Supplementary Information

Vinyl sulfone: A versatile function for simple bioconjugation and inmobilization

Julia Morales-Sanfrutos, Javier Lopez-Jaramillo, Mariano Ortega-Muñoz, Alicia Megia-Fernandez, Francisco Perez-Balderas, Fernando Hernandez-Mateo and Francisco Santoyo-Gonzalez*

> Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain E-mail: <u>fsantoyo@ugr.es</u>

Crysyalliztion and determination of the tridemensional structure of glycosylated HEW lysozyme with glucopyranosyl vinyl sulfone (conjugate 16). Needle crystals of the glycosylated lysozyme (conjugate 16) were grown by the hanging-drop vapour-diffusion method at 293°K. Typically, drops contained 1.5 μ l 25 mg/mL glycosylated lysozyme in 20 mM acetate pH 4.5 and 1.5 μ l reservoir solution consisting of 100 mM Bis-Tris buffer pH 6.9 and 0.75-1.25 M MgSO₄ were equilibrated against 500 μ l reservoir solution. Data collection was carried out using a MAR CCD at ESRF beamline BM16 (λ =0.98 Å), placed at a distance of 105 mm. The oscillation angle was 0.3 and the exposure time was 10 s per frame. The data set consisted of 441 images that were processed with the XDS software package.^{1,2} The diffraction parameters and unit cell were indexed in P2₁2₁2 and P2₁2₁2₁, which were the two space groups with the highest likelihood of being correct. Further details can be found in López-Jaramillo et al (2005).³

Molecular replacement was carried out with CNS⁴ using as a search model the atomic resolution structure at 0.94 Å of the HEW lysozyme (PDB code 1iee), omitting the solvent molecules. The rotation search was carried out as a direct rotation search from 15 to 2.5 Å. For the translation searches the resolution range was 10-2 Å. At this stage, the space group was confirmed to be $P2_12_12_1$. The structure was refined with CNS using torsion-angle molecular dynamics and a cross-validated maximum-likelihood target function,⁵ 10% of the data set being randomly selected to estimate the free R value. Rebuilding of the model was carried out with XtalView on the basis of σ A-weighted maps.⁶ No cut-off was applied and a solvent mask was automatically determined and updated by CNS to use the resolution range 10.0-1.6 A. Inclusion of solvent molecules and ligands was based on peaks of at least 3σ and 1σ in the σ A-weighted Fo-Fc and 2Fo-Fc maps, respectively.

Summary of the main features of the data set and refinement of the glycosylated lysozyme (PDB entry

2b5z). Values in parentheses correspond to the highest resolution shell.

Data collection	
X-ray source	BM16, ESRF
Wavelength (Å)	0.98
No. of crystals	1
Temperature of data collection (K)	100
Space group	P2 ₁ 2 ₁ 2 ₁
Unit cell parameters (Å)	$a = 30.58 \ b = 32.97 \ c = 120.27$
Data set	
Resolution range (Å)	15.0 - 1.6 (1.7 - 1.6)
Measured reflections	85461 (14050)
Unique reflections	16442 (2657)
Completeness $[I/\sigma(I)>0](\%)$	97.9 (97.0%)
Completeness $[I/\sigma(I)>3]$ (%)	91.6.0% (78.1%)
Rmerge (%)	3.8 (15.3)
Mean $(I/\sigma(I)$	24.93 (10.71)
Refinement	
Resolution range (Å)	10.0 - 1.6
Free R value, random 10%	0.225
R value	0.212
No. water molecules	80
No. glycopyranosyl vinyl sulfone	4
Rmsd covalent bonds ^[a] (Å)	0.014
Rms bonds angles ^[a] (°)	1.9
Overall coordinate errors (DPI) ^[b]	0.083
Correlation coefficient ^[c]	0.873
Optical resolution ^[d]	1.34
Ramachandran Plot	
Residues in the most favoured regions (%)	89.1
Residues in additional allowed regions (%)	10.9

^[a]Deviation from the standard dictionary.⁷

^[b] Diffraction-data precision indicator.⁸

^[c] Correlation coeffcient between calculated and observed structure-factor amplitude output by SFCHECK.⁹

^[d]Expected minimum distance between two resolved peaks in the electron-density map as implemented in SFCHECK.

References

- 1 W. Kabsch, J. Appl. Cryst. 1988, 21, 916.
- 2 W. Kabsch, J. Appl. Cryst. 1993, 26, 795.
- 3 F.J. Lopez-Jaramillo, F. Perez-Banderas, F. Hernandez-Mateo, F. Santoyo-Gonzalez *Acta Cryst.* **2005** *F61*, 435.

- 4 A.T. Brunger, P.D. Adams, G.M. Clore, W.L. DeLano, P. Gros, R.W. Grosse-Kunstleve, J.-S Jiang, J. Kuszewski, M. Nilges, N.S. Pannu, R.J. Read, L.M. Rice, T. Simonson, G.L. Warren, *Acta Cryst.* **1998**, *D54*, 905.
- 5 P.D. Adams, N.S. Pannu, R.J. Read, A.T. Brunger, Proc. Natl Acad. Sci. USA 199, 94, 5018.
- 6 D.E. McRee, *Practical Protein Crystallography*, Academic Press Inc, San Diego **1993**.
- 7 R.A. Engh, R. Huber, Acta Cryst. 1991, A47, 392.
- 8 D.W.J. Cruickshank, (1996). Proceedings of the CCP4 Study Weekend. Macromolecular Refinement, (Ed. E. Dodson, M. Moore, A. Ralph & S. Bailey), pp. 11-22, Warrington: Daresbury Laboratory.
- 9 A.A. Vaguine, J. Richelle, S.J. Wodak, Acta Cryst. 1999, D55, 191.

Fig. S1. *Influence of the stoichiometry and time of reaction on the labeling of concanvalin A with compound 4.* SDS-PAGE of the samples labeled with protein:compound **4** stoichiometries 1:5 (lanes 1-3) and 1:10 (lanes 4-6) and reaction time of 3 h (lanes 1 and 4), 8 h (lanes 2 and 5) and 24 h (lanes 3 and 6) visualized with a standard transilluminator at 365 nm (left) and later stained with coomassie blue (right).

Fig. S2. Influence of the stoichiometry on the fluorescence intensity per micromol of protein of the tetrameric avidin labeled with compound 5. Over-labeling of avidin with product 5 does not lead to precipitation but causes quenching.

BSA-biotin-Avidin-dansy biotin-BSA

Fig. S3. *Electrophoresis of the complex BSA-biotin-avidin-dansyl denaturized in mild conditions.* Left fluorescence and right Coomassie. Lanes are: 1)BSA-biotin-avidin-dansyl stoichiometry 4:4; 2) BSA-biotin-avidin-dansyl stoichiometry 1:4; 3) avidin (control)

Fig. S4.- *Absorption and emission spectrum of vinyl sulfone rhodamine B.* (A)Absorption spectrum. Arrow shows the unsuitable wavelength of excitation of the conventional transilluminator (365 nm). (B)Emission spectrum excited at 365 nm and the optimum weighlength (*** nm)

 $^1\mathrm{H}\text{-}\mathrm{NMR}$ Spectra for compound $\mathbf 1$

¹³C-NMR Spectra for compound **1**

¹H-NMR Spectra for compound **2** S19

¹³C-NMR Spectra for compound **2**

¹³C-NMR Spectra for compound **3**

Mample directory:

¹³C-NMR Spectra for compound **4**

¹H-NMR Spectra for compound 5

¹³C-NMR Spectra for compound 5

¹H-NMR Spectra for compound **11**

¹³C-NMR Spectra for compound **11**