; 10.8 mmol; 83%). $R_f 0.53$ (hexanes-EtOAc, 1:1); $[\alpha]_D^{25}$ +15.1 (*c* 1.04 in CHCl₃), (lit.,⁸⁸ +14, *c* 1.1 in CHCl₃); v_{max} (CHCl₃)/cm⁻¹ 3603m (free OH), 3500sh,w (hydrogen bonded OH in 6-membered ring), 2915s (CH), 2870s (OC-H), 1952w, 1882w, 1815w, ~1730w (overtone, comb, Ph), 1602m, 1496w (C-C, Ar), 1454m sharp (CH₂), 1363m, 1090vs, 1054vs; δ_H (CDCl₃) 2.37 (1H, br. s, 4-OH), 3.40 (3H, s, -OCH₃), 3.55 (1H, dd, $J_{2,3}$ 9.6 and $J_{2,1}$ 3.6, 2-H), 3.6 (1H, app. t, $J_{4,3} \sim J_{4,5}$ 9.2, 4-H), 3.68-3.74 (3H, m, 5-H, 6a-H and 6b-H), 3.80 (1H, app. t, $J_{3,2}$ 9.6 and $J_{3,4}$ 9.2, 3-H), 4.55 and 4.60 (AB, each 1H, d, $J_{A,B}$ 12.2, CH_AH_BPh), 4.64 (1H, d, $J_{1,2}$ 3.6, 1-H), 4.67 and 4.79 (AB, each 1H, d, $J_{A,B}$ 12.1, CH_AH_BPh), 4.75 and 5.02 (AB, each 1H, d, $J_{A,B}$ 11.4, CH_AH_BPh), 7.30-7.39 (15H, m, 3xPh); δ_C (CDCl₃) 55.2 (CH₃, -OCH₃), 69.3 (CH₂, C-6), 69.8 (CH, C-5), 70.6 (CH, C-4), 73.1, 73.5, 75.4 (each CH₂, 3xCH₂Ph), 79.5 (CH, C-2), 81.4 (CH, C-3), 98.1 (CH, C-1), 127.5_4, 127.5_6, 127.8, 127.8_8, 127.9_3, 128.1, 128.3, 128.4, 128.5 (all CH, 3xPh), 137.9, 138.0, 138.7 (each C, 3xPh); HRMS (ESI): found (M+Na)⁺ 487.2075. C₂₈H₃₂O₆ requires (M+Na)⁺ 487.2097.

Methyl 2,3,4-tri-O-benzyl-a-D-glucopyranoside 16

Compound **16** was a by-product in the synthesis of **15**, It was separated by column chromatography on silica gel eluting with pet. ether-EtOAc (from 99:1 to 2:3) as colourless oil (168 mg; 0.45 mmol; 3.5%). R_f 0.38 (hexanes-EtOAc, 1:1); mp 43-44 °C (crystallised from H₂O), (lit.,⁹³ 53-54 °C); δ_H (CDCl₃) 2.18 (1H, s, 6-OH), 3.38 (3H, s, -OCH₃), 3.51 (1H, dd, $J_{2,3}$ 9.6 and $J_{2,1}$ 3.6, 2-H), 3.53 (1H, obscured dd, $J_{4,5}$ 9.6 and $J_{4,3}$ 8.8, 4-H), 3.66 (1H, obscured ddd, $J_{5,4}$ 9.6, $J_{5,6a}$ 4 and $J_{5,6b}$ 2.8, 5-H), 3.70 (1H, obscured dd, $J_{6a,6b}$ 11.6 and $J_{6a,5}$ 4, 6a-H), 3.78 (1H, dd, $J_{6b,6a}$ 11.6 and $J_{6b,5}$ 2.8, 6b-H), 4.02 (1H, app. t, $J_{3,2}$ 9.6 and $J_{3,4}$ 8.8, 3-H), 4.57 (1H, d, $J_{1,2}$ 3.6, 1-H), 4.65 and 5.00 (AB, each 1H, d, $J_{A,B}$ 10.9, CH_AH_BPh), 4.67 and 4.81 (AB, each 1H, d, $J_{A,B}$ 12.1, CH_AH_BPh), 4.85 and 4.89 (AB, each 1H, d, $J_{A,B}$ 11.1, CH_AH_BPh), 7.29-7.38 (15H, m, 3xPh); δ_C (CDCl₃) 55.2 (-OCH₃), 61.9 (CH₂, C-6), 70.6 (CH, C-5), 73.5, 75.1, 75.8 (each CH₂, 3xCH₂Ph), 77.3 (CH, C-4), 79.9 (CH, C-2), 82.0 (CH, C-3), 98.2 (CH, C-1), 127.6, 127.89, 127.97, 128.0, 128.1, 128.41, 128.47, 128.48 (all CH, 3xPh), 138.1, 138.7 (each C, 3xPh); HRMS (ESI): found (M+Na)⁺ 487.2101. C₂₈H₃₂O₆ requires (M+Na)⁺ 487.2097.

Methyl 2,3-di-O-benzyl-a-D-glucopyranoside 17

Compound **17** was a by-product in the synthesis of **15**. It was separated as white solid (323 mg, 5.4%) by column chromatography (see above) followed by crystallisation from water. $R_f 0.22$ (EtOAc-hexanes, 1:1); HRMS (ESI): found (M+Na)⁺ 397.1602, $C_{21}H_{26}O_6$ requires (M+Na)⁺ 397.1627.

Methyl 2,3,6-tri-O-benzyl-a-D-xylo-4-hexulopyranoside 18

Dimethyl sulfoxide (DMSO) (1.08 ml; 15.1 mmol) was added to freshly distilled DCM (30 ml) and the solution was cooled to -78 °C. Trifluoroacetic anhydride (TFAA) (1.52 ml; 10.8 mmol) was added dropwise to the cooled solution over 5 min period and allowed to react for 15 min. Methyl 2,3,6-tri-*O*-benzyl- α -D-glucopyranoside **15** (2.08 g; 4.48 mmol) dissolved in dry DCM (30 ml) was then added

dropwise over a 10 min period. The resulting solution was stirred for 8 h allowing the temperature to rise to -40 °C whereupon Et₃N (2.12 ml; 15.1 mmol) was added. The reaction continued for other 13 h at rt before the organic phase was washed with water (40 ml). The organic layer was separated and the aqueous phase was extracted with DCM (3 x 40 ml). The combined organic phases were dried with MgSO₄, filtered and concentrated *in vacuo*. The resulting syrup was purified by silica gel column chromatography eluting with pet. ether-EtOAc (from 99:1 to 2:3). This yielded **18** as a clear oil (1.65 g, 80 %). R_f 0.44 (hexanes-EtOAc, 7:3); $[a]_D^{25}$ +77.5 (*c* 0.97 in CHCl₃), (lit.,⁷⁷ +62°, *c* 1 in CHCl₃); *v*_{max} (CHCl₃)/cm⁻¹ 2933s (CH), 2872s (OC-H), 1950w, 1880w, 1810w, 1730w (overtone, comb, Ph), 1736vs (C=O), 1496w (C-C, Ar), 1454m sharp (CH₂), 1367m, 1087vs, 1052vs; δ_H (CDCl₃) 3.50 (3H, s, -OCH₃), 3.68 (1H, dd, *J*_{6a,6b} 10.8 and *J*_{6a,5} 6.3, 6a-H), 3.81 (1H, dd, *J*_{2,3} 10 and *J*_{2,1} 3.5, 2-H), 3.91 (1H, dd, *J*_{6b,6a} 10.8 and *J*_{6b,5} 3.5, 6b-H), 4.29 (1H, dd, *J*_{5,6a} 6.3 and *J*_{5,6b} 3.5, 5-H), 4.44 (1H, d, *J*_{3,2} 10, 3-H), 4.56 and 4.62 (AB, each 1H, d, *J*_{4,B} 12, C*H*_A*H*_BPh), 4.68 and 4.87 (AB, each 1H, d, *J*_{A,B} 12.1, C*H*_A*H*_BPh), 4.69 and 4.97 (AB, each 1H, d, *J*_{A,B} 11.4, C*H*_A*H*_BPh), 4.81 (1H, d, *J*_{1,2} 3.5, 1-H), 7.28-7.38 (3H, m, *meta*- and *para*-Ph), 7.41-7.45 (2H, m, *ortho*-Ph); δ_C (CDCl₃) 56.1 (CH₃, -OCH₃), 67.6 (CH₂, C-6), 72.7 (CH, C-5), 73.7, 74.0, 74.4 (each CH₂, 3*x*CH₂Ph), 80.0 (CH, C-2), 82.6 (CH, C-3), 98.4 (CH, C-1), 127.7, 127.8, 127.9, 128.0, 128.1, 128.35, 128.39, 128.5 (all CH, 3xPh), 137.7, 137.76, 137.82 (each C, 3xPh), 202.0 (C=O); HRMS (ESI): found (M+Na)⁺ 485.1965. C₂₈H₃₀O₆ requires (M+Na)⁺ 485.1940.

Enzyme Assay.¹⁵⁻¹⁸

The reactions were carried out in 100 mM MOPS buffer (pH 8.0), with fresh 20 mM sodium dithionite. The final volume of each reaction mixture was 30 μ L. Initially, the enzyme concentration was adjusted for each different mutant to give a reasonable conversion (20-40%) within 2-3 min at 100 μ M concentration (for example, wt UGM was used at a final concentration of 0.4 μ M). Subsequent reactions, with varying substrate concentrations (5 μ M to 5 mM) were carried out with the same enzyme concentration for all reactions. The time of each reaction was adjusted to have % conversion values between 30% and 40%. The reactions were quenched by the addition of 50 μ L of *n*-butanol. The aqueous layer was removed and injected onto a Waters HPLC system. The column used was a Gemini 5 μ (C-18) column (Phenomenex), pre-equilibrated with 50 mM triethylammonium acetate (pH 6.9), 1.5% acetonitirile. The samples were eluted isocratically and absorbance readings were carried out at 262 nm.

- 1. H. Hakamata, T. Nishio and T. Oku, *Carbohydrate Res.*, 2000, **324**, 107-115.
- 2. K. Yoza, N. Amanokura, Y. Ono, T. Akao, H. Shinmori, M. Takeuchi, S. Shinkai and D. N. Reinhoudt, *Chem. Eur. J.*, 1999, **5**, 2722-2729.
- 3. J. M. Frechet and H. H. Baer, Can. J. Chem., 1975, 53, 670-679.
- 4. E. Attolino, G. Catelani and F. D'Andrea, Eur. J. Org. Chem., 2006, 5279-5292.
- 5. H. Qin and T. B. Grindley, J. Carbohydr. Chem., 1994, 13, 475-490.
- 6. M. EK, P. J. Garegg, H. Hultberg and S. Oscarson, J. Carbohydr. Chem., 1983, 2, 305-311.
- 7. D. J. Chambers, G. R. Evans and A. J. Fairbanks, *Tetrahedron*, 2005, **61**, 7184-7192.
- 8. J. M. Mallet, G. Meyer, F. Yvelin, A. Justand, C. Amatore and P. Sinaÿ, *Carbohydrate Research*, 1993, 224, 237-246.
- 9. B. H. Lipshutz, S. L. Nguyen and T. R. Elworthy, *Tetrahedron*, 1988, 44, 3355-3364.
- 10. I. Kitagawa, M. Yashikawa, K. Kobayashi, Y. Imakura, K. S. Im and Y. Ikenishi, *Chem. Pharm. Bull.*, 1980, **28**, 296-300.
- 11. D. J. Bell and J. Lorber, J. Chem. Soc., 1940, 453-455.
- 12. A. G. M. Barret, A. W. Read and D. H. R. Barton, J. Chem. Soc., Perkin Trans. 1, 1980, 2184-2190.
- 13. P. J. Garegg, T. Iversen and S. Oscarson, *Carbohydrate Res.*, 1976, **50**, C12-C14.
- 14. R. Preuss, K. Jung and R. R. Schmidt, *Liebigs Ann. Chem.*, 1992, 377-382.
- 15. D. A. R. Sanders, A. G. Staines, S. A. McMahon, M. R. McNeil, C. Whitfield and J. H. Naismith, *Nat. Struct. Biol.*, 2001, **8**, 858-863.
- 16. Q. Zhang and H. Liu, J. Am. Chem. Soc., 2001, 123, 6756-6766.
- 17. M. Soltero-Higgin, E. E. Carlson, J. H. Phillips and L. L. Kiessling, J. Am. Chem. Soc., 2004, **126**, 10532-10533.
- 18. J. M. Chad, K. P. Sarathy, T. D. Gruber, E. Addala, L. L. Kiessling and D. A. R. Sanders, *Biochemistry*, 2007, 46, 6723-6732.

	но								Current D NAME EXPNO PROCNO F2 - Acqu Date_ Time	lata Parameters tjf22_dept 10 1 jisition Parameters 20040419 12.57
	HO								INSTRUM PROBHD	spect 5 mm QNP 1H/13
_	(0)		63	88 38 41 41	74				PULPROG	dept135
udd	(2)		. 66	333. 75.	01.				SOLVENT	. D20
					Ĩ				NS	256
									DS SWH	4 23980.814 Hz
					1				FIDRES	0.365918 Hz
									AQ	1.3664756 sec
									RG DW	20.850 usec
									DE	6.00 usec
									TE	294.7 K
									CNS12	2 0000000 sec
									d2	0.00344828 sec
									d12	0.00002000 sec
									DELTA	0.00001034 sec
historia and a Market Star	ويطوله المرابط أوار والمراجع والمتشاط المراجع	n.). J. Horadold at Maarinski val La, Alkasa	المرابل والقرية القريمان والارار	ولياليان والبار اللي بالأرامط مرتبي أ	ارية عادان الالبان الالبانيل المقدين	in which she ad which he hade softwhe hilds.	ويعرفهم والمراد المراجع والمراجع والمراجع والمراجع والمراجع والمرد	11,15 bit	MCWRK	0.01500000 sec
and ball during the										
	and the second	and which the state of the base of the state		well a she was a second of the second s	et al fonde de la carde la car	a a state of the s	al da la superiore de la companya d	ar tradi	======== NUC 1	CHANNEL f1 ======= 130
1 .1		.1 1 1		1 11 1.1		h. I .	·I · I · · · · I ·	h.	P1	8.12 usec
									p2	16.24 usec
									PL1	0.00 dB
									5501	100.0220230 MHZ
									*******	CHANNEL f2 ======
									CPDPRG2	waltz16
									P3	10.50 usec
									p4	21.00 usec
									PCPD2	80.00 usec
									PL2 PL12	18.00 dB
									SF02	400.1316005 MHz
									F2 - Proc	essing parameters
									SI	32768
									SF	100.6127690 MHz
									WDW	EM
									LB	1.00 Hz
									GB	0
									PC	1.40
									1D NMR pl	ot parameters
									CX	20.00 cm
									CY F1P	9.00 cm 160 000 nom
					1				Fi	16098.04 Hz
									F2P	0.000 ppm
									F2 PPMCM	0.00 Hz 8 00000 nnm/cm
ppm	140	120	100	80	60	40	20	1	HZCM	804.90216 Hz/cm

E		.4004	.0527 .1312 .0681	.0938 .3028	.0440	но от он	Current Da NAME EXPNO PROCNO	ata Parameters tjf56f4to10 14 1
α.			75. 74. 74.		-34	^{он} (4)	F2 - Acqu Date_ Time	isition Parameters 20040911 14.57
			Y				INSTRUM	spect
							PULPROG	zapa30
							TD	65536
							SOLVENT	D20
							NS	1024
							DS	4
							SWH	23980.814 Hz
							FIDRES	0.365918 Hz
							AQ	1.3664756 sec
							HG	128
							DW	20.850 USEC
							UE	201 5 K
								2 0000000 sec
							d11	0.03000000 sec
							DELTA	1.89999998 sec
							MCREST	0.00000000 sec
							MCWRK	0.01500000 sec
							(CHANNEL f1 =======
							NUC 1	1 3C
							P1	8.12 usec
							PL1	0.00 dB
							SF01	100.6228298 MHz
							======= (HANNEL f2 ======
							CPDPRG2	waltz16
							NUC2	1H
							PCPD2	80.00 usec
							PL2	0.00 dB
							PL12	18.00 dB
							PL13	21.00 dB
							5FU2	400.1316005 MHZ
							F2 - Proce	ssing parameters
							SI	32768
							SF	100.612/690 MHz
							WUW CCD	EM
							220	1 00 117
			1				CB CB	1.00 Π2
				1			PC	1 40
				1			10	1.40
							1D NMR plo	t parameters
							CX	20.00 cm
							CY	U.00 cm
						10 00 - 10 V	F 1 P	200.000 ppm
		the second states of the second	WARRANT PROVIDENCE	and the second second			F 1	20122.55 HZ
			L				F 2 P	0.000 ppm
							DDMCM	10 0000 nnm/cm
······································						1 1 1 1	HZCM	1006 12769 Hz/cm
nom 180 160 140	120 100	5	a'n	60	40	20		
ppm 100 100 140 .	1	C.	50	00	-0	6V		

Current	Data Parameters
NAME	tjf56f4to10
EXPNO	11
PROCNO	1

PROCINO	1	
F2 - Acq	uisition Parame	ters
Date_	20040911	
Time	13.37	
INSTRUM	spect	
PROBHD	5 mm QNP 1H/13	
PUL PROG	dept135	
TD	65536	
SOLVENT	D20	
NS	256	
DS	4	
SWH	23980 814	Hz
FIDRES	0.365918	Hz
40	1 3664756	SPC
RG	16384	000
nu	20,850	USPC
DE	E0.030	USPC
TE	20.00	K
CNETO	145 000000	IX .
CNOIL	2 0000000	6.0.6
U1 #2	2.00000000	SEL
02	0.00344626	SEL
012	0.00002000	SEL
DELTA	0.00001034	Sec
MCHESI	0.00000000	Sec
MCWHK	0.01500000	Sec
	CHANNEL f1 ===:	
NUC1	130	
P1	8.12	usec
n2	16 24	USEC
PL 1	0 00	dB
SE01	100.6228298	MHz
51 01	100.000000	
	CHANNEL f2 ====	
CPDPRG2	waltz16	
NUC2	1H	
P3	10.50	usec
p 4	21.00	usec
PCPD2	80.00	usec
PL2	0.00	dB
PL12	18.00	dB
SF02	400.1316005	MHZ
F2 - Pro	ressing paramete	ers
SI	32768	
SE	100.6127690	MHz
WDW	FM	
SSR	0	
L R	1 00	Hz
GB	1.00	. 14
00	1 10	

PC	1.40	
1D NMR plot	parameters	
CX	20.00	cm
CY	9.00	CM
F1P	215.000	ppm
F1	21631.75	Hz
F2P	-5.000	ppm
F2	-503.06	Hz
PPMCM	11.00000	ppm/cm
HZCM	1106.74048	Hz/cm

(4)

 -92.39

ppm

Structure	NMR Solvent	1H	2H	3H	4H	5H	6H	6'H	others	[α] _D	Ref.
	500	5.46	3.82	4.45,	3.64	3.7	3.4	3.46		87	our
	D2O	br. d	ddd	br. d	br. d	br. t	dd	dd		(c 0.85, water)	data
		J _{1,2} 2.5	J _{2,3} 1.8	J ~ 1.8	$J_{4,5}0$	J 5.6	J _{6,6'} 11.9	J _{5,6'} 5.3			
о́н					⁴ J _{2,4} 1.5		J _{5,6} 6				
HO, O	400	5.42	3.84	4.6	4.7		4.05-4.15				1
ОН	D ₂ O/CD ₃ OD	br. s	d	dd	dd		m				
о́н	6 to 1		J _{2,3} 2.5	J _{3,4} 3.4	J _{4,5} 1.2		(3H)				
	500	5.48	3.83	3.54,	4.59	3.82	3.34	3.43	4.5-4.58	57.4	our
BnO O	CDCI ₃	br. d	ddd	br. d	br. d	dd	dd	dd	m	(c 1.12, CDCI ₃)	data
OBn		J _{1,2} 2.3	J _{2,3} 2.3	J ~ 1.2	J _{4,5} 0	J _{5,6} 8.5	J _{6,6'} 9.4		6H (CH2-Bn)		
ÓBn					⁴ J _{2,4} 1.5	J _{5,6'} 5					
	400	5.46	3.84	3.55	4.59	3.82	3.35	3.43	4.46-4.62	57.6	3
	CDCI ₃	d	d	d	d	q	q	q		(c 1.0, CDCl ₃)	
		J _{1,2} 2.29	J _{2,3} 1.22	J _{3,4} 0	J _{4,5} 1.52	J _{5,6} 7.93	J _{6,6'} 9.46		6H (CH2-Bn)		
ÓBn											
0	400	5.47	3.85	3.55	4.59	3.82	3.35	3.43	4.46-4.62	57	2
BnO	CDCI ₃	d	br s	d	d	m	q	q	m	(c 1.0, CDCl ₃)	
		J _{1,2} 2.5							6H (CH2-Bn)		
OBn											
	250	5.47	3.75-3.86	4.367-4.62	3.53	3.75-3.86	3.	4	4.37-4.62		13
		d	m*	m**	d	m*	d	d	m**		
OBn		J _{1,2} 2.4			J _{3,4} 1.2		(2)	H)	6H (CH2-Bn)		

¹H Chemical shifts (ppm), J (Hz) and multiplicity of 1,4-anhydrohexopyranoses

Structure	NMR Solvent	1H	2H	3H	4H	5H	6H	6'H	others	[α] _D	Ref.
BnO OBn	300 CDCl ₃	5.95 d J _{1,2} 2.4	5.12 m	4.82 d J 1.5	5.17 d J 1.5	4.09 dd J _{5,6} 7.2 J _{5,6'} 5.7	3.42 dd J _{6,6'} 9.6	3.48 dd	4.5-4.58 m 4H (CH2-Bn)	159 (c 1.8, CDCl ₃)	4
BzO OBz	100 100 C ₅ D ₅ N	6.27 d J _{1,2} 2.4	5.42 m J _{2,3} 1.5	5.53 d J _{3,4} 0	4.93 d J _{4,5} 0 ⁴ J _{2,4} 1.5		4.5 s (3H)			117 (c 1, CDCl ₃)	5
BzO OAc OBz	100 C₅D₅N	6 d J _{1,2} 2.5	5.22 m J _{2,3} 1.5	5.27 d J _{3,4} 0	4.93 d J _{4,5} 0 ⁴ J _{2,4} 1.5		4.1 m (3H)			214 (c 1, CDCl ₃)	5
	100 C ₆ D ₆	5.59 d J _{1,2} 2.4	4.63 m J _{2,3} 1.4	4.66 d J _{3,4} 0	4.38 d ⁴ J _{2,4} 1.4	3.7 t J _{5,6} 5.6 J _{5,6'} 5.6	3.82 q J _{6,6'} 10.3	4 q	1.64		6
BzO OAc OBz	? C ₅ D ₅ N	4 d J _{1,2} 2.5	4.78 quintet J _{2,3} 1.5	4.73 d	5.09 d ⁴ J _{2,4} 1.4		5.9 m (3H)				7
BzO O OBz	100 C ₅ D ₅ N	5.97 d J _{1,2} 2.5	5.22 m	4.83 J _{4,5} 0 1.4 (2H	d ⁴ J _{2,4} 5 1)	4.03 t J _{5,6} 5.5 J _{5,6'} 5.5	3.6 c (21	54 I H)		235 (c 1, CDCl ₃)	5

Structure	NMR Solvent	1H	2H	3H	4H	5H	6H	6'H	others	[α] _D	Ref.
	100	6.03	5.21	5.28	4.84	4.1	3.3	24		239	5
BzO, O	$C_5 D_5 N$	d	m	d	d	t		4		(c 1, CDCl ₃)	
N ₃		J _{1,2} 2.5	J _{2,3} 1.5	$J_{3,4}0$	J _{4,5} 0	J _{5,6} 6		4			
OBz					⁴ J _{2,4} 1.5	J _{5,6'} 6	(2)	H)			
	400	5.67	2.17/1.78	3.84	4.69	3.57	3.37	3.32	4.54-4.51	33	8
BnO O	CDCI ₃	d	dd/ddd	dd	br. s	dd	dd	dd	4H (CH2-Bn)	(c 1.05, CDCl ₃)	
OBn O		J _{1,2} 2.5 J _{1,2'} 0.5	J _{2,2'} 13.2	J _{2',3} 6.6 J _{2,3} 2	⁴ J _{2,4} 1.4	J _{5,6} 7.6 J _{5,6'} 5.6	J _{6,6'} 9.2				
0	400	5.79	1.95/2.44	5.15	4.79	3.83	3.95	4.05	1.23	34	9
BzO	CDCI ₃	br d	dddd/ddd	dd	S	dd	dd	dd	3xCH3	(c 1.18, CDCl ₃)	
OPiv		J _{1,2} 2.6	J _{2,2'} 13.6	J _{2',3} 7	⁴ J _{2,4} 1.4	J _{5,6} 6.8	J _{6,6'} 11.2		7.44-8.04		
-		J _{1,2'} 0.5		J _{2,3} 2.2	,	J _{5,6'} 5.7					
OBn	400	5.36	3.61	3.91	4.55	4.04	3.75	3.8	3.34-4.51	-9.7	3
OBn	CDCI ₃	s	d	S	q	quintet	q	q		(c 1.0, CDCl ₃)	
		J _{1,2} 0	J _{2,3} 2.1	J _{3,4} 5	J _{4 5} 3.9	J _{5.6} 7.63	J _{6.6'} 10.5				
BnO O					J _{4,6} 7.6	J _{5,6'} 4.27					
	000	5.44			J _{4,6'} 4.3					40.5	10
OBn OBn	200	5.44								-10.5	10
	CDCl ₃	S								(c 1.18, CDCl ₃)	
BnO O											

Structure	NMR Solvent	1H	2H	3H	4H	5H	6H	6'H	others	[α] _D	Ref.
OBn	300	5.46	4.74	4.93	4.81	4.19	3.7	3.82	4.54, 4.65	-9.5	11
OPiv	CDCl ₃	s	d	m	dd	m	dd	dd		(c 1.0, CDCl ₃)	
PivO		J _{1,2} 0	J _{2,3} 2.5	J _{3,4} 5	J _{4,5} 3	J _{5,6} 3.5 J _{5.6'} 8	J _{6,6'} 11				
	200	E 4	4 7	2.05	4 5 4	Fanda	Favo		4 50 4 74	20.2	10
OBn	300	5.4	4.7	3.85	4.54	Sendo	Sexo	Х	4.50, 4.71	-30.3	12
	CDCI ₃	d	d	m	m	4.18	3.44		1.2	(c 1.0, CDCl ₃)	
PivO	1,4- anhydropento	J _{1,4} 0.9	J _{2,3} 1.6	J _{3,4} 4.9	J _{4,5endo}	d	m 				
0	pyranose				0	6.6	2.4				

1. A. Caravano, P. Sinay and S. P. Vincent, Bioorg. Med. Chem. Lett., 2006, 16, 1123-1125.

- 2. P. M. Aberg and B. Ernst, Acta. Chem. Scand., 1994, 48, 228-233.
- 3. T. Uryu, C. Yamaguchi, K. Morikawa, K. Terui, T. Kanai and K. Matsuzaki, Macromolecules, 1985, 18, 599-605.
- 4. T. Nokami, D. B. Werz and P. H. Seeberger, Helv. Chim. Acta, 2005, 88, 2823-2831.
- 5. C. Bullock, L. Hough and A. C. Richardson, Carbohydr. Res., 1990, 197, 131-138.

6. P. Koll, Chem. Ber., 1973, 106, 3559-3564.

- 7. C. Bullock, L. Hough and A. C. Richardson, Chem. Commun., 1971, 1276-1277.
- 8. V. Jaouen, A. Jegou, L. Lemee and A. Veyrieres, Tetrahedron, 1999, 55, 9245-9260.
- 9. V. Jaouen, A. Jegou and A. Veyrieres, Synlett., 1996, 12, 1218-1220.
- 10. T. Sato, H. Nakamura and Y. Ohno, Carbohydr. Res., 1990, 199, 31-35.
- 11. H. Kamitakahara and F. Nakatsubo, Macromolecules, 1996, 29, 1119-1122.
- 12. M. Hori and F. Nakatsubo, Carbohydr. Res., 1998, 309, 281-286.
- 13. L. K. Shi-Shun, J. M. Mallet, M. Moreau and P. Sinay, Tetrahedron, 1999, 55, 14043-14068.

¹³C chemical shifts (ppm) of 1,4-anhydrohexopyranoses

Structure	NMR Solvent	C1	C2	C3	C4	C5	C6	others	Ref.
но о он он	125 D ₂ O	99.6	81.2	83.9	, 76.5	75.4	61.7		our data
но о он он он	100 D ₂ O/CD ₃ OD 6 to 1	107.4	81	82.1 d	79.6	81.3	61.7		1
BnO OBn OBn	125 CDCl ₃	98.7	87.3	82.9	, 81.4	74.3	69.9	71.2, 72.4, 73.6 3 (CH2-Bn)	our data
BnO OBn OBn	100 CDCl3	98.7		74.2, 81.3	, 82.8, 87.2		69.8	71.1, 72.3, 73.5 3 (CH2-Bn)	2
BnO O OBn	100 CDCl ₃	99.97	41.91	79.9	93, 77.45, 7	3.32	73.51	70.96, 70.12 2 (CH2-Bn)	8
BnO OBn OBn	75 CDCl ₃ no asignment	98.4		81.6, 8	1.3, 77.2		69.6	73.6 , 74.4 2 (CH2-Bn)	4

Structure	NMR Solvent	C1	C2	C3	C4	C5	C6	others	Ref.
OBn OBn BnO O	50 CDCI ₃ * not assigned	103.1	86.4	, 84.8	78.3	76.05*	69.3	73.21, 73.17, 71.7 3 (CH2-Bn)	5
OPiv OBn OPiv OBn PivO O	75 CDCl₃	103.3							11
OBn OBn O PivO O	75 CDCl ₃	102.2		82.2, 7	8.5, 75.8, 72	2.6, 62.8			12

1. A. Caravano, P. Sinay and S. P. Vincent, Bioorg. Med. Chem. Lett., 2006, 16, 1123-1125.

2. P. M. Aberg and B. Ernst, Acta. Chem. Scand., 1994, 48, 228-233.

4. T. Nokami, D. B. Werz and P. H. Seeberger, Helv. Chim. Acta , 2005, 88, 2823-2831.

5. C. Bullock, L. Hough and A. C. Richardson, Carbohydr. Res., 1990, 197, 131-138.

8. V. Jaouen, A. Jegou, L. Lemee and A. Veyrieres, Tetrahedron, 1999, 55, 9245-9260.

11. H. Kamitakahara and F. Nakatsubo, Macromolecules, 1996, 29, 1119-1122.

12. M. Hori and F. Nakatsubo, Carbohydr. Res., 1998, 309, 281-286.

D-Galactose	1-δ _H	Multiplicity	J (Hz)		
α-Galp	5.11	d	3.6		
β-Galp	4.43	d	7.6		
α-Galf	5.13	d	4.8		
β-Gal <i>f</i>	5.06	d	3.6		
O-Met-D-galactoside	1- δ _H	Multiplicity	J (Hz)	<i>O</i> Me-δ _H	Multiplicity
α-Galp	4.75	d	2.9	3.30	S
β-Galp	4.23	d	7.9	3.49	S
α-Galf	4.88	d	3.8	3.44	S
β-Galf	4.05	d	1.8	3.43	S

Selected chemical shifts, *J* (Hz) and multiplicity in D2O (¹H-NMR, 500 MHz) for galactose configurations and derivatives

ESI⁽⁺⁾ analysis of acidic ring opening of **2**:

Up to pentasaccharides were detected, indicating that oligomerisation was catalysed by HCl. A control sample (galactose) produced only up to disaccharide under the same conditions in ESI analysis.

