Supporting Information

Clémence Queffélec and Jean-Luc Montchamp*

Department of Chemistry, Box 298860, Texas Christian University, Fort Worth, Texas 76129

PAGE

LIST OF CONTENTS:

1. General Chemistry	2
2. Reagents and Solvents	2
3. ³¹ P NMR Yield Measurements	2
4. (3-chloropropyl)phosphinic acid (Scheme 2, compound 6)	3
5. Solution of EtOP(O)H ₂	3
6. 2-bromophenylphosphinic acid (Scheme 3)	3
7. Ethyl (1,1-diethoxy-ethyl)-(2-bromobenzyl)phosphinate (Scheme 4)	4
8. Cinnamyl- <i>H</i> -phosphinic acid (Scheme 5)	4
9. Ethyl cinnamyl- <i>H</i> -phosphinate (Scheme 5)	4
10. Iodide Heck precursor (Scheme 5)	4
11. Ethyl allyl-H-phosphinate (Scheme 6)	5
12. Ethyl allyl-N-benzyl(aminomethyl)phosphinate (Scheme 6)	5
13. Ethyl ((N-benzyl)aminomethyl)-cinnamylphosphinate (Scheme 6)	6
14. Cyclization attempt from compound 12a	6
15. References	7
16. Spectra	8

<u>1. General Chemistry.</u> All reactions were conducted in oven- or flame-dried glassware, under nitrogen. ¹H NMR spectra were recorded on a 300-MHz spectrometer. Chemical shifts for ¹H NMR spectra are reported (in parts per million) relative to internal tetramethylsilane (Me₄Si, $\delta = 0.00$ ppm) with CDCl₃ as solvent. ¹³C NMR spectra were recorded at 75 MHz. Chemical shifts for ¹³C NMR spectra are reported (in parts per million) relative to CDCl₃ ($\delta = 77.0$ ppm). ³¹P NMR spectra were recorded at 121 MHz (300 MHz spectrometer) and/or 36 MHz (90 MHz spectrometer), and chemical shifts reported (in parts per million) relative to external 85% phosphoric acid ($\delta = 0.0$ ppm). Radial chromatography was carried out using 2 or 4 mm layers of silica gel 60 PF₂₅₄ containing gypsum. Silica gel (200-300 mesh) was used for flash chromatography. Ethyl acetate/hexanes mixtures were used as the eluent for chromatographic purifications. TLC plates were visualized by immersion in anisaldehyde stain (by volume: 93% ethanol, 3.5% sulfuric acid, 1% acetic acid, and 2.5% anisaldehyde) followed by heating. Organic solutions of products were dried over anhydrous MgSO₄.

<u>2. Reagents and Solvents.</u> Stock solution (0.5 M) of concentrated EtOP(O)H₂ in reagent grade CH₃CN were also prepared and used for one month without any decomposition of the acid. Unless otherwise specified, HPLC or reagent grade solvents were used as received. Anhydrous toluene were distilled under N₂ from CaH₂, anhydrous THF under N₂ from sodium benzophenone ketyl, and used immediately. iPr₂NEt was distilled under N₂ from CaH₂ and stored over activated 4Å molecular sieves.

3. ³¹**P NMR Vield Measurements.** The NMR yields are determined by integration of all the resonances in the ³¹P NMR spectra, an approach which is valid if no phosphorus-containing gas (ie. PH₃) evolves, or if the precipitate in a heterogeneous mixture does not contain phosphorus. The yields determined by NMR are generally accurate within ~10% of the value indicated, and are reproducible. Isolated yields are sometimes significantly lower because of the *H*-phosphinate esters are polar compounds and hydrolytically labile.

(3-Chloropropyl)-*H*-phosphinic acid (Scheme 2, compound 6).¹ The preparation of this compound was conducted as described in the literature.

EtOP(O)H₂. The preparation of this compound was conducted as described in the literature.² In a typical procedure, a solution of the hypophosphorous compound (10 mmol), alkoxysilane ((EtO)₂SiMe₂, 15 mmol), in reagent grade solvent (10 mL) was refluxed for 2 h under N₂. After cooling to room temperature, the mixture was used directly.

2-Bromophenyl-*H***-phosphinic acid (Scheme 3).**³ The preparation of this compound was conducted as described in the literature.

Ethyl 2-bromophenyl-*H*-phosphinate (Scheme 3, compound 3). To the 2bromophenyl-*H*-phosphinic acid (4.42 g, 20 mmol) in toluene (70 mL) was added tetraethyl orthosilicate (1.5 equiv, 6.25 g) under N₂ and the mixture was refluxed for 24 h. The solvent was removed by vacuo and the resulting oil was purified by column chromatography (silica, EtOAc/Hexanes 3:7, v/v) to afford the desired product as a yellow oil (3.2 g, 64%): ¹H NMR (CDCl₃, 300 MHz) δ 7.90-8.05 (m, 1H, *aro* CH), 7.66 (d, J = 589 Hz, 1H, H-P), 7.60-7.65 (m, 1H, *aro* CH), 7.40-7.60 (m, 2H, *aro* CH), 4.00-4.30 (m, 2H, -CH₂-O), 1.39 (t, J = 7 Hz, 3H, CH₃-); ¹³C NMR (CDCl₃, 75.45 MHz) δ 134.9 (d, J = 8 Hz), 134.5 (d, J = 2 Hz), 133.7 (d, J = 8 Hz), 130.0 (d, J = 136 Hz), 127.6 (d, J = 12 Hz), 125.0 (d, J = 8 Hz), 62.9 (d, J_{POC} = 6 Hz), 16.5 (d, J_{POCC} = 6 Hz); ³¹P NMR (CDCl₃, 121.47 MHz) δ 23.3 (d, J = 589 Hz); HRMS (EI⁺) calc for C₈H₁₀BrO₂P 247.9602, found 247.9600.

Ethyl (1,1-diethoxyethyl)-(2-bromobenzyl)phosphinate (Scheme 4).⁴ Neat Ciba-Geigy reagent ethyl (1,1-diethoxyethyl)-*H*-phosphinate (20 mmol, 4.2 g) was placed under vacuum in a dry two-neck flask. Anhydrous THF (70 mL) was then added under nitrogen. The flask was placed at -78 °C and deoxygenated under vacuum for 20 min. The reaction flask was back-filled with nitrogen, LiHMDS (1.0 M in THF, 20 mmol, 20 mL) was added at -78 °C. After 10 min, 2-bromobenzyl bromide (1 equiv, 20 mmol, 5 g).

After addition, the temperature of the solution was slowly allowed to warm to rt. After 3 h at rt, the reaction mixture was quenched with NH₄Cl/brine, extracted with EtOAc (3 x 20 mL), dried and concentrated. The resulting oil was purified by column chromatography (silica, EtOAc/Hexanes 30:70, v/v) to afford the desired product (61%): ¹H NMR (CDCl₃, 300 MHz) δ 7.54 (t, J = 8 Hz, 2H, *aro* CH), 7.20-7.30 (m, 1H, *aro* CH), 7.00-7.15 (m, 1H, *aro* CH), 3.95-4.15 (m, 2H, -CH₂-O-), 3.80-3.90 (m, 1H, -CH₂-O-), 3.60-3.75 (m, 3H, -CH₂-O-), 3.30-3.55 (m, 2H, C-CH₂-P), 1.56 (d, J = 11 Hz, 3H, CH₃-C-P-), 1.10-1.30 (m, 9H, CH₃-); ¹³C NMR (CDCl₃, 75.45 MHz) δ 133.0 (d, J = 2 Hz), 132.3 (d, J = 4 Hz), 131.9 (d, J = 9 Hz), 128.5 (d, J = 3 Hz), 127.5 (d, J = 3 Hz), 125.4 (d, J = 7 Hz), 101.5 (d, J_{PC} = 142 Hz), 62.1 (d, J_{PCC} = 7 Hz), 58.6 (d, J_{PCCC} = 5 Hz), 57.9 (d, J_{PCCC} = 7 Hz), 33.3 (d, J_{PC} = 80 Hz), 29.9, 20.6 (d, J_{PCCCC} = 12 Hz), 16.7 (d, J_{POCCC} = 5 Hz), 15.6 (d, J_{PCOCC} = 21 Hz); ³¹P NMR (CDCl₃, 121.47 MHz) δ 44.4 (s); HRMS (EI⁺) calc for C₁₅H₂₄BrO₄P 379.0674, found 379.0654.

Cinnamyl-H-phosphinic acid (Scheme 5, compound 7).⁵ The preparation of this compound was conducted as described in the literature.

Ethyl cinnamyl-*H*-phosphinate (Scheme 5, compound 8). To the cinnamyl-*H*-phosphinic acid (23.6 g, 130 mmol) in toluene (430 mL) was added tetraethyl orthosilicate (1.5 equiv, 40.6 g) under N₂ and the mixture was refluxed for 24 h. The solvent was removed by vacuo and the resulting oil was purified by column chromatography (silica, EtOAc/Hexanes 3:7, v/v) to afford the desired product as a yellow oil (25.1 g, 92%): ¹H NMR (CDCl₃, 300 MHz) δ 7.20-7.40 (m, 5H, *aro* CH), 7.04 (d, J = 545 Hz, 1H, H-P), 6.53 (dd, J = 15, 6 Hz, 1H, -CH=CH-), 6.00-6.20 (m, 1H, -CH=CH-), 4.00-4.30 (m, 2H, -CH₂-O-), 2.79 (dd, J = 18, 8 Hz, 2H, -CH₂-P), 1.36 (t, J = 14, 7 Hz, 3H, CH₃-); ¹³C NMR (CDCl₃, 75.45 MHz) δ 136.6 (d, J = 4 Hz), 136.1 (d, J = 14 Hz), 128.8 (2C), 128.0, 126.4 (2C, d, J = 2 Hz), 116.9 (d, J = 10 Hz), 62.8 (d, J_{POC} = 7 Hz), 34.2 (d, J_{PC} = 90 Hz), 16.5 (d, J_{POCC} = 6 Hz); ³¹P NMR (CDCl₃, 121.47 MHz) δ 36.7 (d, J = 544 Hz); HRMS (EI⁺) calc for C₁₁H₁₅O₂P 210.0810, found 210.0805.

Iodide Heck precursor (Scheme 5, compound 9). Ethyl cinnamyl-H-phosphinate (8

mmol, 1.68 g), 2-iodoaniline (1.2 equiv, 9.6 mmol, 2.1 g) and paraformaldehyde (1.2 equiv, 9.6 mmol, 317.1 mg) in toluene (40 mL) were refluxed for 16 h. After cooling to room temperature, the mixture was concentrated and the resulting oil was diluted in EtOAc (60 mL) and washed with brine (1 x 20 mL). The organic layer was dried and concentrated. The resulting oil was purified by column chromatography (silica, EtOAc/Hexanes 6:4, v/v) to afford the desired product as a yellow oil (1.6 g, 46%): ¹H NMR (CDCl₃, 300 MHz) δ 7.66 (d, J = 8 Hz, 1H, *aro* CH), 7.15-7.35 (m, 6H, *aro* CH), 6.40-6.65 (m, 3H, *aro* CH and -CH=CH-), 6.10-6.30 (m, 1H, -CH=CH-), 4.40-4.55 (m, 1H, -NH-), 4.15-4.30 (m, 2H, -CH₂-O-), 3.40-3.65 (m, 2H, -N-CH₂-P), 2.88 (dd, J = 18, 7 Hz, 2H, -CH₂-P), 1.38 (t, J = 14, 7 Hz, 3H, CH₃-); ¹³C NMR (CDCl₃, 75.45 MHz) δ 146.7 (d, J = 9 Hz), 139.4, 136.7 (d, J = 3 Hz), 135.7 (J = 13 Hz), 129.7, 128.8, 128.0, 126.5 (d, J = 2 Hz), 120.2 (2C), 118.2 (d, J = 9 Hz), 111.4 (2C), 86.2, 61.8 (d, J_{POC} = 7 Hz), 41.6 (d, J_{PC} = 100 Hz), 32.8 (d, J_{PC} = 89 Hz), 17.0 (d, J_{POCC} = 5 Hz); ³¹P NMR (CDCl₃, 121.47 MHz) δ 48.7 (s); HRMS (EI⁺) calc for C₁₈H₂₁INO₂P 441.0355, found 441.0355.

Ethyl allyl-H-phosphinate (Scheme 6, compound 11).⁶ The preparation of this compound was conducted as described in the literature.

Ethyl allyl-N-benzyl(aminomethyl)phosphinate (Scheme 6, compound 12a). To compound 11 (12.5 mmol) in toluene (60 mL) was added 1,3,5-tribenzylhexahydro-1,3,5-triazine (0.4 equiv, 15 mmol, 2.72 g). After 16 h of reflux, the mixture was concentrated and the resulting oil was diluted in EtOAc (60 mL) and washed with brine (1 x 20 mL). The organic layer was dried and concentrated. The resulting oil was purified by column chromatography (silica, EtOAc/Hexanes 3:7, v/v) to afford the desired product as a yellow oil (2.36 g, 57%): ¹H NMR (CDCl₃, 300 MHz) δ 7.20-7.40 (m, 5H, *aro* CH), 5.60-5.85 (m, 1H, -CH=), 5.05-5.20 (m, 2H, CH₂=), 4.00-4.25 (m, 2H, -CH₂-O-), 3.82 (s, 2H, -CH₂-Ph), (d, J = Hz, 2H, -P-CH₂-N), (dd, J = Hz, 2H, P-CH₂-C), (t, J = 14, 7 Hz, 3H, CH₃-); ¹³C NMR (CDCl₃, 75.45 MHz) δ 139.5, 128.7, 128.5, 127.9, 127.8, 127.5, 120.5, 120.3, 61.1 (d, J_{POC} = 6 Hz), 55.3 (d, J_{PCNC} = 16 Hz), 45.4 (d, J_{PC} = 106 Hz), 33.1 (d, J_{PC} = 88 Hz), 16.8 (d, J_{POCC} = 6 Hz); ³¹P NMR (CDCl₃, 121.47 MHz) δ 51.1 (s).

Ethyl ((N-benzyl)aminomethyl)-cinnamylphosphinate (Scheme 6, compound 12b). To compound 8 (12.5 mmol) in toluene (60 mL) was added 1,3,5-tribenzylhexahydro-1,3,5-triazine (0.4 equiv, 15 mmol, 2.72 g). After 16 h of reflux, the mixture was concentrated and the resulting oil was diluted in EtOAc (60 mL) and washed with brine (1 x 20 mL). The organic layer was dried and concentrated. The resulting oil was purified by column chromatography (silica, EtOAc/Hexanes 3:7, v/v) to afford the desired product as a yellow oil (2.36 g, 83%): ¹H NMR (CDCl₃, 300 MHz) δ 7.20-7.35 (m, 10H, *aro* CH), 6.49 (dd, J = 16, 4 Hz, 1H, -CH=), 6.00-6.20 (m, 1H, CH=), 4.00-4.20 (m, 2H, -CH₂-O-), 3.84 (s, 2H, -CH₂-Ph), 2.91 (d, J = 11 Hz, 2H, -P-CH₂-N), 2.83 (dd, J = 18, 8 Hz, 2H, P-CH₂-C), 1.31 (t, J = 14, 7 Hz, 3H, CH₃-); ¹³C NMR (CDCl₃, 75.45 MHz) δ 139.5, 137.1, 137.0, 135.1, 134.9, 128.8, 128.7, 128.5, 127.8, 127.5, 126.5, 126.4, 119.3, 119.1, 61.2 (d, J_{POC} = 7 Hz), 55.4 (d, J_{PCNC} = 17 Hz), 45.6 (d, J_{PC} = 106 Hz), 32.4 (d, J_{PC} = 88 Hz), 16.9 (d, J_{POCC} = 6 Hz); ³¹P NMR (CDCl₃, 121.47 MHz) δ 51.3 (s).

Cyclization attempt from compound 12a. To the ethyl allyl-N-benzyl(aminomethyl)-*H*-phosphinate (1 mmol, 315 mg) in DMSO (20 mL) were added $Pd(OAc)_2$ (5 mol%, 11.2 mg) and NaOAc (2 equiv, 164.1 mg). The flask was flushed with O_2 and equipped with an O_2 balloon. The reaction mixture was stirred at 80 °C for 60 h. The mixture was then cooled to room temperature, diluted with ether (10 mL) and THF (10 mL) and washed with brine (10 mL). The layers were separated and the aqueous layer was extracted with ether (2 x 10 mL). The combined organic layers were dried and concentrated.

References

- [1] Deprèle, S.; Montchamp, J.-L. J. Org. Chem., 2001, 66, 6745.
- [2] Deprèle, S.; Montchamp, J.-L. J. Organomet. Chem., 2002, 643-644, 154.
- [3] Montchamp, J.-L.; Dumond, Y. R. J. Am. Chem. Soc., 2001, 123, 510.
- [4] Abrunhosa-Thomas, I.; Sellers, C.E.; Montchamp, J.-L. J. Org. Chem., 2007, 72,
- [5] Bravo-Altamirano, K.; Montchamp, J.-L. Org. Lett., 2006, 8, 4169.
- [6] Abrunhosa-Thomas, I.; Ribiere, P.; Adcock, A.C.; Montchamp, J.-L. *Synthesis*, 2006, 325.

INDEX FREQUENCY PPM HEIGHT 1 4579.258 37.701 126.0

³¹P-NMR (¹H decoupled)

L

 \overline{O} 1 (Scheme 2) т, ^то Еб

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2009

 INDEX
 FREQUENCY
 PPM
 HEIGHT

 1
 4846.899
 39.904
 43.9

 2
 4314.881
 35.524
 40.7

³¹P-NMR (¹H coupled)

Т

¹H-NMR

1

1 (Scheme 2)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2009

HEIGHT	20.9	22.0	21.5	11.3	11.5	16.5	16.9	17.8	17.6	20.1	21.4	14.6	15.6
Mdd	77.801	77.378	76.954	62.877	62.786	45.011	44.779	26.981	25.726	24.238	24.211	16.472	16.392
FREQUENCY	5869.954	5837.997	5806.040	4743.970	4737.061	3396.015	3378.453	2035.679	1940.960	1828.678	1826.663	1242.798	1236.752
INDEX	7	0	ო	4	ഹ	9	7	80	6 7)	10	11	12	13

Т

1 (Scheme 2)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2009

INDEX FREQUENCY PPM HEIGHT 1 4708.998 38.769 29.9

³¹P-NMR (¹H decoupled)

Τ

INDEX FREQUENCY PPM HEIGHT 1 4976.231 40.969 29.1 2 4445.846 36.603 26.9

³¹P-NMR (¹H coupled)

Т

1

13.14

ത

INDEX	FREQUENCY	ЪРМ	HEIGH	
1	5877.151	77.897	7.4	
2	5844.906	77.469	7.5	
ო	5812.949	77.046	7.2	
4	4730.727	62.702	7.3	
S	4723.817	62.610	7.3	
9	2506.111	33.216	10.7	
7	2490.852	33.014	10.4	
8	2473.002	32.778	18.6	
5	2152.279	28.527	9.6	
10	2058.136	27.279	9.3	
11	1480.893	19.628	13.7	
12	1241.934	16.461	9.8	
13	1236.176	16.385	8.2	

- E

OEt

Б

INDEX FREQUENCY PPM HEIGHT 1 4546.619 37.432 15.2

³¹P-NMR (¹H decoupled)

1

5 (Equation 3)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2009

 INDEX
 FREQUENCY
 PPM
 HEIGHT

 1
 4817.116
 39.659
 41.9

 2
 4284.690
 35.276
 41.1

³¹P-NMR (¹H coupled)

1

5 (Equation 3)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2009

¹H-NMR

1

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2009

Mdd	139.756	139.547	133.216	130.472	128.595	127.996	124.260	77.874	77.447	77.023	62.729	62.637	29.549	28.328	27.897	16.537	16.457	
FREQUENCY	10544.326	10528.491	10050.862	9843.861	9702.213	9657.013	9375.157	5875.424	5843.179	5811.222	4732.742	4725.833	2229.437	2137.309	2104.776	1247.692	1241.646	

INDEX FREQUENCY PPM HEIGHT 1 2831.025 23.308 47.5

³¹P-NMR (¹H decoupled)

3 (Scheme 3)

.

.

mdd

10

20

30

40

50

09

2.0

80

,

A share

INDEX FREQUENCY PPM HEIGHT 1 3131.713 25.783 96.5 2 2542.169 20.930 101.0

³¹P-NMR (¹H coupled)

•

3 (Scheme 3)

HEIGHT 27.2 9.5 9.6 7.9 26.9 26.9 10.7 110.7 112.3 112.3 112.3 112.3 112.3 112.4 80.8 890.8 90.8 14.4 13.3 13.6 17.1 21.1 9.3 9.3 15. Ξ 8 8 0. V PPM 8.645-.446 .441 .682 .224 1.198 1.174 1.170 1.170 1.168 1.168 1.168 1.168 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.1393 .009 .450 .448 996 612 483 468 465 .452 579 34 630 619 489 474 461 63 47 2240.887 2238.904 2238.914 2235.904 2235.914 2235.317 2235.317 2235.317 2235.317 2235.317 2235.317 2233.317 2233.317 1259.69 1259.69 1258.257 1255.364 11251.191 1256.60 1243.569 418.041 418.041 FREQUENCY 2593.848 2593.848 2393.003 2393.023 2390.104 2380.104 2281.310 2281.310 2283.059 2283.053 2283.053 2283.053 2283.053 2283.0645 2283.258 2283.258 2283.258 2283.258 2283.258 2283.258 2283.264 2283.264 2283.281 2283.281 2283.281 2283.281 2283.281 2283.281 2283.281 2283.281 2283.281 2283.281 2283.281 2283.281 2283.281 2283.261 2 INDEX 1 cv co 80

¹H-NMR

3 (Scheme 3)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2009

13(
HEIGHT	25.9	25.7	26.5	27.7	24.2	24.7	5.3	5.1	1.4	23.1	23.4	6.9	7.0	8.1	8.6	8.5	13.4	14.2	17.8	17.2	2.0
Mdd	134.933	134.822	134.574	134.548	133.834	133.723	130.869	129.060	128.820	127.637	127.484	125.065	124.958	77.912	77.485	77.061	62.904	62.816	16.510	16.423	0.178
FREQUENCY	10180.418	10172.069	10153.355	10151.340	10097.502	10089.153	9873.803	9737.337	9719.199	9629.950	9618.434	9435.904	9427.843	5878.303	5846.058	5814.101	4745.986	4739.364	1245.677	1239.055	13.458
INDEX	1	8	e	4	5	9	2	8	6	10	11	12	13	14	15	16	17	18	19	20	21

3 (Scheme 3)

INDEX FREQUENCY PPM HEIGHT 1 5392.380 44.395 51.7

³¹P-NMR (¹H decoupled)

mdd

INDEX FREQUENCY PPM HEIGHT 1 5389.524 44.372 29.6

³¹P-NMR (¹H coupled)

¹H-NMR

1

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2009

¹³C-NMR

INDEX	FREQUENCY	Mdd	HEIGHT
1	10039.922	133.071	14.1
2	10037.619	133.040	15.1
ო	9983.493	132.323	14.0
4	9979.175	132.266	14.4
ŝ	9961.037	132.025	4.1
9	9951.536	131.899	4.3
2	9695.303	128.503	13.1
8	9692.424	128.465	13.6
6	9622.176	127.534	13.2
10	9619.585	127.500	13.9
11	9467.285	125.481	3.8
12	9460.088	125.386	3.9
13	7731.814	102.479	4.7
14	7589.591	100.594	4.6
15	5861.317	77.687	31.0
16	5829.360	77.263	31.7
17	5797.403	76.840	31.4
18	4687.830	62.133	8.6
19	4680.344	62.034	8.4
20	4424.975	58.649	11.1
21	4420.081	58.585	10.9
22	4373.153	57.963	11.1
23	4365.668	57.863	11.0
24	2551.599	33.819	13.2
25	2472.426	32.770	12.9
26	2257.364	29.920	2.7
27	1557.475	20.643	11.8
28	1545.095	20.479	11.2
29	1262.375	16.732	10.7
30	1257.193	16.663	9.5
31	1190.112	15.774	19.2
32	1175.429	15.579	3.1
33	1169.095	15.495	18.4
34	16.049	0.213	5.6

1

INDEX FREQUENCY PPM HEIGHT 1 4163.109 34.275 54.5

³¹P-NMR (¹H decoupled)

1

4 (Scheme 4)

80

mdd

10

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2009

	5	~	N	~	-	6	**	m	~	_	
HEIGHT	27.	37.	46.3	33.	22.	27.1	38.	45.3	34.8	25.9	
Mdd	36.723	36.639	36.566	36.492	36.408	32.165	32.085	32.007	31.934	31.850	:
FREQUENCY	4460.533	4450.333	4441.358	4432.382	4422.182	3906.892	3897.100	3887.717	3878.741	3868.541	
INDEX	1	2	ო	4	ŝ	9	2	80	5	10	

T

³¹P-NMR (¹H coupled)

4 (Scheme 4)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2009

	2 2 24
¹ H-NMR 4 (Scheme 4)	17.98 16.48
HEIGHT 14.1 13.5 11.5 9.0 85.4 85.4 85.4 85.4 85.9 85.4 85.9 85.9	
77 23.45 24.23 24.24 24.23 24.24 24.24 24.24 24.24 24.24 24.24 24.24 24.24 24.24 24.24 24.24 24.	
FREQUENCY 1039.532 1023.187 1023.187 1017.538 405.728 405.728 391.657 338.693 338.785 338.785 378.465	3.52 3.52
INDEX 4 2 2 4 4 3 3 4 2 4 4 3 4 2 4 4 3 4 4 4 4	
H H 10 11 11 11 11 11 11 11 11 11 11 11 11	15.70 23 15.70
0 0	
FREQUENCY 2426.162 2424.695 2424.695 2424.695 2424.937 22205.709 2205.709 2205.709 2205.709 2205.709 2205.709 2205.709 2205.709 22147.237 2147.237 2147.237 2147.237 2147.237 2145.318 1873.269 1873.663 1873.663 1873.663 1873.663 1255.520 1256.279 1256.270 1251.876 1251.876 1229.402 1221.876 1221.876 1221.876 1221.876 1221.876 1221.876 1221.876 1221.876 1221.876 1221.203.117 1221.876 1221.876 1221.876 1221.876 1221.876 1221.876 1221.876 1221.876 1221.303 1220.703 1221.876 1221.303 1220.703 1221.876 1221.3067 1221.3067 1221.3067 1221.3067 1221.3067 1221.3067 1221.3067 1221.3067 1221.3067 1221.307 12221.307 12221.307 12221.307 12222.307 12222.307 12222.307 12222.307 12222.307 12222.307 12222.307 12222.307 12222.307 12222.307 12222.307 12222.307 12223.307 12223.307 12223.307 12223.307 12223.307 12223.307 12223.307 12223.307 12223.307 12223.30	
I I I I I I I I I I I I I I I I I I I	- თ -

27.29

17.98

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2009

HEIGHT	35.9	34.5	34.3	32.8	9.9	8.9	37.3	35.1	36.5	33.1	9.4	9.6	12.0	12.5	11.6	18.2	19.2	37.6	36.9	23.1	22.5
Mdd	133.201	133.155	132.148	132.071	130.705	130.606	129.209	129.156	128.118	128.072	124.878	124.779	77.882	77.458	77.031	63.068	62.977	37.921	36.742	16.465	16.385
FREQUENCY	10049.710	10046.256	9970.250	9964.492	9861.423	9853.937	9748.565	9744.535	9666.225	9662.771	9421.797	9414.311	5876.000	5844.043	5811.798	4758.365	4751.456	2861.093	2772.132	1242.222	1236.176
INDEX	1	2	ო	4	ŝ	9	7	80	6	10	11	12	13	14	15	16	17	18	19	20	21

INDEX FREQUENCY PPM HEIGHT 1 6265.069 51.580 71.4 2 6147.976 50.616 55.7

³¹P-NMR (¹H decoupled)

1

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2009

Table 1, entry 1

INDEX FREQUENCY PPM HEIGHT 1 6261.397 51.550 16.6 2 6152.464 50.653 14.8

¹H-NMR

1

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2009

1

mdd

INDEX FREQUENCY PPM HEIGHT 1 5372.389 44.231 60.0

³¹P-NMR (¹H decoupled)

1

Table 1, entry 2

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2009
INDEX FREQUENCY PPM HEIGHT 1 5380.548 44.298 38.6

³¹P-NMR (¹H coupled)

.

1

Table 1, entry 2

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2009

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\hfill {\hfill {C}}$ The Royal Society of Chemistry 2009

шdd

³¹P-NMR (¹H decoupled)

1

년년 49.73 50.27

INDEX FREQUENCY PPM HEIGHT 1 6312.803 51.973 33.3 2 6196.934 51.019 34.4

³¹P-NMR (¹H coupled)

T

Table 1, entry 3

¹H-NMR

1

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2009

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\hfill {\hfill {C}}$ The Royal Society of Chemistry 2009

.....

HEIGHT 86.1 FREQUENCY PPM 7660.391 63.068 INDEX ---

³¹P-NMR (¹H decoupled)

 INDEX
 FREQUENCY
 PPM
 HEIGHT

 1
 7664.879
 63.105
 30.3

 31P-NMR (¹H coupled)

1

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2009

Table 1, entry 4

HEIGHT	22.5	125.3	130.9	64.0	10.6	11.5	11.8	29.2	30.2	19.5	21.4	57.6	27.7	27.8	54.3	33.7	8.1	32.5	36.9	40.6	21.0	22.5
Mdd	138.707	129.160	128.484	127.496	77.939	77.515	77.088	64.270	64.060	60.031	59.943	58.295	55.219	53.826	30.179	29.656	29.473	28.489	19.998	19.975	16.766	16.686
FREQUENCY	10465.153	9744.823	9693.864	9619.297	5880.318	5848.361	5816.116	4849.055	4833.220	4529.196	4522.574	4398.200	4166.152	4061.068	2276.941	2237.498	2223.679	2149.400	1508.819	1507.092	1264.966	1258.921
INDEX	1	2	ო	4	ŝ	9	7	œ	6	10	11	12	13	14	15	16	17	18	19	20	21	22

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2009

INDEX FREQUENCY PPM HEIGHT 1 6148.384 50.619 52.3 2 5999.060 49.390 40.8

³¹P-NMR (¹H decoupled)

INDEX FREQUENCY PPM HEIGHT 1 6146.752 50.606 37.1 2 5996.612 49.370 31.2

³¹P-NMR (¹H coupled)

1

Table 2, entry 1

Z

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2009

INDEX FREQUENCY PPM HEIGHT 1 6374.818 52.484 35.4

³¹P-NMR (¹H decoupled)

1

Table 2, entries 2 & 3

INDEX FREQUENCY PPM HEIGHT 1 6374.410 52.480 30.6

³¹P-NMR (¹H coupled)

1

Table 2, entries 2 & 3

HEIGHT	6.3	6.6	15.6	27.2	27.7	9.2	10.4	5.5	86.4	12.0	26.9	27.3	48.8	85.9	24.3	24.2	5.3	5.5	24.1	24.5	17.3	18.1	18.2	12.4	13.9	25.0	25.6	24.1	24.5	15.7	15.3
₩Ы	155.436	155.123	136.769	135.044	135.017	132.380	132.247	132.186	129.095	128.835	128.767	128.690	127.881	127.454	117.956	117.796	114.125	112.389	109.966	109.813	77.794	77.370	76.943	61.954	61.870	52.601	52.460	48.297	46.942	16.858	16.774
FREQUENCY	11727.314	11703.706	10318.899	10188.767	10186.752	9987.812	9977.735	9973.129	9739.928	9720.351	9715.169	9709.411	9648.376	9616.131	8899.543	8887.451	8610.490	8479.495	8296.677	8285.161	5869.378	5837.421	5805.176	4674.298	4667.964	3968.651	3957.999	3643.898	3541.693	1271.876	1265.542
INDEX	1	0	ო	4	ъ	9	2	8	5	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

o oEt

Table 2, entries 2 & 3

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2009

³¹P-NMR (¹H coupled)

1

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2009

¹H-NMR

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2009

³¹P-NMR (¹H decoupled)

1

66.54

INDEX	FREQUENCY	МЧЧ	HEIGHT
1	6605.739	54.385	39.2
0	5239.384	43.136	71.0
ო	5231.224	43.069	71.6
4	5222.249	42.995	69.0
ŝ	5213.681	42.924	71.5

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2009

³¹P-NMR (¹H decoupled)

1

Table 2, entry 8

mdd

-

10

20

30

40

50

60

7.0

80

90

100

INDEX FREQUENCY PPM HEIGHT 1 6954.162 57.253 31.8

³¹P-NMR (¹H coupled)

¹H-NMR

mdd

INDEX FREQUENCY PPM HEIGHT 1 4463.389 36.747 25.8

³¹P-NMR (¹H decoupled)

1

mdd

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2009

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2009

Т

mdd

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2009

1

udd

20

INDEX FREQUENCY PPM HEIGHT 1 5914.198 48.691 49.8

³¹P-NMR (¹H decoupled)

.

9 (Scheme 5)

 $^{\prime}$

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2009

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2009

³¹P-NMR (¹H coupled)

1

шdd

1990 A.

Т

ľ

INDEX FREQUENCY PPM HEIGHT 1 6208.766 51.117 30.1

³¹P-NMR (¹H decoupled)

ľ

12a (Scheme 6)

mdd

0

10

20

30

40

50

60

20

80

A. C. C. S. Same

Surger Thinking

web's love love

ころうち ころう ひちょうちち ちちょうちょう

1.174

INDEX FREQUENCY PPM HEIGHT 1 6214.478 51.164 14.3

³¹P-NMR (¹H coupled)

12a (Scheme 6)

- 10 fer 1

80 70

mdd

10

20

30

40

50

130 1120	13C-NMR																					
HEIGHT	10	82	74.	15.	12.	42.	15.	17.	36.9	38.0	38.9	10.4	10.3	20.7	22.3	21.3	20.0	17.8	17.9	14.8	13.4	6.4
Нd	139.489	128.679	128.477	127.946	127.824	127.492	120.478	120.314	77.714	77.290	76.863	61.118	61.031	55.475	55.257	46.133	44.729	33.640	32.476	16.945	16.869	16.686
FREQUENCY	10524.172	9708.547	9693.288	9653.270	9644.057	9619.010	9089.846	9077.466	5863.332	5831.375	5799.130	4611.248	4604.626	4185.441	4169.031	3480.658	3374.710	2538.068	2450.258	1278.498	1272.740	1258.921
INDEX	1	2	e	4	2	9	2	8	69	10	11	12	13	14	15	16	17	18	19	20	21	22

³¹P-NMR (¹H decoupled)

-P NHBn Δ 0 Ш

12b (Scheme 6)

шdd

mdd

بغف لتحضلت الأصفاعة أحصبت فرقك الجنان ألباه وأدتقان والتعمل ومساورا

INDEX