ELECTRONIC SUPPORTING INFORMATION

Folding and self-assembling with β -oligomers based on (1R,2S)-2-aminocyclobutane-1-carboxylic acid

Elisabeth Torres,^a Esther Gorrea,^a Kepa K. Burusco,^a Eric Da Silva,^a Pau Nolis,^b Federico Rúa,^a Stéphanie Boussert,^c Ismael Díez-Pérez,^d Samantha Dannenberg,^a Sandra Izquierdo,^a Ernest Giralt,^{c,e} Carlos Jaime,^a Vicenç Branchadell,^a and Rosa M. Ortuño^{*a}

a: Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain. E-mail: <u>rosa.ortuno@uab.es;</u> fax: (34) 935811265

b: Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona,
08193 Bellaterra, Spain

c: Institut de Recerca Biomèdica de Barcelona, Parc Científic de Barcelona, Josep Samitier 1-5, 08028 Barcelona, Spain.

d: Departament de Química Física, Universitat de Barcelona, Martí i Franques 1, 08028 Barcelona, Spain.

e: Departament de Química Orgànica, Universitat de Barcelona, 08028 Barcelona, Spain

SUMMARY

Structural study by theoretical calculations	S3
NMR studies on 8b and 9a, and spectra for 7a, 10a, 12, and 13	.S12
CD spectrum of tetramer 8b	.S33
Image of the gel formed by 8b	. S 33
Normalized (per residue) CD spectra of 2a, 8a, 9a, 10a	S34

STRUCTURAL STUDY BY MEANS OF

THEORETICAL CALCULATIONS

Conformational search	S4
Aggregation studies: Hydrogen-bonding interactions	S8

The molecules under study were built taking profit of the modular philosophy of Amber 7 and the parm99 Force Field was employed in all cases. The fragments of the molecules are split up into are shown in Fig. S1.

Fig. S1 Schematic depiction of the tetramer 8a. Three units are necessary for creating these molecules.

CONFORMATIONAL SEARCH

Fig. S2 Simulated Annealing algorithm used in this work: The iterative process concatenates a series of individual steps where a thermal shock is applied to the molecules under study. The output from step "n-1 "is the input of step "n".

SA.in

Simulated Annealing input file for AMBER 7.

```
Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is @ The Royal Society of Chemistry 2009
```

```
Simulated Annealing calculation for SA - Fast Calculation
 &cntrl
imin=0, nmropt=1,
ntx=1, irest=0, ntrx=1,
ntxo=1, ntpr=1000, ntwr=1000,
iwrap=0, ntwx=1000, ntwv=0, ntwe=1000,
lastrst=3000000.
ioutfm=0, ntwprt=0, idecomp=0,
ntf=2, ntb=0, igb=0, nsnb=25,
ipol=0, gbsa=0,
dielc=1.0, cut=12.0, intdiel=1.0,
scnb=2.0, scee=1.2,
nstlim=30000, nscm=1000, nrespa=1,
t=0.0, dt=0.001, vlimit=10.0,
ig=71277, ntt=1, vrand=0,
temp0= 1000.0, tempi=0.0, heat=0.0,
dtemp=5.0, tautp=0.5,
ntc=2,
tol=0.00001
 &end
 &wt type='TEMP0', istep1=1,
                                       istep2=2500, value1=10.0,
                                                                           value2=1200.0, &end
 &wt type='TEMP0', istep1=2501, istep2=20000, value1=1200.0, value2=1200.0, &end
 &wt type='TEMP0', istep1=20001, istep2=30000, value1=0.0,
                                                                          value2=0.0,
                                                                                             &end
 &wt type='TAUTP', istep1=20001, istep2=20000, value1=0.0,
&wt type='TAUTP', istep1=1, istep2=5000, value1=0.2,
&wt type='TAUTP', istep1=5001, istep2=25000, value1=4.0,
&wt type='TAUTP', istep1=25001, istep2=28000, value1=2.0,
                                                                           value2=4.0.
                                                                                             &end
                                                                           value2=2.0,
                                                                                             &end
                                                                           value2=1.0,
                                                                                             &end
 &wt type='TAUTP', istep1=28001, istep2=29000, value1=1.0,
                                                                           value2=0.5,
                                                                                             &end
 &wt type='TAUTP', istep1=29001, istep2=30000, value1=0.5,
&wt type='REST', istep1=1, istep2=5000, value1=0.1,
                                                                           value2=0.05,
                                                                                             &end
                                                                           value2=1.0,
                                                                                             &end
 &wt type='REST', istep1=5001, istep2=30000, value1=1.0,
                                                                           value2=1.0,
                                                                                             &end
 &wt type='END'
 &end
DISANG=tetraSA rst.f
```

Conformations obtained from Conformational Search

The wide conformational freedom within these molecules does not allow selecting a single major representative conformation for any of the polypeptides. Nevertheless, 3 structures have been selected in each case on the basis of the analysis of the two-dimensional plots of principal components (Fig. S3).

Tetrapeptide 8a

Octapeptide 10a

Fig. S3 Selected conformers for the tetramer 8a and the octamer 10a.

Fig. S4 Schematic depiction of the 3-step Molecular Dynamics process in CHCl₃.

Step 0: Geometrical Optimization.

```
stp0. Energy Minimization - Geometrical Optimization (Restricted)
 &cntrl
   imin=1,
               nmropt=1,
   ntx=1,
              irest=0,
                            ntrx=1,
               igb=0,
                            nsnb=25,
   ntb=1,
   ipol=0,
              gbsa=0,
   dielc=1.0, cut=12.0,
                            intdiel=1.0,
   scnb=2.0,
               scee=1.2,
   ibelly=0,
               ntr=0,
   maxcyc=50000,
&end
1.0
&wt type='END' &end
DISANG=hexaSA_rst.f
```

Step 1: Heating and Equilibration (NVT).

Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2009

```
stpl. Heating and Equilibration (Restricted) V cte. (NVT).
  &cntrl
     imin=0.
                                  nmropt=1,
     ntx=1,
                                 irest=0,
                                                          ntrx=1,
     ntxo=1,
                                  ntpr=1000,
                                                          ntwr=1000,
     iwrap=1,
     ntwx = 1000.
                                 ntwv=0.
                                                          ntwe=1000.
     lastrst=50000000,
     ntf=2,
                          ntb=1,
     igb=0,
                                  nsnb=25,
                                 cut=12.0,
     ntc=2,
     nstlim=300000, nscm=1000,
                                                         nrespa=1,
                      αι-ς
ntt=1,
                                  dt=0.001,
                                                          vlimit=20.0,
     t=0.0,
     ig=71277,
                                                          vrand=0,
     ig=/12/,,
temp0=298.0,
                                  tempi=0.0,
                                                          heat=0.0,
     dtemp=5.0,
                                  tautp=0.5,
     tol=0.00001,
  &end
 &wt type='TEMP0', istep1=0,istep2=100000, value1=0.0,value2=298.0, &end&wt type='TEMP0', istep1=100001, istep2=300000, value1=298.0, value2=298.0, &end&wt type='TAUTP', istep1=1,istep2=50000, value1=0.2,
 &wt type='TAUTP', istep1=50001, istep2=250000, value1=4.0, value2=2.0,
&wt type='TAUTP', istep1=250001, istep2=280000, value1=2.0, value2=1.0,
                                                                                                                                              &end

      awt type='TAUTP', istep1=250001, istep2=280000, value1=1.0, value2=1.0, &end

      &wt type='TAUTP', istep1=280001, istep2=290000, value1=1.0, value2=0.5, &end

      &wt type='TAUTP', istep1=290001, istep2=300000, value1=0.5, value2=0.05, &end

      &wt type='REST', istep1=1, istep2=100000, value1=0.1, value2=1.0, &end

      &wt type='REST', istep1=100001, istep2=300000, value1=1.0, value2=1.0, &end

 &wt type='END'
 &end
DISANG=hexaSA_rst.f
```

Step 2: Equilibration (NPT).

```
stp2. Equilibration (Restricted) P cte. (NPT).
&cntrl
  imin=0.
                  nmropt=1,
                                ntrx=1,
  ntx=1,
                  irest=0,
                  ntpr=1000,
  ntxo=1,
                               ntwr=1000,
  iwrap=1,
  ntwx=1000,
                  ntwv=0,
                               ntwe=1000,
  lastrst=50000000,
  ntf=2,
              ntb=2,
                                ntp=1,
   igb=0,
                  nsnb=25,
                  cut=12.0.
  ntc=2.
  nstlim=300000, nscm=1000,
                              nrespa=1,
            a.-.
ntt=1,
                  dt=0.001,
   t=0.0,
                                vlimit=20.0,
   ig=71277,
                                vrand=0,
  lg=/12/,,
temp0=298.0,
                  tempi=298.0, heat=0.0,
                               comp=97.4,
   dtemp=5.0,
                  tautp=0.5,
   tol=0.00001,
&end
&wt type='TEMP0', istep1=0, istep2=300000, value1=298.0, value2=298.0, &end
&wt type='END'
&end
DISANG=hexaSA_rst.f
```

Step 3: Sampling (NPT).

```
stp3. Sampling (Restricted) a P cte. (NPT).
&cntrl
  imin=0.
                  nmropt=1,
  ntx=1,
                  irest=0,
                                ntrx=1.
  ntxo=1,
                  ntpr=1000,
                               ntwr=1000,
  iwrap=0,
  ntwx=1000.
                  nt.wv=0.
                               ntwe=1000.
  lastrst=50000000,
  ntf=2,
           ntb=2,
                                ntp=1,
  igb=0,
                  nsnb=25,
                  cut = 12.0.
  ntc=2,
  nstlim=5000000, nscm=1000,
                               nrespa=1,
             dt=0.001,
                                vlimit=20.0,
  t=0.0,
  ig=71277,
                 ntt=1,
                                vrand=0,
  temp0=298.0, tempi=298.0, heat=0.0
```

Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2009

```
dtemp=5.0, tautp=0.5, comp=97.4,
tol=0.00001,
&end
&wt type='TEMP0', istep1=0, istep2=5000000, value1=298.0, value2=298.0, &end
&wt type='END'
&end
DISANG=hexaSA_rst.f
```

The results point that the hexapeptide **9a**, likewise the tetrapeptide **8a** and octapeptide **10a**, adopts in chloroform extended conformations, as show the average structures from the MD trajectories and also informations in Table 1.

	tetra	distances (Å) NHHC (No Rst				
	conf.	d1	d2	d3		
Average	1	2.36	2.35	2.35		
	2	2.43	2.39	2.35		
	3	2.54	2.25	2.32		
Std.Dev.	1	0.33	0.31	0.33		
	2	0.36	0.35	0.32		
	3	0.40	0.22	0.30		

	octa		distances (Å) NH···HC (No Rstr)								
	conf.	d1	d2	d3	d4	d5	d6	d7			
Average	1	2.37	2.27	2.47	2.28	2.42	2.40	2.40			
	2	2.38	2.32	2.35	2.36	2.29	2.29	2.29			
	3	2.37	2.35	2.38	2.21	2.31	2.29	2.29			
	1	0.33	0.25	0.39	0.27	0.37	0.36	0.36			
Std.Dev.	2	0.35	0.30	0.34	0.34	0.27	0.27	0.27			
	3	0.34	0.32	0.34	0.16	0.29	0.26	0.26			

Tabla 1

AGGREGATION STUDIES: HYDROGEN-BONDING INTERACTIONS.

Fig. S5 Schematic depiction of the 2-step Molecular Dynamics process in vacuo.

Step 0: Geometrical Optimization.

stp0. Energetical Minimization - Geometrical Optimization (Restricted - Vacuum no Box). &cntrl Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is @ The Royal Society of Chemistry 2009

```
imin=1,
            nmropt=1,
             irest=0, ntrx=1,
 ntx=1,
 ntb=0,
            igb=0,
                       nsnb=25,
  ipol=0,
            gbsa=0,
 dielc=1.0, cut=12.0, intdiel=1.0,
 scnb=2.0, scee=1.2,
  ibelly=0,
            ntr=0.
 lastrst=5000000,
 maxcyc=50000,
 &end
&wt type='END' &end
DISANG=tetra9A_rst.f
```

Step 1: Heating and Equilibration.

```
stpl. Heating and equilibration. Vacuum. Bath Thermal Coupling. (Restricted).
 &cntrl
   imin=0,
                                  nmropt=1,
                                 irest=0,
   ntx=1,
                                                          ntrx=1,
   ntxo=1,
                                  ntpr=1000, ntwr=1000,
                                 ntwx=1000, ntwv=0, ntwe=1000,
   iwrap=0,
   lastrst=5000000,
   ioutfm=0, ntwprt=0,
ntf=2, ntb=0,
                                                        idecomp=0,
                                                        igb=0, nsnb=25,
   ipol=0, gbsa=0,
dielc=1.0, cut=12.0,
scnb=2.0, creation
                                                        intdiel=1.0,
   scnb=2.0, scee=1.2,
nstlim=500000, nscm=1000, nrespa=1,
                        dt=0.001, vlimit=10.0,
   t=0.0,
   ig=71277,
                                 ntt=1,
                                                          vrand=0,
   temp0=298.0, tempi=0.0, heat=0.0,
                                tautp=0.5,
   dtemp=5.0,
   ntc=2,
                                 tol=0.00001
  &end
 &wt type='TEMP0', istep1=1, istep2=100000, value1=10.0, value2=298.0, &end &wt type='TEMP0', istep1=100001, istep2=500000, value1=298.0, value2=298.0, &end
 &wt type='TAUTP', istep1=1,istep2=50000, value1=0.2,&wt type='TAUTP', istep1=1,istep2=50000, value1=0.2,&wt type='TAUTP', istep1=50001, istep2=150000, value1=4.0,value2=4.0,&wt type='TAUTP', istep1=150001, istep2=200000, value1=2.0,value2=0.5,&wt type='TAUTP', istep1=150001, istep2=200000, value1=0.2,value2=0.5,
                                                                                                                            value2=4.0,
                                                                                                                                                        &end
                                                                                                                                                        &end
                                                                                                                                                        &end

      awt type='TAUTP', istep1=150001, istep2=200000, value1=2.0,
      value2=0.5,

      awt type='TAUTP', istep1=200001, istep2=500000, value1=0.5,
      value2=0.5,

      awt type='REST', istep1=1,
      istep2=50000, value1=0.1,
      value2=1.0,

      awt type='REST', istep1=50001, istep2=250000, value1=1.0,
      value2=1.0,
      value2=1.0,

      awt type='REST', istep1=250001, istep2=500000, value1=1.0,
      value2=0.1,
      value2=0.1,

                                                                                                                                                        &end
                                                                                                                                                        &end
                                                                                                                          value2=1.0,
                                                                                                                                                        &end
                                                                                                                            value2=0.1,
                                                                                                                                                        &end
  &wt type='END' &end
DISANG=tetra9A_rst.f
```

Step 2. Sampling.

stp2. Sampling	in Equilibri	um. Vacuum. B	ath Thermal	Coupling.	(Restricted).
&cntrl					
imin=0,	nmropt=1,				
ntx=5,	irest=1,	ntrx=1,			
ntxo=1,	ntpr=10000,	ntwr=10000,			
iwrap=0,	ntwx=10000,	ntwv=0,	ntwe=10000,		
lastrst=50000	000,				
ioutfm=0,	ntwprt=0,	idecomp=0,			
ntf=2,	ntb=0,	igb=0,	nsnb=25,		
ipol=0,	gbsa=0,				
dielc=1.0,	cut=12.0,	intdiel=1.0,			
scnb=2.0,	scee=1.2,				
nstlim=10000	000,	nscm=1000,	nrespa=1,		
t=0.0,	dt=0.001,	vlimit=10.0,			
ig=71277,	ntt=1,	vrand=0,			
temp0=298.0,	tempi=298.0,	heat=0.0,			
dtemp=5.0,	tautp=0.5,				
ntc=2,	tol=0.00001,				
&end					
&wt type='END	' &end				
DISANG=tetra9A	_rst.f				

The tables next comprise detailed information about parallel and alternate Hydrogen

bonding calculations. All the particular inter and intramolecular Hydrogen bonding are

included in percentage ratio.

Parallel Arrangement:

By A	tom Number	lumber By Residues				r By Residues INTERmolecular Hbond [Parallel]							
Donor [O]	Donor [O] Acceptor [N-H]		Donor [O] Acceptor [N-H]		Freq. [%]	Dist. O…H [Ang.]		Angle O-H-N [Deg.]					
0	Н	N	0	н	N		Average	Std.Dev.	Average	Std.Dev.			
78	135	134	:5@02	:9@H1	:9@N1	91.3	3.08	0.17	25.25	11.08			
593	341	340	:38@O1	:22@H1	:22@N1	84.3	3.12	0.17	28.18	13.26			
373	589	588	:24@01	:38@H1	:38@N1	78.5	3.21	0.16	29.56	12.39			
33	244	243	:2@01	:16@H1	:16@N1	72.6	3.15	0.16	27.27	13.78			
217	355	354	:14@01	:23@H1	:23@N1	26.0	3.17	0.17	19.55	11.30			
281	29	28	:18@O1	:2@H1	:2@N1	14.4	3.32	0.12	36.58	13.71			
312	57	56	:20@02	:4@H1	:4@N1	12.4	3.12	0.19	50.54	8.84			

By A	By Atom Number			y Residues	5	INTRAmolecular Hbond [Parallel]				
Donor [O]	Acceptor	Acceptor [N-H]		Accepto	or [N-H]	Freq. [%]	Dist. O	H [Ang.]	Angle O-I	I-N [Deg.]
0	н	N	0	н	N		Average	Std.Dev.	Average	Std.Dev.
281	277	276	:18@01	:18@H1	:18@N1	87.1	2.941	0.15	50.54	5.12
638	634	633	:41@01	:41@H1	:41@N1	87.0	2.878	0.11	49.61	5.63
170	166	165	:11@01	:11@H1	:11@N1	85.3	2.896	0.12	49.87	5.36
61	57	56	:4@01	:4@H1	:4@N1	85.2	2.907	0.12	51.42	5.08
515	511	510	:33@O1	:33@H1	:33@N1	84.0	2.831	0.10	49.04	6.16
579	575	574	:37@01	:37@H1	:37@N1	81.6	3.016	0.15	51.54	5.00
482	478	477	:31@01	:31@H1	:31@N1	79.7	2.890	0.11	50.56	5.59
47	43	42	:3@01	:3@H1	:3@N1	76.8	2.991	0.14	51.15	5.08
501	497	496	:32@01	:32@H1	:32@N1	73.0	2.959	0.13	52.21	4.88
295	291	290	:19@01	:19@H1	:19@N1	72.8	2.925	0.13	51.98	4.94
451	447	446	:29@01	:29@H1	:29@N1	68.4	2.878	0.11	51.88	5.04
560	556	555	:36@O1	:36@H1	:36@N1	65.5	3.065	0.18	51.75	5.21
203	199	198	:13@01	:13@H1	:13@N1	63.6	2.896	0.15	49.13	5.97
404	400	399	:26@O1	:26@H1	:26@N1	54.9	2.852	0.10	50.15	5.79
671	667	666	:43@01	:43@H1	:43@N1	54.5	2.904	0.11	51.14	5.74
217	213	212	:14@01	:14@H1	:14@N1	37.7	2.875	0.11	52.48	5.02
125	121	120	:8@O1	:8@H1	:8@N1	36.0	3.046	0.17	52.00	5.03
685	681	680	:44@01	:44@H1	:44@N1	34.5	2.878	0.10	53.59	4.71
267	263	262	:17@01	:17@H1	:17@N1	28.9	3.141	0.19	51.18	5.68
437	433	432	:28@O1	:28@H1	:28@N1	27.5	2.925	0.13	50.31	5.37
189	185	184	:12@01	:12@H1	:12@N1	25.9	2.814	0.09	51.62	5.65
529	525	524	:34@01	:34@H1	:34@N1	23.2	2.886	0.13	52.98	4.94
14	10	9	:1@01	:1@H1	:1@N1	20.5	2.920	0.11	51.84	5.59
33	29	28	:2@01	:2@H1	:2@N1	19.5	2.987	0.18	49.39	6.52
111	107	106	:7@01	:7@H1	:7@N1	17.5	2.866	0.12	49.46	5.57
326	322	321	:21@01	:21@H1	:21@N1	12.5	2.911	0.16	51.87	5.00
373	369	368	:24@01	:24@H1	:24@N1	12.4	2.910	0.13	52.80	5.07
345	341	340	:22@01	:22@H1	:22@N1	10.2	2.902	0.10	53.22	4.94

Alternate Arrangement:

By A	tom Number		В	3y Residues IN			NTERmolecular Hbond [Alternate]			
Donor [O]	Acceptor [N-H]	Donor [O] Acceptor [N-H]		Freq. [%]	Dist. O…H [Ang.]		Angle O-H-N [De		
0	н	N	0	н	N		Average	Std.Dev.	Average	Std.Dev.
685	341	340	:44@01	:22@H1	:22@N1	39.8	3.227	0.16	26.68	12.08
345	653	652	:22@01	:42@H1	:42@N1	28.8	3.127	0.18	35.69	15.42
92	213	212	:6@O1	:14@H1	:14@N1	25.7	3.199	0.17	30.96	13.60
92	355	354	:6@O1	:23@H1	:23@N1	23.0	3.195	0.17	45.91	10.74
93	213	212	:6@02	:14@H1	:14@N1	19.0	3.151	0.18	29.43	12.93
111	29	28	:7@01	:2@H1	:2@N1	12.6	3.329	0.13	44.29	11.66
14	135	134	:1@01	:9@H1	:9@N1	10.2	3.192	0.20	32.54	15.92

By A	By Atom Number			By Residues			INTRAmolecular Hbond [Alternate]			
Donor [O]	Acceptor [N-H]	Donor [O]	Accepto	r [N-H]	Freq. [%]	Dist. O	H [Ang.]	Angle O-I	I-N [Deg.]
0	н	N	0	н	N		Average	Std.Dev.	Average	Std.Dev.
482	478	477	:31@01	:31@H1	:31@N1	84.4	2.927	0.12	50.36	5.65
685	681	680	:44@01	:44@H1	:44@N1	82.8	2.864	0.11	51.30	5.25
33	29	28	:2@01	:2@H1	:2@N1	81.2	2.911	0.13	49.93	5.61
638	634	633	:41@01	:41@H1	:41@N1	79.5	2.910	0.10	51.62	5.06
560	556	555	:36@O1	:36@H1	:36@N1	77.9	2.905	0.12	51.61	4.87
281	277	276	:18@01	:18@H1	:18@N1	77.5	2.907	0.13	50.32	5.61
203	199	198	:13@01	:13@H1	:13@N1	77.4	2.862	0.10	50.07	5.75
501	497	496	:32@01	:32@H1	:32@N1	76.6	2.909	0.12	51.45	5.23
170	166	165	:11@01	:11@H1	:11@N1	71.7	2.892	0.11	51.54	5.18
14	10	9	:1@01	:1@H1	:1@N1	71.1	2.948	0.15	50.87	5.50
111	107	106	:7@01	:7@H1	:7@N1	70.1	2.942	0.15	51.13	5.23
607	603	602	:39@O1	:39@H1	:39@N1	62.0	2.853	0.11	51.86	5.33
451	447	446	:29@O1	:29@H1	:29@N1	58.0	2.991	0.15	52.48	5.15
61	57	56	:4@01	:4@H1	:4@N1	57.8	2.894	0.12	51.42	5.26
92	88	87	:6@01	:6@H1	:6@N1	55.2	2.936	0.14	52.73	4.98
373	369	368	:24@01	:24@H1	:24@N1	54.0	3.003	0.16	51.48	5.06
593	589	588	:38@O1	:38@H1	:38@N1	53.8	2.910	0.11	49.89	5.31
404	400	399	:26@O1	:26@H1	:26@N1	46.9	2.953	0.15	51.86	5.27
423	419	418	:27@01	:27@H1	:27@N1	46.3	2.853	0.12	49.86	5.53
579	575	574	:37@01	:37@H1	:37@N1	45.0	2.797	0.10	51.69	5.67
189	185	184	:12@01	:12@H1	:12@N1	41.4	2.807	0.09	50.14	6.15
326	322	321	:21@01	:21@H1	:21@N1	35.1	3.040	0.16	51.06	5.41
139	135	134	:9@O1	:9@H1	:9@N1	33.0	2.911	0.13	51.16	5.60
657	653	652	:42@01	:42@H1	:42@N1	31.2	2.799	0.10	51.63	5.89
47	43	42	:3@01	:3@H1	:3@N1	28.3	2.916	0.13	50.71	5.65
248	244	243	:16@01	:16@H1	:16@N1	28.1	2.993	0.14	51.53	5.33
529	525	524	:34@01	:34@H1	:34@N1	24.7	2.964	0.13	55.17	3.62
437	433	432	:28@O1	:28@H1	:28@N1	24.7	2.893	0.13	51.25	5.51
295	291	290	:19@01	:19@H1	:19@N1	24.6	2.930	0.12	53.01	5.43
515	511	510	:33@O1	:33@H1	:33@N1	20.8	2.903	0.13	54.18	4.46
217	213	212	:14@01	:14@H1	:14@N1	16.4	2.829	0.10	53.72	4.68
267	263	262	:17@01	:17@H1	:17@N1	15.8	2.914	0.17	49.50	6.07

NMR STUDIES

Studies on Tetrapeptide 8b	S13
Studies on Hexapeptide 9a	.S21
¹ H and ¹³ C NMR spectra of trimer 7a	S29
¹ H and ¹³ C NMR spectra of octamer 10a	S30
¹ H NMR spectrum for methyl 3,4-dichlorocyclobutane-1,2-dicarboxy	ylate,
12 (mixture of diastereomers)	S 31
¹ H and ¹³ C NMR spectra for dimethyl cyclobutane-1,2-dicarboxylate	,
13	.S32

Fig. S6 ¹H NMR spectrum of tetrapeptide **8b** in $CDCl_3$ recorded at 298 K in a Bruker Avance spectrometer operating at 600.13 MHz for ¹H.

¹³C-NMR spectrum for tetrapeptide 8b

Fig. S7 ¹³C NMR spectrum of tetrapeptide **8b** in CDCl₃ recorded at 298 K in a Bruker Avance spectrometer operating at 150.03 MHz for ¹³C.

Variable temperature ¹H-NMR spectra for tetrapeptide 8b

Fig. S8 ¹H NMR spectra of NH region at different temperatures of tetrapeptide **8b** in CDCl₃ recorded in a Bruker Avance spectrometer operating at 600.13 MHz for ¹H. It is observed that hydrogen bond involving NH₄ is starting to be fixed at 288K.

Fig. S9 Two dimensional ¹H-¹H COSY spectrum of tetrapeptide **8b** in CDCl₃ recorded at 298 K in a Bruker Avance spectrometer operating at 600.13 MHz for ¹H.

HSQC spectrum for tetrapeptide 8b

Fig. S10 Expansion plot of the two-dimensional ¹H-¹³C HSQC spectrum of tetrapeptide **8b** in CDCl₃ recorded at 298 K in a Bruker Avance spectrometer operating at 600.13 MHz for ¹H and 150.03 MHz for ¹³C.

HMBC spectrum for tetrapeptide 8b

Fig. S11 Expansion plot of the two-dimensional ${}^{1}\text{H}{}^{-13}\text{C}$ HMBC spectrum of tetrapeptide **8b** in CDCl₃ recorded at 298 K in a Bruker Avance spectrometer operating at 600.13 MHz for ${}^{1}\text{H}$ and 150.03 MHz for ${}^{13}\text{C}$.

NOESY spectrum for tetrapeptide 8b

Fig. S12 Expansion plot of the two-dimensional ${}^{1}\text{H}{}^{-1}\text{H}$ NOESY spectrum (mixing time of 500 ms) of tetrapeptide **8b** in CDCl₃ recorded at 278 K in a Bruker Avance spectrometer operating at 600.13 MHz for ${}^{1}\text{H}$. In blue and red are marked the intra- and inter-residue NOE contacts, respectively.

Fig. S13 Selective 1D TOCSY experiments irradiating at NH protons of tetrapeptide **8b** in CDCl₃. Magnetization is transferred to the whole residue spin system by using a 60 ms TOCSY mixing time. A) Selective irradiation at H₄. B) Selective irradiation at H₂₂. C) Selective irradiation at H₁₀. D) Selective irradiation at H₁₆. E) ¹H-NMR for comparison. Experiments are recorded at 278 K in a Bruker Avance spectrometer operating at 600.13 MHz for ¹H.

¹H-NMR spectrum for hexapeptide 9a

Figure S14: ¹H NMR spectrum of hexapeptide **9a** in CDCl₃ recorded at 298 K in a Bruker Avance spectrometer operating at 500.13 MHz for ¹H.

¹³C-NMR spectrum for hexapeptide 9a

Fig. S15 ¹³C NMR spectrum of hexapeptide **9a** in CDCl₃ recorded at 298 K in a Bruker Avance spectrometer operating at 125.03 MHz for ¹³C.

Fig. S16 Two dimensional ¹H-¹H COSY spectrum of hexapeptide **9a** in CDCl₃ recorded at 298 K in a Bruker Avance spectrometer operating at 500.13 MHz for ¹H.

Fig. S17 Expansion plot of the two-dimensional ¹H-¹³C HSQC spectrum of hexapeptide **9a** in CDCl₃ recorded at 298 K in a Bruker Avance spectrometer operating at 500.13MHz for ¹H and 125.03 MHz for ¹³C.

¹H-¹⁵N HSQC-NMR spectrum for hexapeptide 9a

Fig. S18 Expansion plot of the two-dimensional ${}^{1}\text{H}{}^{15}\text{N}$ HSQC spectrum of hexapeptide **9a** in CDCl₃ recorded at 298 K in a Bruker Avance spectrometer operating at 500.13 MHz for ${}^{1}\text{H}$ and 50.01 MHz for ${}^{15}\text{N}$.

¹H-¹³C HMBC-NMR spectrum for hexapeptide 9a

Fig. S19 Expansion plot of the two-dimensional ¹H-¹³C HMBC spectrum of hexapeptide **9a** in CDCl₃ recorded at 298 K in a Bruker Avance spectrometer operating at 500.13 MHz for ¹H 125.03 MHz for ¹³C.

2D NOESY-NMR spectrum for hexapeptide 9a

Fig. S20 Expansion plot of the two-dimensional ${}^{1}\text{H}{}^{-1}\text{H}$ NOESY spectrum (mixing time of 500 ms) of hexapeptide **9a** in CDCl₃ recorded at 298 K in a Bruker Avance spectrometer operating at 500.13 MHz for ${}^{1}\text{H}$. In blue and red are marked the intra- and inter-residue NOE contacts, respectively.

Fig. S21 Selective 1D TOCSY experiments irradiating at NH protons. Magnetization is transferred to the whole residue spin system by using a 60 ms TOCSY mixing time. A) Selective irradiation at H_{34} . B) Selective irradiation at H_{40} . C) Selective irradiation at H_{10} .

Fig. S22 ¹H (top) and ¹³C (down) NMRspectra of tripeptide **7a** in CDCl₃ recorded at 298 K in a Bruker Avance spectrometer operating at 500.13 MHz for ¹H and 125.03 for ¹³C.

Fig. S23 ¹H (top) and ¹³C (down) NMR spectra of octapeptide **10a** in CDCl₃ recorded at 298 K in a Bruker Avance spectrometer operating at 500.13 MHz for ¹H and 125.03 for ${}^{13}C$.

Fig. S24 ¹H NMR spectrum (CDCl₃, 250 MHz) of the diastereomeric mixture 12.

Fig. S25 250 MHz-¹H (top) and 62.5 MHz-¹³C (down) NMR spectra (CDCl₃) of compound **13**.

Fig. S26 CD spectra of a 0.5 mM methanol solution of 8b.

Fig. S27 Gel formed from a 1:3 dichloromethane-pentane 5.8 mM solution of 8b

Fig. S28. CD spectra of 0.5 mM methanol solutions of 2a (blue), 8a (violet), 9a (green), and 10a (grey). Molar ellipticity is normalized per residue.