Supporting Information for:

Chiral Biphenylamide Derivative: An Efficient Organocatalyst for the Enantioselective Synthesis of α-Hydroxy Phosphonates

Jun Jiang, Xiaohong Chen, Jun Wang, Yonghai Hui, Xiaohua Liu, Lili Lin and Xiaoming Feng*

†Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China

CONTENTS:

(A) General information	2
(B) General procedure for catalysts 2a-2d preparation	3
(C) General procedure for the asymmetric aldol reaction of α -keto phosphonates and	
aldehydes with acetone	6
(D) Optimization of conditions	7
(E) Spectral characterization data for catalysts 2a-2d	11
(F) The analytical and spectral characterization data of reaction products	12
(G) Copies of NMR spectra for 2a-2d and products	23
(H) References	38
(I) The information of single crystal X-ray diffraction analysis	39

(A) General information:

¹H NMR spectra were recorded at 400 MHz on commercial instruments. The chemical shifts were recorded in ppm relative to tetramethylsilane and with the solvent resonance as the internal standard. Data were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, br = broad), coupling constants (Hz), integration. ¹³C NMR data were collected at 100 MHz on commercial instruments with complete proton decoupling. Chemical shifts were reported in ppm from the tetramethylsilane with the solvent resonance as internal standard. All experiments were monitored by analytical thin layer chromatography (TLC). Enantiomeric excesses of products were determined by chiral HPLC analysis on Daicel Chiralcel OJ-H/AD-H/AS-H in comparison with the authentic racemates. Optical rotations were reported as follows: $[\alpha]_D^T$ (*c*: g/100 mL, in solvent). ESI-HRMS spectra were recorded on a commercial apparatus. α -keto phosphonates were prepared according to the literature procedures.¹ Acetone, tetrahydrofuran, ethyl acetate were commercially available and purified by usual methods before use. All kinds of additives and aldehydes also were commercially available and directly used without further purification. Catalysts **2a-2d** were synthesized according to the literatures.² The spectra and other data were consistent with the reported values.

(B) General procedure for catalysts 2a-2d preparation

Synthesis of compound 1a:

2-Iodo-3-nitrophenol (8a).

A solution of 13.91 g (0.1mol) 3-nitrophenol and 3.0 g (0.075mol) sodium hydroxide in 150 mL of water was stirred, while a solution of 31.87 g (0.1mol) mercuric acetate and 3 mL acetic acid in 150 mL of water was added slowly. After 1 hour at 100 °C the solution was cooled and filtered to obtain yellow solid, which were washed with 300 mL water and 150 mL ether. The 38 g (\approx 100 % yield) crude acetoxymercury compound was not purified, then suspended in 200 mL 10 % aqueous potassium iodide. To the suspension 200 mL 20 % aqueous potassium triiodide was added dropwise with stirring during 3 hours. After 3 h more of stirring, the reaction mixture was extracted with three 200 mL portions of dichloromethane. The combined extracts were washed with 40 mL 10 % aqueous sodium bisulfite and concentrated in vacuum to give 18.7 g of crude solid. The crude solid was purified by flash chromatography on silica gel, and eluted with 1:6 dichloromethane/petroleum ether to give yellow solid **8a** (12.5 g, 47.2 % yield), after crystallization from dichloromethane, obtained yellow acicular crystals **8a** (10.7 g, 40.4 % yield).

2-Iodo-3-nitroanisole (9a).

Methyl iodide (2.8 mL, 45 mmol)was added dropwise over a period of 0.5 h at room temperature to a suspension of 2-iodo-3-nitrophenol (8.0 g, 30 mmol), K_2CO_3 (8.3 g, 60 mmol) in dry acetone (60 mL). After 6 h of stirring, the colour of reaction mixture was from yellow to orange. When **8a** was methylated completely through monitoring by TLC, removal of solvent from the reaction mixture and the residue were washed with 50 mL dichloromethane. The washing solution was concentrated in vacuum to get bright yellow lamellar crystals **9a** (7.8 g, 93.2% yield).

2,2'-Dimethoxy-6,6'-dinitrobiphenyl (10a).

To a stirred solution of 2-Iodo-3-nitroanisole (7.0g, 25 mmol) in 50 mL dimethylformamide was added 5.0 g activated copper³. After the mixture was stirred 3 h at 165 °C, another 5.0 g of activated copper was added. When the mixture had been stirred for 3 h more, it was cooled and poured into 200 mL water, then the resulting precipitate was extracted with ethyl acetate (750 mL). Removal of ethyl acetate gave yellow green granular crystals **10a** (2.8 g, 73.7% yield).

2,2'-Dimethoxy-6,6'-diaminobiphenyl (1a).

A mixture of 2,2'-Dimethoxy-6,6'-dinitrobiphenyl (2.7g, 7 mmol), ferric chloride hexahydrate (40

mg, 15 mmol), and 0.50 g activated carbon in 30 mL methanol was refluxed for 10 min. The 3.0 mL hydrazine hydrate was added dropwise over 0.5 h, while reflux continued at 70 $^{\circ}$ C. After 5 h more refluxing, the reaction mixture was filtered at reduced pressure to remove the residue. The filtrate was concentrated in vacuum and got colorless viscous liquid. The concentrated liquid was poured into 150 mL water, then the resulting precipitate **1a** was collected by filtering at reduced pressure. Pure product **1a**(1.65g, 96.5% yield) is white lamellar crystal.

Synthesis of catalysts 2a and 2b

N-Boc-(*L*)-Proline (750 mg, 3.5 mmol) and Et₃N (0.58 mL, 3.5 mmol) were dissolved in THF (10 mL), while the solution was cooled to 0°C. To the solution was added dropwise isobutylchloroformate (0.45 mL, 3.5 mmol) for 15 min. After the solution was stirred for 30 min, the mixture of 2,2'-Dimethoxy-6,6'- diaminobiphenyl **1a** (366 mg, 1.5 mmol) in dry THF (20 mL) was added dropwise for 15 min. The resulting solution was stirred at 0°C for 1 h and then at room temperature for another 20 h, the solution was diluted with ethyl acetate. After filtration and removal of solvent under reduced pressure, the residue was purified through longer column chromatography on silica gel (eluent: petroleum ether /ethyl acetate/ methanol = 3/1/0.15) to respectively give **11a** (442 mg, 92.3% yield) and **11b** (413 mg, 86.2% yield).

To **11a** (320 mg, 0.5 mmol) in CH_2Cl_2 (2 mL) was added TFA (2 mL) and stirred until the reaction was finished. Then, the solution was diluted with CH_2Cl_2 (10 mL), and the pH value was brought into the range of 8–10 by the addition of 1 N NaOH. The aqueous phase was extracted with CH_2Cl_2 (5×20 mL). The combined organic phase was washed with brine, dried over anhydrous Na_2SO_4 and evaporated in vacuum. The ivory white powder solid **2a** (208 mg, 94.9% yield) was obtained.

Same method got ivory white powder solid **2b** (210 mg, 95.8% yield).

Synthesis of catalysts 2d and 2e

According to pp5, N-Boc-(D)-Proline (750 mg, 3.5 mmol) was amidated by 2,2'-Dimethoxy-6,6'-

diaminobiphenyl **1a** (366 mg, 1.5 mmol), through 3 steps process, obtained catalysts **2d** (210 mg, 95.8% yield) and **2e** (203 mg, 92.6% yield)

Synthesis of catalysts 2c

To a refluxing solution of o-chloronitrobenzene (6.3g, 40 mmol) in 40 mL dimethylformamide was added 5.0 g activated copper. After the mixture was stirred 3 h at 165 °C, another 5.0 g of activated copper was added, and continued refluxing for 3 h. When the mixture was cooled, poured it into 400 mL water, and filtered with the solution at reduced pressure. Extract the solid with 3×50 mL portions of boiling ethanol. Removaled of ethanol in vacuum and gave brown acicular crystals **10c** (3.7 g, 75.8% yield).

2,2'-dinitrobiphenyl **10c** (2.9g, 12 mmol) was heated on a water bath with powdered tin and concentrated hydrochloric acid until a clear solution resulted. The mixture was made alkaline with sodium hydroxide, and ether extraction and recrystallization gave the 2,2'-diaminebiphenyl **1c** (1.8g, 83.2%).

According to pp5, N-Boc-(*L*)-Proline (3.2g, 15 mmol) was amidated by 2,2' diaminobiphenyl **1c** (1.3g, 7 mmol), purified through column chromatography on silica gel (eluent: petroleum ether /ethyl acetate = 4/1),and obtained compound **11c** (3.26 g, 80.6% yield), deprotection of Boc-group to get **2c** (2.04g, 95.6% yield).

(C) General procedure for the asymmetric aldol reaction of α -keto phosphonates^{*a*} and aldehydes^{*b*} with acetone

a) The aldol reaction of α -keto phosphanates with acetone

To the α -keto phosphanate (0.1 mmol) and catalyst **2a** (4.4 mg, 0.01mmol, 10 mol%) was added anhydrous acetone (0.2 mL), ethyl acetate (0.3 mL) and TFA (0.78 μ L, 20 mol%), the resulting mixture was stirred at -20 °C for 2-5 d. The mixture was directly purified through flash column chromatography on a silica gel (eluent: petroleum ether /ethyl acetate = 1/1) to give the pure product.

b) The aldol reaction of aldehyde with acetone

To the aldehyde (0.1 mmol) and catalyst **2a** (4.4mg, 0.01 mmol, 10 mol%) was added anhydrous acetone (0.2 mL), (0.3 mL) tetrahydrofuran and TFA (0.20 μ L, 5mol%), the resulting mixture was stirred at -20 °C for 2-3 d. The mixture was directly purified through flash column chromatography on a silica gel (eluent: petroleum ether /ethyl acetate = 3/1) to give the pure product.

(D) Optimization of conditions

a) Optimization of conditions for the aldol reaction of α -keto phosphanates with acetone.

1) Screening of catalysts and additives:

Ph P	0 <u>10 mol% cat.</u>	Ph OH EtO 4a	ç0 OEt
Entry ^a	Cat.	$\operatorname{Yield}^{b}(\%)$	Ee ^c (%)
1	2a	93	69
2	2b	94	35
3	2c	49	50
4^d	2d	75	-67
5	2e	92	-7
6	2a/TFA	95	78
7	2a/CH ₃ COOH	93	65
8	2a/HCOOH	97	70
9	2a/PhCOOH	87	58
10	2a/CCl ₃ COOH	78	74
11	2a/TsOH	85	70
13	2a/PhOH	88	45

^{*a*}Unless otherwise noted, the reaction was carried out with the diethyl benzoyl phosphonate (0.1 mmol), 0.5 mL of acetone at -20 °C for 2.5 d, using 10 mol% catalyst loading, **2a** /additive = 2/1. ^{*b*}Isolated yield. ^{*c*}Determined by chiral HPLC. ^{*d*}The absolute configuration was opposite to entry 1.

2) Screening of the ratio with catalyst, catalyst loading, temperature:

	Ph EtO 3a		t.2a/TFA	Ph OH * PC EtO C	D DEt				
Entry ^a	Catalyst/TFA	Catalyst loading(mol%)	Temperature(°C)	Yield ^{b} (%)	Ee ^c (%)				
1	2 / 1	10	-20	95	78				
2	1 / 1	10	-20	95	86				
3	1 / 1.5	10	-20	93	90				
4	1 / 2	10	-20	92	92				
5	1 / 2.5	10	-20	53	93				
6	1/3	10	-20	24	93				
7	1 / 2	5	-20	78	92				
8	1 / 2	2.5	-20	52	91				
9	1 / 2	10	0	96	87				
10	1 / 2	10	20	98	85				
^{<i>a</i>} Unless of mmol), 0	^a Unless otherwise noted, the reaction was carried out with the diethyl benzoyl phosphonate (0.1 mmol) 0.5 mL of acetone for 2.5 d. ^b Isolated yield ^c Determined by chiral HPLC								

3) Screening of the solvent and ratio with acetone:

Ph	O OEt +	$\int_{-20^{\circ}\text{C}}^{0} \frac{\text{cat.2a/TFA} = 1/2}{-20^{\circ}\text{C}}$		it it
3	a		4a	
Entry ^a	solvent	Solvent (mL) / Acetone (mL)	$\operatorname{Yield}^{b}(\%)$	$\operatorname{Ee}^{c}(\%)$
1	Acetone	—	92	92
2	THF	0.3 / 0.2	78	93
2	THF	0.25 / 0.25	84	93
2	THF	0.125 / 0.125	67	92
2	THF	0.1 / 0.4	89	92
3	DMF	0.3 / 0.2	Trace	_
4	CH ₃ OH	0.3 / 0.2	45	31
5	toluene	0.3 / 0.2	43	93
6	EA	0.3 / 0.2	89	94
7	EA	0.25 / 0.25	94	93
8	EA	0.4 / 0.1	68	94
9	EA	0.125 / 0.125	82	93
10	EA	0.5 / 0.5	98	92

 $^a\!\mathrm{Unless}$ otherwise noted, the reaction was carried out with the diethyl benzoyl

phosphonate (0.1 mmol), at -20 °C for 2.5 d, using 10 mol% catalyst loading,

2a /additive = 1/2. ^{*b*}Isolated yield. ^{*c*}Determined by chiral HPLC.

b) Optimization of conditions for the aldol reaction of aldehydes with acetone.

1) Screening conditions:

	O ₂ N	О +	°	catalyst 0.1 mmol		, H O	
Entry ^a	Catalyst	Cat./additive	Temp.	Cat. Loading	Sov.	Yield ^b	Ee ^c
			(°C)	(mol%)	(mL)	(%)	(%)
1	2a	—	0	10	Ace.0.5	61	68
2	2b	—	0	10	Ace.0.5	66	54
3	2c	—	0	10	Ace.0.5	55	39
4	2d	_	0	10	Ace.0.5	29	-69
5	2e	_	0	10	Ace.0.5	20	-55
6	2a/TFA	1 / 1	0	10	Ace.0.5	60	90
7	2a/PhCOOH	1 / 1	0	10	Ace.0.5	97	60
8	2a/TsOH	1 / 1	0	10	Ace.0.5	43	92
9	2a/TFA	2 / 1	0	10	Ace.0.5	86	91
10	2a/TFA	1 / 2	0	10	Ace.0.5	41	89
11	2a/TFA	2 / 1	-20	10	Ace.0.5	95	93
12	2a/TFA	1 / 2	-20	10	Ace.0.5	41	89
13	2a/TFA	2 / 1	-20	5	Ace.0.5	61	78
14	2a/TFA	2 / 1	-20	10	Ace.(0.1)/EA(0.4)	81	94
15	2a/TFA	2 / 1	-20	10	Ace.(0.1)/DMF(0.4)	31	98
16	2a/TFA	2 / 1	-20	10	Ace.(0.1)/Toluene(0.4)	86	92
17	2a/TFA	2 / 1	-20	10	Ace.(0.1)/THF(0.4)	77	96
18	2a/TFA	2 / 1	-20	10	Ace.(0.25)/ THF(0.25)	86	94
19	2a/TFA	2 / 1	-20	10	Ace.(0.2)/ THF (0.3)	84	95

^cDetermined by chiral HPLC.

2) Asymmetric Aldol Reaction of Substrate aldehydes **5**:

5		THF/A	I HF/Ace = 0.3 mL/0.2 mL					
Entry	Aldehydes 5	Ar	Products 6	Time (d)	Yield ^b (%)	Ee ^c (%)		
1	5d	4-NO2C6H4	6d	2	84	95		
2	5a	3-NO2C6H4	6a	2	88	97		
3	5e	2-NO2C6H4	6e	2	87	95		
4	5f	4-CNC6H4	6f	2	79	93		
5	5b	4-CF3C6H4	6b	2	86	99		
6	5g	3-CF3C6H4	6g	2	73	91		
7	5h	2.6-2ClC6H3	6h	2	94	93		
8	5i	2.4-2ClC6H3	6i	2	97	93		
9	5c	3.4-2ClC6H3	6c	2	87	97		
10	5j	4-BrC6H4	6j	4	69	91		
"Unless otherwise noted, the reaction was carried out with 0.1 mmol aldehydes, using 10 mol %								
catalyst l	oading at -20 °C	C, 2a/TFA = 2/1, solve	nt: THF/Acetone	e = 0.3 mL/0	2mL. ^b Isolat	ted yield.		
Determi	ned by chiral H	PLC.						

0	0 II	10 mol% 2a, 2a/TFA= 2/1	* H
Ar H	*	0.1 mmol, -20°C,	O Ar OH
5		THF/Ace.= 0.3 mL/0.2 mL	6

(E) Spectral characterization data for catalysts 2a-2d

2a: ¹H NMR (400 MHz, CDCl₃) 1.52-1.66 (m, 4H, proline-H), 1.87-1.94 (m, 4H, proline-H), 2.02-2.11 (m, 2H, proline-NH), 2.56-2.62 (m, 2H, proline-H), 2.77-2.83 (m, 2H, proline-H), 3.59-3.63 (m, $J_a = 4.8$ Hz, $J_b = 9.2$ Hz, 2H, O=C-CH), 3.72 (s, 6H, CH₃-O), 6.77-6.79 (d, J = 8.4 Hz, 2H, Ar-H), 7.37-7.41 (t, $J \approx 8.0$ Hz, 2H, Ar-H), 8.02-8.04 (d, J = 8.4 Hz, 2H, Ar-H), 9.56 (s, 2H, Ar-NH) ppm. ¹³C NMR (100 MHz, CDCl₃) 25.9, 30.7, 46.9, 55.8, 60.8, 106.5, 112.5, 113.4, 129.8, 137.5, 157.4, 173.7 ppm; HRMS (ESI-TOF) calcd for C₂₄H₃₀N₄O₄ ([M+H⁺]) = 439.2345, Found: 439.2341.

2b: ¹H NMR (400 MHz, CDCl₃) 1.56-1.60 (m, 4H, proline-H), 1.75-1.81 (m, 4H, proline-H), 1.91-2.01 (m, 2H, proline-NH), 2.41-2.42 (d, 2H, $J_a = 4.0$ Hz, proline-H), 2.72-2.78 (m, $J_a \approx 7.2$ Hz, $J_b \approx 16.8$ Hz, 2H, proline-H), 3.69-3.73 (m, $J_a = 4.4$ Hz, $J_b = 9.2$ Hz, 2H, O=C-CH), 3.76 (s, 6H, CH₃-O), 6.76-6.82 (m, $J_a = 8.4$ Hz, $J_b = 16.8$ Hz, 2H, Ar-H), 7.37-7.41 (t, $J \approx 8.0$ Hz, 2H, Ar-H), 7.95 (s, 2H, Ar-H), 9.50 (s, 2H, Ar-NH) ppm. ¹³C NMR (100 MHz, CDCl₃) 25.7, 30.5, 46.8, 56.0, 60.8, 107.1, 113.2, 113.8, 129.7, 137.2, 157.5, 173.1 ppm; HRMS (ESI-TOF) calcd for C₁₆H₂₄N₃O ([M+H⁺]) = 439.2345, Found: 439.2342.

2c: ¹H NMR (400 MHz, CDCl₃) 1.52-1.62 (m, 4H, proline-H), 1.80-1.89 (m, 4H, proline-H), 2.03-2.10 (m, 2H, proline-NH), 2.44-2.79 (m, 4H, proline-H), 3.60-3.68 (m, 2H, O=C-CH), 7.19-7.27 (m, 4H, Ar-H), 7.41-7.45 (m, 2H, Ar-H), 8.25-8.50 (m, $J_a \approx 7.8$ Hz, $J_b \approx 13.8$ Hz, 2H, Ar-H), 9.66 (s, 2H, Ar-NH) ppm. ¹³C NMR (100 MHz, CDCl₃) 25.9 (d, J = 9.0 Hz), 30.7 (d, J = 2.0 Hz), 25.9, 30.8, 46.9, 55.0, 60.8, 114.3, 121.4, 124.3, 129.9, 136.2, 173.5, ppm; HRMS (ESI-TOF) calcd for C₁₆H₂₄N₃O ([M+H⁺]) = 379.2134, Found: 379.2132.

2d: ¹H NMR (400 MHz, CDCl₃) 1.52-1.62 (m, 4H, proline-H), 1.76-1.94 (m, 4H, proline-H), 2.01-2.11 (m, 2H, proline-NH), 2.55-2.61 (m, 2H, proline-H), 2.76-2.82 (m, 2H, proline-H), 3.58-3.62 (m, $J_a = 4.8$ Hz, $J_b = 9.2$ Hz, 2H, O=C-CH), 3.72 (s, 6H, CH₃-O), 6.76-6.78 (d, J = 8.4 Hz, 2H, Ar-H), 7.37-7.41 (t, J = 8.4 Hz, 2H, Ar-H), 8.03-8.05 (d, J = 8.0 Hz, 2H, Ar-H), 9.58 (s, 2H, Ar-NH) ppm. ¹³C NMR (100 MHz, CDCl₃) 25.9, 30.7, 46.9, 55.8, 60.8, 106.5, 112.3, 113.4, 129.8, 137.5, 157.4, 173.7 ppm; HRMS (ESI-TOF) calcd for C₂₄H₃₀N₄O₄ ([M+H⁺]) = 439.2345, Found: 439.2340.

(H) The analytical and spectral characterization data of reaction products

Diethyl (1-hydroxy-3-oxo-1-phenylbutyl) phosphonate (4a)

(Entry 1) solid; 89% yield, 94% *ee*. $[\alpha]_D^{21} = 41.2$ (*c* 0.398 in CH₂Cl₂). HPLC DAICEL CHIRALCEL OJ-H, 2-propanol/*n*-hexane = 20/80, flow rate = 1.0 mL/min, $\lambda = 220$ nm, retention time: 5.3 min (minor) and 9.3 min (major); (Entry 2)solid;71% yield, -92% *ee*. $[\alpha]_D^{21} = -38.8$ (*c* 0.422 in CH₂Cl₂).

HPLC DAICEL CHIRALCEL OJ-H, 2-propanol/*n*-hexane = 20/80, flow rate = 1.0 mL/min, λ = 220 nm, retention time: 5.3 min (major) and 9.5 min (minor); ¹H NMR (400 MHz, CDCl₃) 1.09 (t, *J* = 7.2 Hz, 3H, Me-H), 1.32 (t, *J* = 7.2 Hz, 3H, Me-H), 2.15 (s, 3H, O=CCH₃), 3.30-3.43 (m, 2H, O=CCH₂-C), 3.64-4.20 (m, 4H, O=PCH₂-Me), 5.07 (d, *J* = 18.4 Hz, 1H, O=PCH₂-Me), 7.27-7.63 (m, 5H, Ar-H) ppm.

	Retention Time	Peak Type	Area	% Area	Height	% Height
1	5.347	Unknown	2109700	96.07	138563	98.29
2	9.522	Unknown	86223	3.93	2410	1.71

Dimethyl (1-hydroxy-3-oxo-1-phenylbutyl) phosphonate (4b)

solid; 91% yield, 89% *ee*. $[\alpha]_D^{23} = 33.9$ (*c* 0.260 in CH₂Cl₂). HPLC DAICEL CHIRALCEL OJH, 2-propanol/*n*-hexane = 20/80, flow rate = 1.0 mL/min, λ = 220 nm, retention time: 10.9 min (minor) and 17.4 min (major); ¹H NMR

(400 MHz, CDCl₃) 2.15 (s, 3H, O=CCH₃), 3.30-3.41 (m, 2H, O=CCH₂-C), 3.45 (d, *J* = 10.0 Hz, 3H, O=PCH₃), 3.81 (d, *J* = 10.4 Hz, 3H, O=PCH₃), 5.12 (d, *J* = 19.6 Hz, 1H, C-OH), 7.30-7.63 (m, 5H, Ar-H) ppm.

	Retention Time	Peak Type	Area	% Area	Height	% Height
1	10.850	Unknown	2593481	5.70	86397	10.65
2	17.374	Unknown	41337146	94.30	724902	89.35

10.00

Minutes

12.00

14.00

16.00

18.00

20.00

8.00

Diisopropyl (1-hydroxy-3-oxo-1-phenylbutyl) phosphonate (4c)

6.00

0.00

2.00

4.00

solid; 74% yield, 97% *ee*. $[\alpha]_D^{23} = 33.2$ (*c* 0.458 in CH₂Cl₂). HPLC DAICEL CHIRALCEL OJ-H, 2-propanol/*n*-hexane = 8/92, flow rate = 1.0 mL/min, $\lambda = 220$ nm, retention time: 5.6 min (minor) and 7.2 min (major); ¹H NMR (400 MHz, CDCl₃) 0.93-1.34 (m, 12H, Me-H), 2.12 (s, 3H, O=CCH₃), 3.26-3.39 (m, 2H, O=CCH₂-C), 4.30-4.78 (m, 2H, O-CH-(Me)₂), 4.96 (d, *J* = 18.0 Hz, 1H, C-OH), 7.27-7.62 (m, 5H Ar-H) ppm.

	Retention Time	Peak Type	Area	% Area	Height	% Height
1	5.647	Unknown	589116	1.70	34025	3.12
2	7.245	Unknown	34087778	98.30	1055961	96.88

Diethyl [1-(4- fluorophenyl)-1-hydroxy-3-oxobutyl] phosphonate (4d)

solid; 89% yield, 93% *ee*. $[\alpha]_D^{23} = 36.5$ (*c* 0.318 in CH₂Cl₂). HPLC DAICEL CHIRALCEL AD-H, 2-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, $\lambda = 220$ nm, retention time: 8.9 min (minor) and 11.2 min (major); ¹H NMR (400 MHz, CDCl₃) 1.10-1.13 (t, *J* = 7.0 Hz, 3H, Me-H), 1.31-1.34 (t, *J* = 7.0 Hz, 3H, Me-H), 2.16 (s, 3H,O=CCH₃), 3.32-3.34 (d, *J* = 9.2 Hz, 2H,

O=CCH₂-C), 3.71-4.19 (m, 4H, O=PCH₂-Me), 5.10-5.15 (d, *J* = 18.8 Hz, 1H, C-OH), 7.04-7.08 (m, 2H, Ar-H), 7.57-7.61 (m, 2H, Ar-H) ppm.

	Retention Time	Peak Type	Area	% Area	Height	% Height
1	8.896	Unknown	564364	3.47	48547	4.53
2	11.236	Unknown	15693270	96.53	1023046	95.47

Dimethyl [1-(4- fluorophenyl)-1-hydroxy-3-oxobutyl] phosphonate (4e)

solid; 68% yield, 87% *ee*. $[\alpha]_D^{20} = 33.6$ (*c* 0.286 in CH₂Cl₂). HPLC DAICEL CHIRALCEL AD-H, 2-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, $\lambda = 220$ nm, retention time: 9.7 min (minor) and 11.4 min (major); ¹H NMR (400 MHz, CDCl₃) 2.16 (s, 3H,O=CCH₃), 3.33-3.35 (d, *J* = 9.6 Hz, 2H, O=CCH₂-C), 3.48-3.51 (d, *J* = 9.6 Hz, 3H, O=PCH₃),

3.80-3.82 (d, *J* = 10.4 Hz, 3H, O=PCH₃), 5.17-5.22 (d, *J* = 19.2 Hz, 1H, C-OH), 7.05-7.09 (m, 2H, Ar-H), 7.57-7.60 (m, 2H, Ar-H) ppm.

	Retention Time	Peak Type	Area	% Area	Height	% Height
1	9.667	Unknown	2389425	6.39	181323	8.14
2	11.382	Unknown	35001830	93.61	2047127	91.86

Diethyl [1-(4- fluorophenyl)-1-hydroxy-3-oxobutyl] phosphonate (4f)

solid; 86% yield, 96% *ee*. $[\alpha]_D^{21} = 31.7$ (*c* 0.322 in CH₂Cl₂). HPLC DAICEL CHIRALCEL AD-H, 2-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, $\lambda = 220$ nm, retention time: 6.5 min (minor) and 8.0 min (major); ¹H NMR (400 MHz, CDCl₃) 0.97-1.34 (m, 12H, Me-H), 2.14 (s, 3H,O=CCH₃), 3.28-3.31 (d, *J* = 9.2 Hz, 2H, O=CCH₂-C), 4.35-4.76 (m, 2H, O-CH-(Me)₂), 5.00-5.04 (d, *J* = 18.0 Hz, 1H, C-OH), 7.02-7.06 (m,

2H, Ar-H), 7.57-7.62 (m, 2H, Ar-H) ppm.

	Retention Time	Peak Type	Area	% Area	Height	% Height
1	6.496	Unknown	288560	2.04	33188	2.66
2	7.986	Unknown	13869960	97.96	1214046	97.34

Diethyl [1-(4-chlorophenyl)-1-hydroxy-3-oxobutyl] phosphonate (4g)

solid; 92% yield, 91% *ee.* $[\alpha]_D^{23} = 41.4$ (*c* 0.584 in CH₂Cl₂). HPLC DAICEL CHIRALCEL AD-H, 2-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, $\lambda = 220$ nm, retention time: 9.4 min (major) and 13.5 min

(minor); ¹H NMR (400 MHz, CDCl₃) 1.12 (t, J = 7.2 Hz, 3H, Me-H), 1.32 (t, J = 7.2 Hz, 3H, Me-H), 2.16 (s, 3H, O=CCH₃), 3.31-3.33 (m, 2H, O=CCH₂-C), 3.71-4.20 (m, 4H, O=PCH₂-Me), 5.11 (d, J = 18.4 Hz, 1H, C-OH), 7.34-7.56 (m, 2H, Ar-H) ppm.

	Retention Time	Peak Type	Area	% Area	Height	% Height
1	10.355	Unknown	1793593	4.33	127598	6.75
2	15.236	Unknown	39625403	95.67	1763254	93.25

Diethyl [1-(4-bromophenyl)-1-hydroxy-3-oxobutyl] phosphonate (4h)

solid; 86% yield, 92% *ee*. $[\alpha]_D^{23} = 39.5$ (*c* 0.440 in CH₂Cl₂). HPLC DAICEL CHIRALCEL AD-H, 2-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, $\lambda = 220$ nm, retention time: 11.2 min (minor) and 17.1 min (major); ¹H NMR (400 MHz, CDCl₃) 1.11-1.15 (t, *J* = 7.2 Hz, 3H, Me-H), 1.31-1.34 (t, *J* = 7.0 Hz, 3H, Me-H), 2.16 (s, 3H,O=CCH₃), 3.12-3.33 (d, *J* = 8.4 Hz, 2H,

O=CCH₂-C), 3.72-4.19 (m, 4H, O=PCH₂-Me), 5.09-5.14 (d, *J* = 18.8 Hz, 1H, C-OH), 7.49 (d, 4H, Ar-H) ppm.

	Retention Time	Peak Type	Area	% Area	Height	% Height
1	11.243	Unknown	1938666	4.26	125068	6.94
2	17.142	Unknown	43621286	95.74	1676593	93.06

Diethyl [1-(4-tert-butylphenyl)-1-hydroxy-3-oxobutyl] phosphonate (4i)

solid; 60% yield, 94% *ee*. $[\alpha]_D^{23} = 38.3$ (*c* 0.308 in CH₂Cl₂). HPLC DAICEL CHIRALCEL AD-H, 2-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, $\lambda = 220$ nm, retention time: 9.3 min (major) and 10.4 min (minor); ¹H NMR (400 MHz, CDCl₃) 1.05-1.09 (t, *J* = 7.0 Hz, 3H, Me-H), 1.30-1.34 (t, *J* = 7.2 Hz, 3H, Me-H), 1.30 (s, 9H,Ar-C(CH₃)₃),

2.16 (s, 3H, O=CCH₃), 3.33-3.37 (m, 2H, O=CCH₂-C), 3.62-4.17 (m, 4H, O=PCH₂-Me), 5.02-5.06 (d, J = 18.8 Hz, 1H, C-OH), 7.36-7.52 (d, 4H, Ar-H) ppm.

	Retention Time	Peak Type	Area	% Area	Height	% Height
1	9.226	Unknown	3647130	50.06	231161	52.29
2	10.320	Unknown	3638317	49.94	210916	47.71

	Retention Time	Peak Type	Area	% Area	Height	% Height
1	9.264	Unknown	21577023	96.79	1441440	96.45
2	10.445	Unknown	716538	3.21	53006	3.55

Diethyl [1-(4-methylphenyl)-1-hydroxy-3-oxobutyl] phosphonate (4j)

solid; 69% yield, 94% *ee*. $[\alpha]_D^{18} = 48.9$ (*c* 0.176 in CH₂Cl₂). HPLC DAICEL CHIRALCEL AD-H, 2-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, $\lambda = 220$ nm, retention time: 11.3 min (minor) and 14.0 min (major); ¹H NMR (400 MHz, CDCl₃) 1.11 (t, *J* = 7.2 Hz, 3H, Me-H), 1.32 (t, *J* = 6.8 Hz, 3H, Me-H), 2.14 (s, 3H, O=CCH₃), 2.33 (s, 3H, Ar-CH₃), 3.27-3.41 (m, 2H,

O=CCH₂-C), 3.66-4.19 (m, 4H, O=PCH₂-Me), 4.99 (d, *J* = 19.6 Hz, 1H, C-OH), 7.17-7.49 (m, 4H, Ar-H)ppm.

	Retention Time	Peak Type	Area	% Area	Height	% Height	
1	11.135	Unknown	10444324	50.05	598075	54.62	ĺ
2	13.827	Unknown	10425171	49.95	496926	45.38	ĺ
	[1	_

	Retention Time	Peak Type	Area	% Area	Height	% Height
1	11.294	Unknown	1113884	3.25	67771	4.20
2	14.020	Unknown	33152462	96.75	1545345	95.80

Diethyl [1-(3-bromophenyl)-1-hydroxy-3-oxobutyl] phosphonate (4k)

solid; 87% yield, 92% *ee.* $[\alpha]_D^{18} = 35.9$ (*c* 0.640 in CH₂Cl₂). HPLC DAICEL CHIRALCEL AD-H, 2-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, $\lambda = 220$ nm, retention time: 9.3 min (major) and 10.4 min (minor); ¹H NMR (400 MHz, CDCl₃) 1.14 (t, *J* = 6.8 Hz, 3H, Me-H), 1.33 (t, *J* = 6.8 Hz, 3H, Me-H), 2.18 (s, 3H, O=CCH₃), 3.31-3.35 (m, 2H,

O=CCH₂-C), 3.75-4.20 (m, 4H, O=PCH₂-Me), 5.23 (d, *J* = 18.4 Hz, 1H, C-OH), 7.22-7.79 (m, 4H, Ar-H) ppm.

	Retention Time	Peak Type	Area	% Area	Height	% Height	
1	9.142	Unknown	8604927	50.06	601889	52.47	
2	10.190	Unknown	8584844	49.94	545254	47.53	
	₹ 0.50	200 300 4/		600 7.00 Modes		1000	11.00 12.00

	Retention Time	Peak Type	Area	% Area	Height	% Height
1	9.294	Unknown	15265484	95.93	1079670	95.52

2	10.411	Unknown	648432	4.07	50682	4.48
---	--------	---------	--------	------	-------	------

Diethyl [1-(3-chlorophenyl)-1-hydroxy-3-oxobutyl] phosphonate (41)

CI HO I OEt solid; 95% yield, 94% *ee*. $[\alpha]_D^{17} = 42.9$ (*c* 0.756 in CH₂Cl₂). HPLC DAICEL CHIRALCEL AD-H, 2-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, λ = 220 nm, retention time: 9.1 min (major) and 10.4 min (minor); ¹H NMR (400 MHz, CDCl₃) 1.11-1.15 (t, *J* = 7.0 Hz, 3H, Me-H), 1.31-1.35 (t, *J* = 6.8 Hz, 3H, Me-H), 2.18 (s, 3H, O=CCH₃), 3.31-3.35 (m, 2H, O=CCH₂-C),

3.74-4.21 (m, 4H, O=PCH₂-Me), 5.13-5.18 (d, *J* = 18.4 Hz, 1H, C-OH), 7.25-7.64 (m, 4H, Ar-H) ppm.

	Retention Time	Peak Type	Area	% Area	Height	% Height
1	9.116	Unknown	14277763	96.79	1113649	96.30
2	10.350	Unknown	488733	3.21	42813	3.70

Diethyl [1-(3-methylphenyl)-1-hydroxy-3-oxobutyl] phosphonate (4m)

solid; 96% yield, 96% *ee*. $[\alpha]_D^{18} = 38.7$ (*c* 0.630 in CH₂Cl₂). HPLC DAICEL CHIRALCEL AS-H, 2-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, λ = 220 nm, retention time: 8.7 min (major) and 10.4 min (minor); ¹H NMR (400 MHz, CDCl₃) 1.10 (t, *J* = 7.2 Hz, 3H, Me-H), 1.33 (t, *J* = 7.2 Hz, 3H,

Me-H), 2.15 (s, 3H, O=CCH₃), 2.37 (s, 3H,Ar-CH₃), 3.29-3.41 (m, 2H, O=CCH₂-C), 3.64-4.19 (m, 4H, O=PCH₂-Me), 5.04 (d, *J* = 18.8 Hz, 1H, C-OH), 7.09-7.44 (m, 4H, Ar-H) ppm.

	Retention Time	Peak Type	Area	% Area	Height	% Height
1	9.005	Unknown	36176385	97.82	1378028	97.66
2	11.390	Unknown	806844	2.18	33024	2.34

Dimethyl [1-(3-methylphenyl)-1-hydroxy-3-oxobutyl] phosphonate (4n)

solid; 75% yield, 91% *ee*. $[\alpha]_D^{21} = 36.9$ (*c* 0.412 in CH₂Cl₂). HPLC DAICEL CHIRALCEL AS-H, 2-propanol/n-hexane = 10/90, flow rate = 1.0 mL/min, $\lambda = 220$ nm, retention time: 8.7 min (minor) and 10.4 min (major); ¹H NMR (400 MHz, CDCl₃) 2.15 (s, 3H,O=CCH₃), 2.37 (s, 3H,Ar-CH₃), 3.29-3.43 (m, 2H, O=CCH₂-C), 3.45-3.47 (d, J = 10.4 Hz, 3H, O=PCH₃), 3.79-3.82 (d, J = 10.4 Hz, 3H,

O=PCH₃), 5.08-5.13 (d, J = 19.6 Hz, 1H, C-OH), 7.10-7.45 (m, 4H, Ar-H) ppm.

	Retention Time	Peak Type	Area	% Area	Height	% Height
1	18.581	Unknown	4001648	50.88	79207	52.92
2	21.509	Unknown	3863927	49.12	70472	47.08

	Retention Time	Peak Type	Area	% Area	Height	% Height
1	18.146	Unknown	46656521	95.59	856025	95.07
2	21.619	Unknown	2151415	4.41	44414	4.93

4-Hydroxy-4-(3'-nitrophenyl)-butan-2-one (6a)

 O_2N

88% yield, 97% *ee*. $[\alpha]_D^{22} = 53.8$ (*c* 0.176 in CH₂Cl₂) HPLC DAICEL CHIRALCEL OJ-H, 2-propanol/*n*-hexane = 20/80, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 15.86 min (major) and 18.07 min (minor); ¹H

NMR (400 MHz, CDCl₃) 2.24 (s, 3H, O=C-CH₃), 2.88-2.90 (m, 2H, O=C-CH₂-), 3.63 (d, J = 3.2 Hz, 1H, Ar-CH-), 5.25-5.29 (m, 1H, -OH), 7.52-8.25 (m, 4H, Ar-H) ppm.

	Retention Time	Peak Type	Area	% Area	Height	% Height
1	15.858	Unknown	16269892	98.63	359282	98.12
2	18.071	Unknown	225856	1.37	6882	1.88

4-Hydroxy-4-(4'-trifluoromethyl)-butan-2-one (6b)

86% yield, 99% *ee*. $[α]_D^{22} = 61.3$ (*c* 0.166 in CH₂Cl₂) HPLC DAICEL CHIRALCEL AS-H, 2-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, λ = 210 nm, retention time: 10.0 min (major) and 12.2 min (minor); ¹H NMR (400 MHz, CDCl₃) 2.21 (s, 3H, O=C-CH₃), 2.84-2.86 (m, 2H,

O=C-CH₂-), 3.22 (s, Ar-CH-), 5.20-5.22 (t, *J* = 5.2 Hz, 1H, -OH), 7.47-7.62 (m, 4H, Ar-H) ppm.

	Retention Time	Peak Type	Area	% Area	Height	% Height
1	10.025	Unknown	15662353	99.62	854898	99.80

2	12.209	Unknown	59226	0.38	1750	0.20
---	--------	---------	-------	------	------	------

4-Hydroxy-4-(3',4'-dichlorophenyl)-butan-2-one (6c)

87% yield, 97% *ee*. $[α]_D^{22} = 56.4$ (*c* 0.192 in CH₂Cl₂) HPLC DAICEL CHIRALCEL AS-H, 2-propanol/*n*-hexane = 5/95, flow rate = 1.0 mL/min, λ = 210 nm, retention time: 21.2 min (major) and 23.4 min (minor); ¹H NMR (400 MHz, CDCl₃) 2.20 (s, 3H, O=C-CH₃), 2.88-2.82 (t, *J* = 5.4 Hz 2H,

O=C-CH₂-), 3.54-3.55 (d, *J* = 3.2 Hz, 1H, Ar-CH-), 5.10-5.12 (m, 1H, -OH), 7.16-7.47 (m, 4H, Ar-H) ppm.

	Name	Retention Time	Peak Type	Area	% Area	Height	% Height
1		21.195	Unknown	41836529	98.74	1007093	98.30
2		23.386	Unknown	532063	1.26	17434	1.70

(G) Copies of NMR spectra for 2a-2d and products

Catalyst 2a:

Catalyst 2b:

11:29:58

HAA068

10-Mar-2008 11:29:58 TOF MS ES+ 1.17e6

080310_JC02A 13 (0.222) AM (Cen,4, 80.00, Ar,10000.0,0.00,0.70); Sm (SG, 2x3.00); Cm (1:24)

Catalyst 2c:

Product 4a:

Product **4b**:

Product 4c:

Product 4d:

Product 4f:

Product 4g:

Product 4h:

Guirent Data Parameters NAME: 2009-06-30 jingjun-JJ4h FRACNO 1 1 FRACNO 1 1 FRACNO 1 1 FRACNO 2009630 Jing 2009600 JING 20096000 JING 2009600 JING 20096000 JING 200960000 JING 20096000 JING 20096000 JING 20096000 JING 20096000 JING 20096000 JING 200960000 JING 20096000 JING 20096000000000 JING

Product 4i:

Product 4k:

Product 41:

Product 4m:

Product 6a:

Product 6b:

36

(H) References

(1) (a) K. D. Berlin and H. A. Taylor, J. Am. Chem. Soc., 1964, 86, 3862.

(2) (a) J. Hine; S. M. Linden and V. M. Kanagasabapathy, J. Org. Chem., 1985, 50, 5092; (b) L. Q. Qiu; J. Wu; S. S. Chan; T. T. L. Au-Yeung; J. X. Ji; R. W. Guo; C. C. Pai; Z. Y. Zhou; X. S. Li; Q. H. Fan and A. S. C. Chan, Proc. Natl. Acad. Sci. U.S.A., 2004, 101, 5815; (c) Y. B. Sun; X. B. Wang; M, J. Guo; D. H. Wang; X, C. Dong; Y. Pan and Z. G. Zhang, Tetrahedron. Asymmetry, 2004, 15, 2185; (d) X. B. Wan; Y. H. Sun; Y. F. Luo; D. Li and Z. G. Zhang, J. Org. Chem., 2005, 70, 1070

(3) A. I. Vogel, "Textbook of Practical Organic Chemistry", 4th ed.; Longman: New York, 1978; pp 285-286.

(I) The information of single crystal X-ray diffraction analysis

CCDC 738508 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre *via* http://www.ccdc. cam.ac./conts/retrieving.html

Bond precision:	C-C = 0.0090 A	Waveler	ngth=0.71073
Cell:	a=8.771(3)	b=9.743(3)	c=26.204(9)
	alpha=90	beta=90	gamma=90
Temperature:	293 K		
	Calculated	Report	ted
Volume	2239.3(13)	2239.3	3(13)
Space group	P 21 21 21	P 21 2	21 21
Hall group	P 2ac 2ab	?	
Moiety formula	C24 H30 N4 O4	?	
Sum formula	C24 H30 N4 O4	C24 H3	30 N4 O4
Mr	438.52	438.52	2
Dx,g cm-3	1.301	1.301	
Z	4	4	
Mu (mm-1)	0.090	0.090	
F000	936.0	936.0	
F000'	936.41		
h,k,lmax	10,11,31	10,11,	,31
Nref	2390[4155]	2391	
Tmin, Tmax	0.972,0.976	0.972	,0.976
Tmin'	0.972		
Correction metho	od= NONE		
Data completene	ss= 1.00/0.58	Theta(max) = 2	5.490
R(reflections) =	0.0506(977)	wR2(reflection	ns)= 0.1402(2391)
S = 1.005	Npar=	303	

Check CIF/PLATON report Data block: cd4

PLATON version of 13/08/2009; check.def file version of 12/08/2009 Datablock cd4 - ellipsoid plot

Table 1. Crystal data and structure refinement for 2a.

Identification code	2a	
Empirical formula	$C_{24}H_{30}N_4O_4$	
Formula weight	438.52	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P 21 21 21	
Unit cell dimensions	a = 8.771(3) Å	$\alpha = 90 \text{ deg.}$
	b = 9.743(3) Å	$\beta = 90 \text{ deg.}$
	c = 26.204(9) Å	$\gamma = 90 \text{ deg.}$
Volume	2239.3(13) Å ³	
Ζ	4	
Density (calculated)	1.301 Mg/m ³	
Absorption coefficient	0.090 mm ⁻¹	
F(000)	936	
Crystal size	0.32 x 0.30 x 0.2	7 mm
θ range for data collection	1.55 to 25.49 deg.	
Index ranges	0<=h<=10, 0<=k	<=11, 0<=l<=31
Reflections collected	2417	

Independent reflections	2391 [R(int) = 0.0070]
Absorption correction	None
Max. and min. transmission	0.9761 and 0.9718
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2391 / 0 / 303
Goodness-of-fit on F ²	1.005
Final R indices $[I \ge 2\sigma(I)]$	R1 = 0.0506, wR2 = 0.1054
R indices (all data)	R1 = 0.1969, wR2 = 0.1402
Absolute structure parameter	0(4)
Largest diff. peak and hole	0.307 and -0.282 eÅ ⁻³

Note: The crystal diffraction ability for **2a** was weak, and result in more weak diffraction data for collection, which was the cause for a poor ratio of observed to unique reflections and also a poor data/parameter ratio.

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å² x 10³) for 2a.

	Х	У	Z	U(eq)
O(1)	-10828(6)	-8775(5)	-8618(2)	76(2)
O(2)	-4248(6)	-10307(5)	-9672(2)	85(2)
O(3)	-9797(6)	-12276(4)	-8981(1)	68(2)
O(4)	-6551(5)	-9333(4)	-7028(2)	62(1)
N(1)	-6176(6)	-10828(5)	-9119(2)	54(2)
N(2)	-5196(7)	-13340(6)	-8937(2)	69(2)
N(3)	-7316(6)	-9175(4)	-7853(2)	46(1)
N(4)	-5984(8)	-6780(6)	-8004(2)	62(2)
C(1)	-8457(8)	-9717(6)	-8848(2)	45(2)
C(2)	-9574(10)	-8709(7)	-8924(2)	61(2)
C(3)	-9355(10)	-7666(7)	-9284(2)	70(2)
C(4)	-8058(10)	-7683(7)	-9575(2)	71(2)
C(5)	-6967(9)	-8683(7)	-9522(2)	66(2)
C(6)	-7182(8)	-9712(6)	-9170(2)	50(2)
C(7)	-12195(9)	-8124(9)	-8776(3)	107(3)
C(8)	-4871(8)	-11107(7)	-9371(2)	59(2)
C(9)	-4202(8)	-12515(7)	-9266(2)	61(2)
C(10)	-3963(11)	-13351(7)	-9748(3)	89(3)
C(11)	-5182(12)	-14355(11)	-9748(3)	155(5)
C(12)	-5690(11)	-14563(7)	-9224(3)	95(3)
C(13)	-8668(7)	-10708(5)	-8421(2)	41(2)
C(14)	-9385(7)	-11964(6)	-8491(2)	49(2)
C(15)	-9712(7)	-12841(6)	-8083(2)	51(2)
C(16)	-9261(7)	-12470(6)	-7609(2)	54(2)

 U_{eq} is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(17)	-8484(7)	-11271(6)	-7517(2)	51(2)	
C(18)	-8154(7)	-10404(6)	-7925(2)	46(2)	
C(19)	-10206(9)	-13683(7)	-9088(3)	84(2)	
C(20)	-6585(7)	-8723(6)	-7440(2)	46(2)	
C(21)	-5732(7)	-7378(6)	-7505(2)	53(2)	
C(22)	-6261(8)	-6317(6)	-7105(2)	65(2)	
C(23)	-7288(8)	-5364(6)	-7385(2)	67(2)	
C(24)	-7222(9)	-5773(7)	-7945(2)	71(2)	

Table 3.Bond lengths [Å] for 2a.

O(1)-C(2)	1.363(8)	O(1)-C(7)	1.418(8)
O(2)-C(8)	1.235(7)	O(3)-C(14)	1.368(6)
O(3)-C(19)	1.444(7)	O(4)-C(20)	1.231(6)
N(1)-C(8)	1.350(7)	N(1)-C(6)	1.407(7)
N(1)-H(1)	0.8600	N(2)-C(9)	1.466(8)
N(2)-C(12)	1.474(8)	N(2)-HN2	0.97(7)
N(3)-C(20)	1.332(7)	N(3)-C(18)	1.417(7)
N(3)-H(3)	0.8600	N(4)-C(21)	1.448(8)
N(4)-C(24)	1.472(8)	N(4)-HN4	0.81(7)
C(1)-C(6)	1.401(8)	C(1)-C(2)	1.401(9)
C(1)-C(13)	1.489(7)	C(2)-C(3)	1.399(8)
C(3)-C(4)	1.370(9)	C(3)-H(3A)	0.9300
C(4)-C(5)	1.372(9)	C(4)-H(4)	0.9300
C(5)-C(6)	1.375(8)	C(5)-H(5)	0.9300
C(7)-H(7A)	0.9600	C(7)-H(7B)	0.9600
C(7)-H(7C)	0.9600	C(8)-C(9)	1.517(9)
C(9)-C(10)	1.519(8)	C(9)-H(9)	0.9800
C(10)-C(11)	1.449(10)	C(10)-H(10A)	0.9700
C(10)-H(10B)	0.9700	C(11)-C(12)	1.458(10)
C(11)-H(11A)	0.9700	C(11)-H(11B)	0.9700
C(12)-H(12A)	0.9700	C(12)-H(12B)	0.9700
C(13)-C(14)	1.388(7)	C(13)-C(18)	1.407(7)
C(14)-C(15)	1.398(7)	C(15)-C(16)	1.354(7)
C(15)-H(15)	0.9300	C(16)-C(17)	1.374(8)
C(16)-H(16)	0.9300	C(17)-C(18)	1.393(7)
C(17)-H(17)	0.9300	C(19)-H(19A)	0.9600
C(19)-H(19B)	0.9600	C(19)-H(19C)	0.9600
C(20)-C(21)	1.518(8)	C(21)-C(22)	1.545(8)
C(21)-H(21)	0.9800	C(22)-C(23)	1.488(8)
C(22)-H(22A)	0.9700	C(22)-H(22B)	0.9700
C(23)-C(24)	1.519(8)	C(23)-H(23A)	0.9700
C(23)-H(23B)	0.9700	C(24)-H(24A)	0.9700

C(2)-O(1)-C(7)	119.2(5)	C(14)-O(3)-C(19)	117.2(5)
C(8)-N(1)-C(6)	129.9(6)	C(8)-N(1)-H(1)	115.1
C(6)-N(1)-H(1)	115.1	C(9)-N(2)-C(12)	108.5(5)
C(9)-N(2)-HN2	116(4)	C(12)-N(2)-HN2	114(4)
C(20)-N(3)-C(18)	129.6(5)	C(20)-N(3)-H(3)	115.2
C(18)-N(3)-H(3)	115.2	C(21)-N(4)-C(24)	106.5(5)
C(21)-N(4)-HN4	109(5)	C(24)-N(4)-HN4	113(6)
C(6)-C(1)-C(2)	118.1(6)	C(6)-C(1)-C(13)	123.6(6)
C(2)-C(1)-C(13)	118.3(6)	O(1)-C(2)-C(3)	122.8(7)
O(1)-C(2)-C(1)	116.6(6)	C(3)-C(2)-C(1)	120.6(7)
C(4)-C(3)-C(2)	118.7(7)	C(4)-C(3)-H(3A)	120.6
C(2)-C(3)-H(3A)	120.6	C(3)-C(4)-C(5)	122.1(7)
C(3)-C(4)-H(4)	118.9	C(5)-C(4)-H(4)	118.9
C(4)-C(5)-C(6)	119.3(7)	C(4)-C(5)-H(5)	120.3
C(6)-C(5)-H(5)	120.3	C(5)-C(6)-C(1)	121.0(7)
C(5)-C(6)-N(1)	122.8(6)	C(1)-C(6)-N(1)	116.2(5)
O(1)-C(7)-H(7A)	109.5	O(1)-C(7)-H(7B)	109.5
H(7A)-C(7)-H(7B)	109.5	O(1)-C(7)-H(7C)	109.5
H(7A)-C(7)-H(7C)	109.5	H(7B)-C(7)-H(7C)	109.5
O(2)-C(8)-N(1)	124.0(7)	O(2)-C(8)-C(9)	121.0(6)
N(1)-C(8)-C(9)	114.9(6)	N(2)-C(9)-C(8)	111.9(6)
N(2)-C(9)-C(10)	106.1(6)	C(8)-C(9)-C(10)	112.7(6)
N(2)-C(9)-H(9)	108.7	C(8)-C(9)-H(9)	108.7
C(10)-C(9)-H(9)	108.7	C(11)-C(10)-C(9)	105.0(7)
С(11)-С(10)-Н(10А)	110.7	C(9)-C(10)-H(10A)	110.7
C(11)-C(10)-H(10B)	110.7	C(9)-C(10)-H(10B)	110.7
H(10A)-C(10)-H(10B)	108.8	C(10)-C(11)-C(12)	108.7(7)
C(10)-C(11)-H(11A)	109.9	C(12)-C(11)-H(11A)	109.9
C(10)-C(11)-H(11B)	109.9	C(12)-C(11)-H(11B)	109.9
H(11A)-C(11)-H(11B)	108.3	C(11)-C(12)-N(2)	106.2(7)
C(11)-C(12)-H(12A)	110.5	N(2)-C(12)-H(12A)	110.5
C(11)-C(12)-H(12B)	110.5	N(2)-C(12)-H(12B)	110.5
H(12A)-C(12)-H(12B)	108.7	C(14)-C(13)-C(18)	116.9(5)
C(14)-C(13)-C(1)	121.9(5)	C(18)-C(13)-C(1)	121.2(5)
O(3)-C(14)-C(13)	116.0(5)	O(3)-C(14)-C(15)	121.8(5)
C(13)-C(14)-C(15)	122.1(5)	C(16)-C(15)-C(14)	118.5(5)
C(16)-C(15)-H(15)	120.7	С(14)-С(15)-Н(15)	120.7
C(15)-C(16)-C(17)	122.3(6)	C(15)-C(16)-H(16)	118.9
C(17)-C(16)-H(16)	118.9	C(16)-C(17)-C(18)	118.9(6)

Table 4.Angles [deg] for 2a.

C(16)-C(17)-H(17)	120.5	C(18)-C(17)-H(17)	120.5
C(17)-C(18)-C(13)	121.0(6)	C(17)-C(18)-N(3)	121.1(5)
C(13)-C(18)-N(3)	117.9(5)	O(3)-C(19)-H(19A)	109.5
O(3)-C(19)-H(19B)	109.5	H(19A)-C(19)-H(19B)	109.5
O(3)-C(19)-H(19C)	109.5	H(19A)-C(19)-H(19C)	109.5
H(19B)-C(19)-H(19C)	109.5	O(4)-C(20)-N(3)	124.3(6)
O(4)-C(20)-C(21)	120.2(5)	N(3)-C(20)-C(21)	115.5(5)
N(4)-C(21)-C(20)	112.0(5)	N(4)-C(21)-C(22)	107.4(5)
C(20)-C(21)-C(22)	110.7(5)	N(4)-C(21)-H(21)	108.9
C(20)-C(21)-H(21)	108.9	C(22)-C(21)-H(21)	108.9
C(23)-C(22)-C(21)	105.3(5)	C(23)-C(22)-H(22A)	110.7
C(21)-C(22)-H(22A)	110.7	C(23)-C(22)-H(22B)	110.7
C(21)-C(22)-H(22B)	110.7	H(22A)-C(22)-H(22B)	108.8
C(22)-C(23)-C(24)	106.9(6)	C(22)-C(23)-H(23A)	110.3
C(24)-C(23)-H(23A)	110.3	C(22)-C(23)-H(23B)	110.3
C(24)-C(23)-H(23B)	110.3	H(23A)-C(23)-H(23B)	108.6
N(4)-C(24)-C(23)	107.8(6)	N(4)-C(24)-H(24A)	110.1
C(23)-C(24)-H(24A)	110.1	N(4)-C(24)-H(24B)	110.1
C(23)-C(24)-H(24B)	110.1	H(24A)-C(24)-H(24B)	108.5

Symmetry transformations used to generate equivalent atoms:

Table 5. Anisotropic displacement parameters (Å² x 10³) for 2a. The anisotropic displacement factor exponent takes the form: -2 π^2 [$h^2 a^{*2} U^{11} + ... + 2hka^*b^*U^{12}$]

	U11	U22	U33	U23	U13	U12	
O(1)	89(4)	89(4)	51(3)	12(2)	11(3)	37(3)	
O(2)	88(4)	78(3)	89(4)	8(3)	37(3)	-13(3)	
O(3)	100(4)	54(3)	50(3)	-2(2)	-11(3)	-24(3)	
O(4)	83(3)	53(2)	50(3)	8(2)	-27(2)	-4(3)	
N(1)	54(4)	62(4)	46(3)	16(3)	6(3)	-3(3)	
N(2)	101(5)	73(4)	33(3)	0(3)	-5(3)	1(4)	
N(3)	58(4)	36(3)	43(3)	7(2)	-6(3)	-4(3)	
N(4)	70(5)	56(4)	61(4)	2(3)	17(4)	-10(4)	
C(1)	65(5)	34(3)	37(3)	3(3)	-3(3)	-2(4)	
C(2)	84(6)	47(4)	53(4)	-2(4)	-12(4)	2(5)	
C(3)	111(7)	50(4)	47(4)	8(4)	-18(4)	11(5)	
C(4)	112(7)	45(4)	55(4)	17(4)	-9(4)	-12(5)	
C(5)	87(6)	65(4)	47(4)	21(4)	0(4)	-6(5)	
C(6)	64(5)	41(4)	43(4)	0(3)	-10(4)	-9(4)	
C(7)	106(7)	133(8)	83(6)	16(6)	-20(5)	31(7)	
C(8)	54(5)	67(5)	55(4)	-4(4)	10(4)	-10(5)	

C(9)	61(5)	78(5)	42(3)	-1(4)	8(4)	9(5)
C(10)	109(7)	93(6)	66(5)	-16(4)	20(5)	19(6)
C(11)	157(11)	199(11)	109(7)	-94(8)	66(8)	-69(11)
C(12)	128(8)	80(5)	76(5)	1(5)	1(6)	-14(6)
C(13)	49(4)	33(3)	42(3)	1(3)	-4(3)	5(3)
C(14)	59(4)	47(4)	42(3)	0(3)	-4(3)	1(4)
C(15)	60(5)	35(3)	57(4)	3(3)	3(3)	0(4)
C(16)	72(5)	42(4)	48(4)	16(3)	-2(4)	1(4)
C(17)	58(5)	52(4)	43(4)	9(3)	-4(3)	13(4)
C(18)	48(4)	40(4)	52(4)	2(3)	2(3)	12(4)
C(19)	106(7)	59(4)	87(5)	-17(4)	-12(5)	-16(5)
C(20)	47(4)	45(4)	46(4)	-7(3)	-6(3)	9(4)
C(21)	46(4)	51(4)	62(4)	-7(4)	-5(3)	-4(4)
C(22)	85(6)	47(4)	64(4)	-6(4)	-17(4)	2(4)
C(23)	72(5)	43(4)	87(5)	3(4)	17(4)	-2(4)
C(24)	80(6)	67(4)	67(4)	7(4)	4(4)	10(5)

Table 6. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å² $x \ 10^3$) for 2a.

	х	У	Z	U(eq)
H(1)	-6432	-11424	-8893	65
H(3)	-7273	-8642	-8114	55
H(3A)	-10076	-6975	-9325	84
H(4)	-7911	-6995	-9816	85
H(5)	-6092	-8665	-9722	80
H(7A)	-12047	-7147	-8782	161
H(7B)	-13000	-8347	-8542	161
H(7C)	-12463	-8436	-9112	161
H(9)	-3216	-12399	-9095	73
H(10A)	-4025	-12770	-10048	107
H(10B)	-2976	-13800	-9744	107
H(11A)	-4820	-15214	-9890	186
H(11B)	-6024	-14031	-9956	186
H(12A)	-5233	-15385	-9082	114
H(12B)	-6790	-14656	-9211	114
H(15)	-10229	-13662	-8137	61
H(16)	-9484	-13046	-7336	65
H(17)	-8183	-11041	-7188	61
H(19A)	-9395	-14279	-8980	126
H(19B)	-10374	-13793	-9447	126
H(19C)	-11121	-13913	-8906	126

-4639	-7547	-7461	64
-6803	-6764	-6828	78
-5395	-5825	-6964	78
-6950	-4423	-7343	80
-8323	-5440	-7258	80
-8185	-6173	-8049	86
-7026	-4973	-8155	86
-4810(8)	-13540(7)	-8600(3)	120(3)
-5190(8)	-6440(8)	-8100(3)	90(3)
	-4639 -6803 -5395 -6950 -8323 -8185 -7026 -4810(8) -5190(8)	-4639-7547-6803-6764-5395-5825-6950-4423-8323-5440-8185-6173-7026-4973-4810(8)-13540(7)-5190(8)-6440(8)	-4639-7547-7461-6803-6764-6828-5395-5825-6964-6950-4423-7343-8323-5440-7258-8185-6173-8049-7026-4973-8155-4810(8)-13540(7)-8600(3)-5190(8)-6440(8)-8100(3)

Table 7. Selected torsion angles for 2a.

23.90 (0.96) C7 - O1 - C2 - C3	-158.75 (0.59) C7 - O1 - C2 - C1
177.51 (0.50) C6 - C1 - C2 - O1	-4.20 (0.83) C13 - C1 - C2 - O1
-5.07 (0.87) C6 - C1 - C2 - C3	173.22 (0.53) C13 - C1 - C2 - C3
179.92 (0.60) O1 - C2 - C3 - C4	2.67 (0.94) C1 - C2 - C3 - C4
-0.39 (1.00) C2 - C3 - C4 - C5	0.64 (0.99) C3 - C4 - C5 - C6
-3.19 (0.89) C4 - C5 - C6 - C1	175.16 (0.53) C4 - C5 - C6 - N1
5.36 (0.84) C2 - C1 - C6 - C5	-172.84 (0.55) C13 - C1 - C6 - C5
-173.10 (0.49) C2 - C1 - C6 - N1	8.71 (0.79) C13 - C1 - C6 - N1
1.60 (0.91) C8 - N1 - C6 - C5	-179.98 (0.55) C8 - N1 - C6 - C1
7.49 (1.00) C6 - N1 - C8 - O2	-171.70 (0.53) C6 - N1 - C8 - C9
117.44 (0.60) C12 - N2 - C9 - C8	-5.88 (0.83) C12 - N2 - C9 - C10
-174.55 (0.58) O2 - C8 - C9 - N2	4.66 (0.75) N1 - C8 - C9 - N2
-55.06 (0.93) O2 - C8 - C9 - C10	124.16 (0.68) N1 - C8 - C9 - C10
18.16 (0.88) N2 - C9 - C10 - C11	-104.64 (0.79) C8 - C9 - C10 - C11
-24.10 (1.00) C9 - C10 - C11 - C12	20.70 (1.04) C10 - C11 - C12 - N2
-8.62 (0.95) C9 - N2 - C12 - C11	-89.39 (0.76) C6 - C1 - C13- C14
92.42 (0.72) C2 - C1 - C13 - C14	91.06 (0.71) C6 - C1 - C13 - C18
-87.13 (0.72) C2 - C1 - C13 - C18	165.66 (0.60) C19 - O3 - C14 - C13
-16.26 (0.89) C19 - O3 - C14 - C15	-176.29 (0.51) C18 - C13 - C14 - O3
4.14 (0.88) C1 - C13 - C14 - O3	5.64 (0.87) C18 - C13 - C14 - C15
-173.92 (0.59) C1 - C13 - C14 - C15	179.54 (0.57) O3 - C14 - C15 - C16
-2.50 (0.92) C13 - C14 - C15 - C16	-0.60 (0.92) C14 - C15 - C16 - C17
0.26 (0.90) C15 - C16 - C17 - C18	3.13 (0.86) C16 - C17 - C18 - C13
-178.12 (0.52) C16 - C17 - C18 - N3	-5.93 (0.84) C14 - C13 - C18 - C17
173.64 (0.57) C1 - C13 - C18 - C17	175.28 (0.53) C14 - C13 - C18 - N3
-5.15 (0.81) C1 - C13 - C18 - N3	8.51 (0.89) C20 - N3 - C18 - C17
-172.71 (0.58) C20 - N3 - C18 - C13	-1.64 (0.99) C18 - N3 - C20 - O4
177.11 (0.52) C18 - N3 - C20 - C21	96.02 (0.58) C24 - N4 - C21 - C20
-25.66 (0.71) C24 - N4 - C21 - C22	-176.58 (0.57) O4 - C20 - C21 - N4
4.62 (0.74) N3 - C20 - C21 - N4	-56.82 (0.75) O4 - C20 - C21 - C22
124.37 (0.57) N3 - C20 - C21 - C22	19.49 (0.72) N4 - C21 - C22 - C23

-103.01 (0.58)	C20 - C21 - C22 - C23	-5.73 (0.70)	C21 - C22 - C23 - C24
22.07 (0.70)	C21 - N4 - C24 - C23	-9.62 (0.72)	C22 - C23 - C24 - N4

Table 8. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) for 2a.

- 4.1200 (0.0189) x - 5.4716 (0.0184) y - 17.8490 (0.0475) z = 24.6211 (0.0261)

- * -0.0268 (0.0041) C1
- * 0.0175 (0.0044) C2
- * -0.0008 (0.0045) C3
- * -0.0067 (0.0047) C4
- * -0.0032 (0.0044) C5
- * 0.0200 (0.0040) C6

Rms deviation of fitted atoms = 0.0157

7.6407 (0.0109) x - 4.5415 (0.0207) y - 4.0467 (0.0606) z = 1.6792 (0.0609)

Angle to previous plane (with approximate esd) = 87.58 (0.17)

- * -0.0315 (0.0040) C13
- * 0.0193 (0.0042) C14
- * 0.0030 (0.0043) C15
- * -0.0126 (0.0042) C16
- * -0.0009 (0.0041) C17
- * 0.0227 (0.0041) C18

Rms deviation of fitted atoms = 0.0185

Reference(Program):

(1). Data collection and Cell reduction:

DIFRAC, A Fortran 77 Control Routine for 4-Circle Diffractometers

E. J. Gabe, P. S. White and G. D. Enright, (1993) DIFRAC *American Crystallographic Association*, Pittsburgh Meeting Abstract, PA 104.

(2). Structure solution:

(a).Data reduction

NRCVAX

E. J. Gabe, Y. Le Page, J. P. Charland, F. L Lee & P. S White, J.Appl. Cryst., 1989, 22, 384-387.

(b).Structure Solution and refinement

SHELXS-97 and SHELXL-97

G. M. Sheldrick, Acta Cryst. 1990, A46 467-473;

G. M. Sheldrick, (1997), SHELXL97 Program for the Refinement of Crystal Structure, University of Gottingen, Germany.

(3). Graphics:

Ortep-3 for Windoms 1.076

L. J. Frarrugia, J. Appl. Cryst. 1997, 30, 565.