Electronic Supplementary Information for Organic Co-Solvents in aqueous DNA-Based Catalysis

Rik P. Megens, Gerard Roelfes

Stratingh Institute for Chemistry University of Groningen Nijenborgh 4, 9747 AG Groningen Email: J.G.Roelfes@rug.nl

dimethyl 2-(4-methyl-1-(1-methyl-1H-imidazol-2-yl)-1-oxopentan-3-yl)malonate (7b)

A colorless oil was obtained after column chromatography (SiO₂, EtOAc/Heptane 4:6). ¹H NMR (400 MHz, CDCL₃) δ 7.16 (d, J = 5.0, 1H), 7.02 (d, J = 14.5, 1H), 3.75 (s, 3H), 3.74, (s, 3H), 3.73 (s, 3H), 3.65 (d, J = 42.2, 1H), 3.40 (dd, J = 10.2, 1.7, 2H), 3.24 – 3.14 (m, 1H), 0.90 (m, 6H). δ ¹³C(101 MHz, CDCL₃) 192.6, 168.7, 168.0, 143.3, 129.2, 128.7, 54.5, 53.8, 44.6, 37.9, 36.1, 33.9, 30.3, 21.0, 18.6. HRMS: m/z: 310.1525 (Calcd. 310.1529) Ee's were determined by HPLC analysis (Chiralcel-AD, heptane/iPrOH 98:2, 0.5 mL/min). Retention

times: 44.9 and 55.0 mins

dimethyl 2-(1-(1-methyl-1H-imidazol-2-yl)-1-oxooctan-3-yl)malonate (7c)

A slightly yellow oil was obtained after column chromatography (SiO₂, EtOAc/Heptane 4:6). ¹H NMR (300 MHz, CDCL₃) δ 7.12 (m, 1H), 7.02 (m, 1H), 4.13 – 3.88 (m, 6H), 3.88 – 3.54 (m, 5H), 3.40 – 3.01 (m, 4H), 1.90 – 1.01 (m, 6H), 1.01 – 0.52 (m, 3H). δ ¹³C (101 MHz, CDCL₃) 192.7, 167.1, 167.0, 129.2, 127.4, 60.5, 52.7, 52.6, 47.3, 41.3, 40.7, 37.3, 32.0, 25.4, 22.8, 14.2. HRMS: m/z: 338.1835 (Calcd. 338.1842)

Ee's were determined by HPLC analysis (Chiralcel-ODH, heptane/iPrOH 90:10, 0.5 mL/min). Retention times: 23.9 and 26.0 mins

3-(5-methoxy-1H-indol-3-yl)-4-methyl-1-(1-methyl-1H-imidazol-2-yl)pentan-1-one (9b)

A yellow oil was obtained after column chromatography (SiO₂, EtOAc/Heptane 1:1).¹H NMR (400 MHz, CDCL₃) δ 8.02

(s, 1H), 7.16 (d, J = 8.7, 1H), 7.13 (s, 1H), 7.02 (d, J = 13.3, 2H), 6.93 (s, 1H), 6.79 (d, J = 8.8, 1H), 3.84 (s, 3H), 3.76 (s, 3H), 3.63 (dd, J = 25.2, 11.2, 2H), 3.44 (dd, J = 14.4, 3.8, 1H), 2.09 (dt, J = 12.8, 6.3, 1H), 1.74 (s, 1H), 0.94 (t, J = 7.4, 6H). δ ¹³C (101 MHz, CDCL₃) δ 192.8, 153.9, 131.4, 129.0, 128.9, 126.9, 122.8, 118.1, 112.0, 111.7, 101.6, 56.2, 56.1, 42.1, 38.6, 33.1, 20.7, 20.5. HRMS: m/z: 325.1782 (Calcd. 325.1790) Ee's were determined by HPLC analysis (Chiralcel-AD, heptane/iPrOH 98:2, 0.5 mL/min). Retention times: 26.6 and 34.0 mins

3-(5-methoxy-1H-indol-3-yl)-1-(1-methyl-1H-imidazol-2-yl)octan-1-one (9c)

A colorless oil was obtained after column chromatography (SiO₂, EtOAc/Heptane 1:1).¹H NMR (400 MHz, CDCL₃) δ 7.88 (br, 1H), 7.20 (d, *J* = 7.7, 1H), 7.12 (s, 1H), 7.05 (d, *J* = 18.9, 2H), 6.96 (s, 1H), 6.81 (d, *J* = 8.7, 1H), 3.86 (s, 3H), 3.85 (s, 3H), 3.72 - 3.61 (m, 2H), 3.57 - 3.44 (m, 1H), 1.86 - 1.68 (m, 2H), 1.45 - 1.06 (m, 6H), 1.04 - 0.65 (m, 3H). δ ¹³C (50 MHz, CDCl₃) 192.4, 153.7, 131.3, 128.8, 127.4, 126.7, 121.8, 111.9, 111.6, 105.0, 101.2, 55.9, 45.5, 36.1, 36.0, 32.4, 31.9, 27.2, 22.6, 14.1. HRMS: m/z: 353.4983 (Calcd. 353.4580)

Ee's were determined by HPLC analysis (Chiralcel-ODH, heptane/iPrOH 90:10, 0.5 mL/min). Retention times: 26.6 and 34.5 mins

3-(5-methoxy-1H-indol-3-yl)-1-(1-methyl-1H-imidazol-2-yl)-3-phenylpropan-1-one (9e)

A brownish oil was obtained after column chromatography (SiO₂, EtOAc/Heptane 1:1). ¹H NMR (400 MHz, CDCL₃) δ 8.09 (s, 1H), 7.83 (d, J = 16.2, 1H), 7.70 (s, 2H), 7.40 – 7.01 (m, 5H), 6.87 (d, J = 8.5, 1H), 6.49 (s, 1H), 4.11 (s, 3H), 3.92-3.85 (m,2H) 3.86 (s, 3H), 3.76 (m, 1H). δ ¹³C (50 MHz, cdcl₃) 192.6, 142.5, 129.2, 128.2, 127.8, 127.7, 127.1, 126.2, 123.8, 121.5, 111.3, 110.6, 103.6, 101.3, 59.5, 54.8, 37.9, 28.6. HRMS: m/z: 359.1639 (Calcd. 359.1634)

Ee's were determined by HPLC analysis (Chiralcel-AD, heptane/iPrOH 80:20, 0.5 mL/min). Retention times: 19.0 and 26.8 mins.

Table S1. Full investigation of solvent scope of the Diels-Alder reaction of azachalcone (1) with cyclopentadiene (2)

		-	-						-
Solvent	MeCN	MeOH	EtOH	iPA	DMF	DMSO	1,4-Dioxane	DCM	THF
Content	Conv (ee)	Conv (ee)	Conv (ee)	Conv (ee)	Conv (ee)	Conv (ee)	Conv (ee)	Conv (ee)	Conv (ee)
30%	Full (99%)	Full (99%)	Full (99%)	Full (99%)	Full (99%)	Full (99%)	Full (99%)	_ ^a	50% (99%) ^a
33%	Full (99%)	Full (99%)	Full (99%)	Full (99%)	Full (99%)	Full (99%)	Full (99%)	_ ^a	34% (99%) ^a
35%	Full (98%)	Full (98%)	Full (98%)	Full (97%)	Full (98%) 52%	Full (97%)	Full (93%)	_a	_ ^a
40%	60% (80%)	49% (81%)	43% (79%)	40% (75%)	(80%%)	39% (74%)	Full (82%)	_ ^a	_ ^a
General co	nditions: 0.15 n	M Cu(dmbipy)	0.67 mg/ml st	-DNA_1 mM a	zachalcone. 3d	1.15 mM cycle	pentadiene ^a DN	A precipitation	observed

Table S2. Full investigation of solvent scope of the Michael Addition of azachalcone (1) with dimethyl malonate (4)

Solvent Content	MeCN Conv (ee)	MeOH Conv (ee)	EtOH Conv (ee)	iPA Conv (ee)	DMF Conv (ee)	DMSO Conv (ee)	1,4-Dioxane Conv (ee)	DCM Conv (ee)	THF Conv (ee)
5%	Full (96%)	Full (96%)	Full (96%)	Full (96%)	Full (95%)	Full (96%)	Full (94%)	15% (96%) ^a	Full (92%)
10%	Full (96%)	Full (96%)	Full (96%)	Full (96%)	Full (95%)	Full (95%)	Full (93%)	8% (94%) ^a	Full (90%) ^a
15%	Full (95%)	Full (95%)	Full (96%)	Full (96%)	Full (94%)	Full (93%)	Full (92%)	5% (86%) ^a	90% (87%) ^a
20%	Full (94%)	Full (95%)	Full (95%)	Full (95%)	Full (92%)	Full (93%)	Full (90%)	4% (61%) ^a	60% (81%) ^a
General conditions: 0.15 mM Cu(dmbipy), 0.67 mg/ml st-DNA, 1 mM azachalcone, 100 mM dimethyl malonate, 1d. a DNA precipitation observed									

Table S3. Full investigation of solvent scope of the Friedel-Crafts alkylation of α , β -unsaturated 2-acylimidazole (6) with 5-methoxyindole (7)

Solvent	MeCN	MeOH	EtOH	iPA	DMF	DMSO	1,4-Dioxane	DCM	THF
Content	Conv (ee)	Conv (ee)	Conv (ee)						
5%	Full (83%)	Full (82%)	Full (83%)	full (81%) ^a	Full (81%)				
10%	Full (83%)	Full (83%)	Full (82%)	Full (83%)	Full (82%)	Full (83%)	Full (83%)	78% (75%) ^a	Full (81%)
15%	Full (81%)	Full (83%)	Full (82%)	Full (82%)	Full (83%)	Full (82%)	Full (83%)	55% (64%) ^a	Full (71%) ^a
20%	Full (81%)	Full (82%)	Full (82%)	Full (81%)	Full (82%)	Full (82%)	Full (82%)	$23\% (60\%)^{a}$	Full (61%) ^a
General conditions: 0.15 mM Cu(dmbipy), 0.67 mg/ml st-DNA, 1 mM 2-acyl imidazole 6, 5 mM 5-methoxyindole, 1d. a DNA precipitation observed									

Scheme S5. Proposed catalytic cycle of the Cu^{2+} catalyzed Diels-Alder reaction of Azachalcone (1) with cyclopentadiene (2)¹

Scheme S6. Proposed catalytic cycle of the Cu²⁺ catalyzed Friedel-Crafts alkylation reaction of α , β -unsaturated 2-acylimidazole (6) with 5-methoxyindole (7)

Figure S7. Temporal UV measurement of the Michael reaction of azachalcone (1) with dimethyl malonate (4). The decrease of azachalcone is followed in time at 326nm

Figure S8. Temporal conversion of the Michael addition of azachalcone(1) and dimethyl malonate(4).

Conditions; 0.15 mM Cu(dmbipy), 0.67 mg/ml st-DNA, 1 mM azachalcone, 100 eq. dimethyl malonate, 20 mM MOPS pH 6.5, 5°C, analyzed with NMR and HPLC. \Box = Water \blacksquare = 5% MeCN \blacksquare = 10% MeCN

Figure S9. Temporal conversion of the Friedel-Crafts alkylation reaction of 5-methoxyindole (7) with α , β -unsaturated 2-acylimidazole (6).

Conditions; 0.15 mM Cu(dmbipy), 0.67 mg/ml st-DNA, 1 mM α , β -unsaturated 2-acylimidazole (4), 5 eq. 5-methoxyindole, 20 mM MOPS pH 6.5, 5°C, analyzed with NMR and HPLC. \Box = Water \blacksquare = 5% MeCN \blacksquare = 10% MeCN

Figure S10: Temporal conversion of the Diels-Alder reaction. 0.15 mM Cu-dmbipy, 1 mM st-DNA in basepairs, 1mM enone substrate, 20 mM MOPS, pH 6.5. \Box = Water \bullet = 10% MeCN

Table S11.	. Substrate scope	of DNA-Based	catalytic Di	els-Alder reactior	is with and	without	organic co	-solvent
------------	-------------------	--------------	--------------	--------------------	-------------	---------	------------	----------

Enone	Nucleophile	ee (H ₂ O)	ee (10% v/v MeCN)
1b	2	96	94
1c	2	99	99
1d	2	99	93

General condition; 0.15 mM Cu(dmbipy), 1 mM st-DNA in basepairs, 1 mM enone, 20 mM MOPS pH 6.5

Table S12. Increasing substrate concentration in the Diels-Alder reaction

Substrate conc.	Water	33% MeCN	
	Conv. (ee)	Conv. (ee)	
1 mM	Full (99%)	Full (99%)	
2 mM	Full (99%)	Full (99%)	
5 mM	Full (99%)	71% (99%)	
10 mM	84% (96%)	50% (93%)	

General conditions: 0.15 mM Cu(dmbipy), 0.67 mg/ml st-DNA, 15 eq cyclopentadiene.

¹H-NMR spectra

References

1. S. Otto, F. Bertoncin and J. B. F. N. Engberts, J. Am. Chem. Soc., 1996, 118, 7702-7707.