# Chemoenzymatic and enantiodivergent routes to 1,2-ring-fused bicyclo[2.2.2]octane and related tricyclic frameworks 

Kerrie A. B. Austin, Jon D. Elsworth, Martin G. Banwell* and Anthony C. Willis<br>Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 0200, Australia

Contents ..... Page
General Experimental Procedures ..... S2
Specific Chemical Transformations ..... S3-S20
X-ray Crystallographic Studies ..... S21-S25
References ..... S26
Selected ${ }^{1} \mathrm{H}$ or ${ }^{13} \mathrm{C}$ NMR Spectra of Compounds 17-42 ..... S27-S52

## Synthetic Studies

## General Experimental Procedures

Proton ( ${ }^{1} \mathrm{H}$ ) and carbon $\left({ }^{13} \mathrm{C}\right)$ NMR spectra were recorded on a Varian Gemini or Innova machine operating at 300 or 500 MHz , respectively. Unless otherwise specified, spectra were acquired at $20{ }^{\circ} \mathrm{C}$ in deuterochloroform $\left(\mathrm{CDCl}_{3}\right)$ that had been stored over anhydrous sodium carbonate. Chemical shifts are recorded as $\delta$ values in parts per million ( ppm ). Infrared spectra ( $v_{\text {max }}$ ) were normally recorded on a Perkin-Elmer 1800 Series FTIR Spectrometer and samples were analyzed as thin films on KBr plates (for liquids) or as a KBr disc (for solids). Low-resolution ESI mass spectra were recorded on a Micromass-Waters LC-ZMD single quadrupole liquid chromatographmass spectrometer while low- and high-resolution EI mass spectra were recorded on a VG Fisons AUTOSPEC three-sector double-focusing instrument. Melting points were measured on Reichert hot-stage microscope or a Stanford Research Systems Optimelt - Automated Melting Point System and are uncorrected. Analytical thin layer chromatography (TLC) was performed on aluminiumbacked 0.2 mm thick silica gel 60 F254 plates as supplied by Merck. Eluted plates were visualized using a 254 nm UV lamp and/or by treatment with a suitable dip followed by heating. These dips included a mixture of vanillin: sulfuric acid: ethanol ( $1 \mathrm{~g}: 1 \mathrm{~g}: 18 \mathrm{~mL}$ ) or phosphomolybdic acid : ceric sulfate : sulfuric acid (conc.) : water ( $37.5 \mathrm{~g}: 7.5 \mathrm{~g}: 37.5 \mathrm{~g}: 720 \mathrm{~mL}$ ). The retardation factor $\left(R_{\mathrm{f}}\right)$ values cited here have been rounded at the first decimal point. Flash chromatographic separations were carried out following protocols defined by Still et al. ${ }^{1}$ with silica gel 60 ( $0.040-$ 0.0063 mm ) as the stationary phase and using the AR- or HPLC-grade solvents indicated. Starting materials and reagents were generally available from the Sigma-Aldrich, Merck, TCI, Strem or Lancaster Chemical Companies and were either used as supplied or, in the case of liquids, distilled when required. Drying agents and other inorganic salts were purchased from the AJAX, BDH or Unilab Chemical Companies. THF, dichloromethane (DCM), acetonitrile and benzene were dried using a Glass Contour solvent purification system that is based upon a technology originally described by Grubbs et al. ${ }^{2}$ Spectroscopic grade solvents were used for all analyses. Where necessary, reactions were performed under a nitrogen or argon atmosphere.

## Specific Chemical Transformations

## Compound 17

A suspension of ( $15,2 S$ )-3-iodocyclohexa-3,5-diene-1,2-diol $[7(X=I)]^{3}(1.00 \mathrm{~g}, 4.20 \mathrm{mmol})$ and $(1 S)-(+)$-10-camphorsulfonic acid monohydrate ( $20.0 \mathrm{mg}, 0.08 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was cooled to $-20^{\circ} \mathrm{C}$ then treated, dropwise, with benzaldehyde dimethylacetal ( $650 \mu \mathrm{~L}, 4.33 \mathrm{mmol}$ ). The ensuing mixture was allowed to warm to $-10^{\circ} \mathrm{C}$ over 2 h then $\mathrm{NaOH}(20 \mathrm{~mL}$ of a 2.0 M aqueous solution) was added. The separated aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$ and the combined organic fractions were washed with water $(1 \times 20 \mathrm{~mL})$ and brine $(1 \times 20 \mathrm{~mL})$ before being dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure to give the title acetal 17 (containing traces of benzaldehyde) $(1.29 \mathrm{~g}, c a .85 \%)$ as an unstable, white solid ( $R_{\mathrm{f}}=0.6$ in 3:7 $v / v$ ethyl acetate/hexane).
${ }^{1} \mathbf{H}$ NMR ( 300 MHz ) $7.50(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{~m}, 3 \mathrm{H}), 6.70(\mathrm{dt}, J=6.0$ and $0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{ddt}, J=$ $9.5,4.1$ and $0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{dd}, J=9.5 \mathrm{and} 6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.70 (dd, $J=9.2$ and $4.1 \mathrm{~Hz}, 1 \mathrm{H}$ ).
${ }^{13}$ C NMR (75 MHz) $136.0(\mathrm{C}), 133.7(\mathrm{CH}), 129.6(\mathrm{CH}), 128.3(\mathrm{CH}), 127.2(\mathrm{CH}), 125.2(\mathrm{CH})$, 123.7 (CH), 99.1 (CH), 98.5 (C), 77.9 (CH), 72.8 (CH).

IR $v_{\max } 2880,1458,1395,1364,1333,1312,1284,1216,1087,1059,1009,987,927,838,762$, $701 \mathrm{~cm}^{-1}$.

Mass spectrum (EI, 70 eV ) m/z 326 ( $\mathrm{M}^{+\bullet}, 21 \%$ ), 280 (76), 220 (90), 204 (65), 171 (50), 153 (82), 105 (92), 93 (90), 77 (99), 65 (100), 51 (69), 39 (75).

HREIMS Found: $\mathrm{M}^{+\bullet}, 325.9804 . \mathrm{C}_{13} \mathrm{H}_{11} \mathrm{O}_{2}{ }^{127}$ I requires $\mathrm{M}^{+\bullet}, 325.9804$.

This material was sufficiently pure to be used as obtained in the next step of the reaction sequence.

## Compound 18

A solution of ( $1 S, 2 S$ )-3-iodo-6-methylcyclohexa-3,5-diene-1,2-diol ${ }^{3}(2.0 \mathrm{~g}, 7.93 \mathrm{mmol})$ in $2,2-$ dimethoxypropane ( 40 mL ) maintained at $18{ }^{\circ} \mathrm{C}$ was treated with $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(c a .30 \mathrm{mg}, 0.16$ mmol ) and the ensuing mixture stirred at this temperature for 0.5 h then quenched with triethylamine ( 1.0 mL ) and concentrated under reduced pressure. The resulting brown residue was partitioned between water ( 40 mL ) and $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ and the separated aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 200 \mathrm{~mL})$. The combined organic phases were washed with $\mathrm{NaOH}(1 \times 100$ mL of a 2.0 M solution) and brine $(1 \times 50 \mathrm{~mL})$ before being dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure below $30{ }^{\circ} \mathrm{C}$ to give title acetonide $\mathbf{1 8}^{4}(2.17 \mathrm{mg}, 93 \%)$ as a pale-brown oil ( $R_{\mathrm{f}}=0.6$ in 3:7 $\mathrm{v} / \mathrm{v}$ ethyl acetate/hexane).
${ }^{1} \mathbf{H}$ NMR $(300 \mathrm{MHz}) 6.54(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{dq}, J=6.2$ and $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.46(\mathrm{dd}, J=8.4$ and $0.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.88$ (broadened s, 3 H ), 1.43 (broadened s, 3 H ), 1.42 (broadened s, 3 H ).
${ }^{13}$ C NMR ( 75 MHz ) 134.6, 134.1, 120.4, 106.1, 96.2, 78.5, 75.8, 26.7, 25.2, 20.2.
Optical Rotation $[\alpha]_{\mathrm{D}}=+37\left(c 1.0, \mathrm{CHCl}_{3}\right)\left[\mathrm{lit.}^{4}[\alpha]_{\mathrm{D}}=+69\left(c 0.77, \mathrm{CHCl}_{3}\right)\right]$.

This material was sufficiently pure to be used as obtained in the next step of the reaction sequence.

## Compound 19

DDQ ( $12.8 \mathrm{~g}, 56.6 \mathrm{mmol}$ ) was added to a solution of 1,4 -pentadien-3-ol ${ }^{5}(5.0 \mathrm{~mL}, 51.4 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL}, 2.5 \mathrm{M})$ and the ensuing slurry was stirred at $18^{\circ} \mathrm{C}$ for 24 h . The resulting mixture was poured into pentane ( 100 mL ) (to precipitate the $\mathrm{DDQH}_{2}$ ) and the flask washed out with additional pentane $(2 \times 20 \mathrm{~mL})$. The resulting solid was filtered off and washed with pentane $(2 \times 20 \mathrm{~mL})$ then the combined filtrates were carefully concentrated under reduced pressure below $40^{\circ} \mathrm{C}$ and at $c a$. 750 mm Hg to give divinyl ketone $\mathbf{1 9}^{6}$ as a $c a .60 \%$ solution in $\mathrm{Et}_{2} \mathrm{O} /$ pentane ( $c a .6 \mathrm{~mL}, 72 \%$ ).
${ }^{1} \mathbf{H}$ NMR ( 300 MHz ) $6.64(\mathrm{dd}, J=17.4$ and $10.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.32(\mathrm{dd}, J=17.4$ and $1.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.88$ (dd, $J=10.6$ and $1.3 \mathrm{~Hz}, 2 \mathrm{H}$ ).
${ }^{13}$ C NMR ( 75 MHz ) 190.1 (C), $134.2(\mathrm{CH}), 129.4\left(\mathrm{CH}_{2}\right)$.
IR $v_{\max }$ 2926, 2857, 1698, 1679, 1613, 1403, 1090, $989,928 \mathrm{~cm}^{-1}$.

## Compound 20

## Method 1:

Step $i$ : Following a procedure established by Szymoniak et al., ${ }^{7}$ a solution of 3-methyl-but-2-enal ( $770 \mu \mathrm{~L}, 7.98 \mathrm{mmol}$ ) in THF ( 2 mL ) was added, dropwise, to a solution of vinyl magnesium bromide ( 10 mL of a 1.0 M solution in THF, 10.0 mmol ) in THF ( 5 mL ) maintained at $18^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The ensuing mixture was stirred at this temperature for 40 min then water ( 5 mL ) was added and the separated aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give 5-methyl-1,4-hexadien-3-ol ${ }^{8}(800 \mathrm{mg}, c a .89 \%)$ as a clear, orange oil.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ( 300 MHz ) 5.88 (ddd, $J=17.1,10.3$ and $5.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), $5.22(\mathrm{dt}, J=17.1$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), $5.18(\operatorname{broad} \mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{dt}, J=7.1$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{~d}, J=1.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.70(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}) 1.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$.

This material was clean enough to be used directly in the next step of the reaction sequence.

Step ii: DDQ ( $555 \mathrm{mg}, 2.44 \mathrm{mmol}$ ) was added to a magnetically stirred solution of 5-methyl-1,4-hexadien-3-ol ( $252 \mathrm{mg}, 2.25 \mathrm{mmol}$ ) in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ and the resulting slurry was stirred at $18{ }^{\circ} \mathrm{C}$ for 24 h . The ensuing mixture was poured into pentane ( 10 mL ) (to precipitate the $\mathrm{DDQH}_{2}$ ), the flask washed with additional pentane $(2 \times 5 \mathrm{~mL})$ and the residual solid filtered off and washed with pentane $(2 \times 5 \mathrm{~mL})$. The combined filtrates were carefully concentrated under reduced pressure below $40^{\circ} \mathrm{C}$ and at $c a .750 \mathrm{~mm} \mathrm{Hg}$ to give the very volatile ketone $\mathbf{2 0}^{9}(101 \mathrm{mg}, 41 \%)$ as a clear, yellow liquid.
${ }^{1} \mathbf{H}$ NMR ( 300 MHz ) $6.39(\mathrm{dd}, J=17.5$ and $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~m}, 1 \mathrm{H}), 6.19(\mathrm{dd}, J=17.5$ and 1.5 $\mathrm{Hz}, 1 \mathrm{H}), 5.73(\mathrm{dd}, J=10.4$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.93(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( 75 MHz ) 190.4, 157.2, 138.2, 127.1, 122.0, 27.9, 21.0.

This material was clean enough to be used directly in the next step of the reaction sequence.

## Method 2:

Following a procedure established by Mironov et al., ${ }^{10}$ diethylamine hydrochloride ( $6.85 \mathrm{~g}, 62.5$ mmol ), formaldehyde ( 5.1 mL of a $37 \%$ aqueous solution, 62.5 mmol ), 4-hydroxy-4-methylpentan-2-one ( $7.75 \mathrm{~mL}, 62.5 \mathrm{mmol}$ ), $\mathrm{HCl}(250 \mu \mathrm{~L}$ of a $36 \%$ aqueous solution) and hydroquinone ( 125 mg , 1.14 mmol ) were mixed in an Ace Glass ${ }^{\mathrm{TM}}$ reaction tube that was sealed then heated at $100{ }^{\circ} \mathrm{C}$ for 2 h. After cooling, the sealed tube was carefully opened and the reaction mixture transferred into a distillation apparatus. After distilling off the water, the hydrochloride salt of the Mannich base was decomposed at $150-210{ }^{\circ} \mathrm{C}$ to give the title divinyl ketone $\mathbf{2 0}^{9}$ ( $2.4 \mathrm{~g}, 35 \%$ ) as a bright-yellow liquid contaminated with mesityl oxide.

This material was used directly in the next step of the reaction sequence.

## General Procedure for the Michael Addition of Ketals 12, 17 and 18 to Enones 19 and 20

A magnetically stirred solution of the relevant ketal ( 1.0 mole equiv.) in THF ( 0.2 M ) was cooled to $-30{ }^{\circ} \mathrm{C}$ then treated, dropwise, with $i-\mathrm{PrMgCl}(1.2-2.0$ mole equiv. of a 2.0 M solution in THF). The ensuing mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred at this temperature until no starting material could be detected by ${ }^{1} \mathrm{H}$ NMR analysis ( $1-2 \mathrm{~h}$ ). The reaction mixture was then cooled to $-78{ }^{\circ} \mathrm{C}$ and treated with copper(I) bromide-dimethyl sulfide complex ( 0.1 mole equiv.) and HMPA ( 3.0 mole equiv.). A solution of the relevant enone ( 2.1 mole equiv.) and TMSCl ( 3.0 mole equiv.) in THF (ca. 2 mL ) was then added via syringe pump over 1.5 h . The resulting mixture was allowed to warm to $18{ }^{\circ} \mathrm{C}$ over 16 h then treated with $\mathrm{NH}_{4} \mathrm{Cl}(c a .20 \mathrm{~mL}$ of a saturated aqueous solution) and the
ensuing mixture stirred at $18{ }^{\circ} \mathrm{C}$ for 10 min . The biphasic system was separated and the aqueous layer extracted with ethyl acetate $(3 \times 30 \mathrm{~mL})$. The combined organic fractions were washed with water $(2 \times 10 \mathrm{~mL})$ and brine $(1 \times 20 \mathrm{~mL})$ then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. The crude material thus obtained was subjected to flash column chromatography using the conditions defined below for each individual case.

## Compound 21

The Michael addition of the Grignard reagent derived from acetonide 12 ( $503 \mathrm{mg}, 1.81 \mathrm{mmol}$ ) to enone 19 ( $591 \mu \mathrm{~L}$ of a $60 \%$ solution in $\mathrm{Et}_{2} \mathrm{O} /$ pentane, ca. 3.80 mmol ) was carried out as described in the general procedure and using 1.2 mole equiv. of $i-\mathrm{PrMgCl}(1.1 \mathrm{~mL}$ of a 2.0 M solution in THF, 2.2 mmol ). The crude product thus obtained was subjected to flash column chromatography (1:9 $v / v$ ethyl acetate/hexane elution) and concentration of the appropriate fractions ( $R_{\mathrm{f}}=0.4$ in 3:7 $v / v$ ethyl acetate/hexane) gave the title enone 21 ( $274 \mathrm{mg}, 65 \%$ ) as a clear, colourless oil.
${ }^{1} \mathbf{H}$ NMR ( 300 MHz ) $6.37(\mathrm{dd}, J=17.7$ and $10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dd}, J=17.7$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.96$ (dd, $J=9.6$ and $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{dd}, J=10.3$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{dd}, J=9.6$ and $3.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.71(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{dd}, J=8.7$ and $3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~m}, 2 \mathrm{H})$, 2.56 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$ ), 1.39 ( $\mathrm{s}, 3 \mathrm{H}$ ), 1.38 ( $\mathrm{s}, 3 \mathrm{H}$ ).
${ }^{13}$ C NMR ( 75 MHz ) $199.8(\mathrm{C}), 136.9(\mathrm{C}), 136.4(\mathrm{CH}), 128.2\left(\mathrm{CH}_{2}\right), 124.4(\mathrm{CH}), 123.1(\mathrm{CH}), 118.9$ $(\mathrm{CH}), 105.3(\mathrm{C}), 73.4(\mathrm{CH}), 71.2(\mathrm{CH}), 37.4\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{3}\right), 25.0\left(\mathrm{CH}_{3}\right)$.

IR $v_{\max } 3044,2985,2933,2894,1700,1681,1614,1402,1378,1369,1208,1158,1096,1031,962$, $838,717 \mathrm{~cm}^{-1}$.

Mass spectrum (EI, 70 eV$) m / z 234\left(\mathrm{M}^{+\bullet},<1 \%\right), 219$ (5), 177 (40), 176 (48), 175 (44), 159 (70), 158 (75), 147 (40), 121 (75), 107 (100), 91 (46), 77 (52), 55 (95), 43 (62).
HREIMS Found: $\mathrm{M}^{+\bullet}, 234.1255 . \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}$ requires $\mathrm{M}^{+\bullet}, 234.1256$.
Optical Rotation $[\alpha]_{\mathrm{D}}=+89\left(c 1.6, \mathrm{CHCl}_{3}\right)$.

## Compound 22

The Michael addition of the Grignard reagent derived from acetal 17 ( $690 \mathrm{mg}, c a .2 .12 \mathrm{mmol}$ ) to enone 19 ( $691 \mu \mathrm{~L}$ of a $60 \%$ solution in $\mathrm{Et}_{2} \mathrm{O} /$ pentane, ca. 4.44 mmol ) was carried out as described in the general procedure using 2.0 mole equiv. of $i-\mathrm{PrMgCl}(2.1 \mathrm{~mL}$ of a 2.0 M solution in THF, 4.2 mmol ). The crude product was subjected to flash column chromatography ( $1: 9 \mathrm{v} / \mathrm{v}$ ethyl acetate/hexane elution) and concentration of the appropriate fractions ( $R_{\mathrm{f}}=0.3$ in $3: 7 \mathrm{v} / \mathrm{v}$ ethyl acetate/hexane) gave the title enone $22(376 \mathrm{mg}, 63 \%)$ as a clear, colourless oil.
${ }^{1} \mathbf{H}$ NMR ( 300 MHz ) $7.45(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{~m}, 3 \mathrm{H}), 6.34(\mathrm{dd}, J=17.8$ and $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{dd}, J=$
17.8 and $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{dd}, J=9.5$ and $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{dd}, J=9.5$ and $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{dd}$, $J=10.4$ and $1.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 5.80 (partially obscured d, $J=5.6,1 \mathrm{H}$ ), $5.70(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{dd}, J=9.3$ and $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~m}, 2 \mathrm{H}), 2.62(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( 75 MHz ) 199.8 (C), 136.8 (C), 136.3 (CH), 135.9 (C), 129.4 (CH), 128.3 (CH), 128.2 $\left(\mathrm{CH}_{2}\right), 127.0(\mathrm{CH}), 124.5(\mathrm{CH}), 122.2(\mathrm{CH}), 119.4(\mathrm{CH}), 99.1(\mathrm{CH}), 74.1(\mathrm{CH}), 72.3(\mathrm{CH}), 37.5$ $\left(\mathrm{CH}_{2}\right), 28.1\left(\mathrm{CH}_{2}\right)$.
IR $v_{\text {max }} 3045,2891,1711,1459,1402,1374,1312,1294,1218,1089,1065,1025,1000,919,761$, $735,699 \mathrm{~cm}^{-1}$.
Mass spectrum (EI, 70 eV$) m / z 282\left(\mathrm{M}^{+\bullet},<1 \%\right), 175$ (62), 158 (91), 147 (55), 133 (35), 121 (72), 105 (90), 91 (52), 77 (85), 65 (28), 55 (100), 39 (31).
HREIMS Found: $\mathrm{M}^{+\bullet}$, 282.1254. $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3}$ requires $\mathrm{M}^{+\bullet}, 282.1256$.
Optical Rotation $[\alpha]_{\mathrm{D}}=+112\left(c 1.5, \mathrm{CHCl}_{3}\right)$.

## Compound 23

The Michael addition of the Grignard reagent derived from acetonide $12(1.00 \mathrm{~g}, 3.60 \mathrm{mmol})$ to enone 20 ( $945 \mu \mathrm{~L}, c a .7 .55 \mathrm{mmol}$ ) was carried out as described in the general procedure using 1.5 mole equiv. of $i-\mathrm{PrMgCl}(2.7 \mathrm{~mL}$ of a 2.0 M solution in THF, 5.4 mmol ). The initially formed product was a silyl enol ether so this was dissolved in THF ( 7 mL ) and the solution thus obtained treated with tetra- $n$-butylammonium fluoride ( 7 mL of a 1.0 M solution in THF, 7.00 mmol ) and stirred at $18{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was then concentrated under reduced pressure onto silica (ca. 2 g of 230-400 mesh material). The resulting free-flowing solid was subjected to flash column chromatography (silica, 1:9 $\mathrm{v} / \mathrm{v}$ ethyl acetate/hexane elution) and concentration of the appropriate fractions ( $R_{\mathrm{f}}=0.4$ in 3:7 $\mathrm{v} / \mathrm{v}$ ethyl acetate/hexane) gave the title enone 23 ( 700 mg , $74 \%$ ) as a clear, colourless oil.

1H NMR ( 300 MHz ) $6.09(\mathrm{~m}, 1 \mathrm{H}), 5.96(\mathrm{dd}, J=9.7$ and $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{dd}, J=9.7$ and 3.7 Hz , $1 \mathrm{H}), 5.70(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{dd}, J=8.6$ and $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~m}$, $2 \mathrm{H}), 2.53(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.89(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H})$.
13C NMR ( 75 MHz ) 199.9 (C) 155.4 (C), 137.3 (C), 124.5 (CH), 123.6 (CH), 122.9 (CH), 118.6 $(\mathrm{CH}), 105.3(\mathrm{C}), 73.5(\mathrm{CH}), 71.3(\mathrm{CH}), 41.8\left(\mathrm{CH}_{2}\right), 28.1\left(\mathrm{CH}_{2}\right), 27.7\left(\mathrm{CH}_{3}\right), 26.9\left(\mathrm{CH}_{3}\right), 25.0$ $\left(\mathrm{CH}_{3}\right), 20.8\left(\mathrm{CH}_{3}\right)$.
IR $v_{\text {max }} 3044,2948,2933,2912,1688,1620,1445,1378,1369,1234,1209,1159,1109,1031,888$, $708 \mathrm{~cm}^{-1}$.

Mass spectrum (EI, 70 eV ) m/z $262\left(\mathrm{M}^{+\bullet}, 2 \%\right), 247$ (2), 204 (33), 189 (10), 149 (34), 148 (30), 121 (33), 107 (49), 104 (50), 91 (23), 83 (100), 77 (29), 55 (69), 43 (35), 39 (21).

HREIMS Found: $\mathrm{M}^{+\bullet}$, 262.1558. $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}$ requires $\mathrm{M}^{+\bullet}$, 262.1569.

Optical Rotation $[\alpha]_{\mathrm{D}}=+114\left(c 0.3, \mathrm{CHCl}_{3}\right)$.

## Compound 24

The Michael addition of the Grignard reagent derived from acetonide $\mathbf{1 8}(1.00 \mathrm{~g}, 3.42 \mathrm{mmol})$ to enone $\mathbf{2 0}(900 \mu \mathrm{~L}, c a .7 .20 \mathrm{mmol})$ was carried out as described in the general procedure using 2.0 mole equiv. of $i-\mathrm{PrMgCl}(3.4 \mathrm{~mL}$ of a 2.0 M solution in THF, 6.8 mmol$)$. The initially formed product was a silyl enol ether so this was dissolved in THF ( 7 mL ) and the resulting solution treated with tetra- $n$-butylammonium fluoride ( 7 mL of a 1.0 M solution in THF, 7.00 mmol ) then stirred at $18{ }^{\circ} \mathrm{C}$ for 1 h . The ensuing mixture was concentrated under reduced pressure onto silica (ca. 2 g of 230-400 mesh material) and the resulting free-flowing solid subjected to flash column chromatography (silica, 1:9 $\mathrm{v} / \mathrm{v}$ ethyl acetate/hexane elution). Concentration of the appropriate fractions ( $R_{\mathrm{f}}=0.4,3: 7 \mathrm{v} / \mathrm{v}$ ethyl acetate/hexane) gave the title enone 24 ( $568 \mathrm{mg}, 60 \%$ ) as a clear, colourless oil.
${ }^{1} \mathbf{H}$ NMR $(300 \mathrm{MHz}) 6.09(\mathrm{~m}, 1 \mathrm{H}), 5.65(\mathrm{~s}, 2 \mathrm{H}), 4.50(\mathrm{AB} \mathrm{q}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{~m}, 2 \mathrm{H}), 2.51$ $(\mathrm{m}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( 75 MHz ) 200.0 (C), 155.1 (C), 134.1 (C), 132.3 (C), 123.6 (CH), 119.7 (CH), $119.6(\mathrm{CH}), 105.8(\mathrm{C}), 75.6(\mathrm{CH}), 74.3(\mathrm{CH}), 42.1\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{CH}_{2}\right), 27.6\left(\mathrm{CH}_{3}\right), 27.0\left(\mathrm{CH}_{3}\right), 25.3$ $\left(\mathrm{CH}_{3}\right), 20.7\left(\mathrm{CH}_{3}\right), 19.8\left(\mathrm{CH}_{3}\right)$.
IR $v_{\max }$ 2982, 2933, 2912, 1688, 1620, 1447, 1378, 1369, 1235, 1208, 1158, 1110, 1062, 1039, 1013, $872 \mathrm{~cm}^{-1}$.

Mass spectrum (EI, 70 eV ) m/z $276\left(\mathrm{M}^{+\bullet}, 1 \%\right), 261\left[\left(\mathrm{M}-\mathrm{CH}_{3} \bullet\right)^{+}\right.$, <1], 218 (49), 199 (19), 191 (22), 185 (18), 163 (39), 149 (58), 135 (55), 121 (90), 108 (26), 91 (39), 83 (100), 77 (35), 55 (81), 43 (82).
HREIMS Found: $\mathrm{M}^{+\bullet}, 276.1722 . \mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3}$ requires $\mathrm{M}^{+\bullet}, 276.1725$.
Optical Rotation $[\alpha]_{\mathrm{D}}=+19\left(c 0.9, \mathrm{CHCl}_{3}\right)$.

## Compounds 25 and 26

A solution of enone $21(258 \mathrm{mg}, 1.10 \mathrm{mmol})$ and BHT ( $24.7 \mathrm{mg}, 0.11 \mathrm{mmol}$ ) in toluene ( 110 mL ) was heated at reflux for 16 h . The cooled reaction mixture was then concentrated under reduced pressure and the residue thus obtained was subjected to flash column chromatography (silica, 1:4 $\rightarrow$ 2:3 $\mathrm{v} / \mathrm{v}$ ethyl acetate/hexane gradient elution) and so affording two fractions, A and B.

Concentration of fraction A ( $R_{\mathrm{f}}=0.2$ in 3:7 $v / v$ ethyl acetate/hexane) gave the title anti-adduct 25 $(113 \mathrm{mg}, 44 \%)$ as a white, crystalline solid, m.p. $=131-134^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ( 300 MHz ) $6.29(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{ddd}, J=7.1,2.7$ and $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=7.1$ and $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.18(\mathrm{~m}, 3 \mathrm{H}), 1.99-1.88(\mathrm{~m}$, $2 \mathrm{H}), 1.65-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ( 75 MHz ) $215.2(\mathrm{C}), 135.7(\mathrm{CH}), 130.7(\mathrm{CH}), 109.1(\mathrm{C}), 83.3(\mathrm{CH}), 79.5(\mathrm{CH})$,
$50.1(\mathrm{CH}), 47.5(\mathrm{C}), 36.9\left(\mathrm{CH}_{2}\right), 35.7(\mathrm{CH}), 28.4\left(\mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{3}\right), 24.9\left(\mathrm{CH}_{3}\right), 23.5\left(\mathrm{CH}_{2}\right)$.
IR $v_{\max } 2986,2934,2886,2865,1742,1455,1378,1368,1207,1142,1068,1058,883,745,717$ $\mathrm{cm}^{-1}$.
Mass spectrum (EI, 70 eV ) $m / z 234\left(\mathrm{M}^{+\bullet}, 12 \%\right), 219$ (70), 177 (70), 176 (91), 175 (62), 147 (98), 133 (100), 120 (74), 105 (88), 100 (77), 91 (99), 85 (52), 77 (45), 43 (75).
HREIMS Found: $\mathrm{M}^{+\bullet}, 234.1256 . \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}$ requires $\mathrm{M}^{+\bullet}$, 234.1256.
Elemental Analysis Found: C, 71.58; H, 7.73. $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}$ requires C, 71.77; H, 7.74\%.
Optical Rotation $[\alpha]_{\mathrm{D}}=-102\left(c 1.2, \mathrm{CHCl}_{3}\right)$.

Concentration of fraction B ( $R_{\mathrm{f}}=0.3$ in $3: 7 \mathrm{v} / \mathrm{v}$ ethyl acetate/hexane) gave the title syn-adduct 26 (101 mg, 39\%) as a white, crystalline solid, m.p. $=93-96^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $(300 \mathrm{MHz}) 6.35(\mathrm{dd}, J=8.0$ and $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{dd}, J=8.0$ and $1.0 \mathrm{~Hz}, 1 \mathrm{H})$,
4.08 (ddd, $J=8.0,4.2$ and $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~m}, 1 \mathrm{H}), 2.66$ (ddd, $J=10.0$, 6.1 and $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.23-1.95($ complex m, 4H), $1.49(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{ddd}, J=$ $6.1,2.4$ and $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( 75 MHz ) 217.8 (C), $137.0(\mathrm{CH}), 133.7(\mathrm{CH}), 112.3(\mathrm{C}), 77.1(\mathrm{CH}), 75.0(\mathrm{CH}), 47.7(\mathrm{C})$, $45.9(\mathrm{CH}), 36.2\left(\mathrm{CH}_{2}\right), 35.0(\mathrm{CH}), 26.5\left(\mathrm{CH}_{3}\right), 25.2\left(\mathrm{CH}_{2}\right), 24.4\left(\mathrm{CH}_{3}\right), 22.8\left(\mathrm{CH}_{2}\right)$.
IR $v_{\text {max }}$ 2993, 2965, 2932, 2861, 1739, 1450, 1376, 1268, 1209, 1144, 1069, 1058, 1016, 872, 723 $\mathrm{cm}^{-1}$.
Mass spectrum (EI, 70 eV ) m/z $234\left(\mathrm{M}^{+\bullet}, 4 \%\right), 219\left[\left(\mathrm{M}-\mathrm{CH}_{3} \bullet\right)^{+}, 50\right], 205$ (37), 177 (48), 176 (85), 175 (82), 159 (71), 147 (99), 134 (97), 133 (98), 120 (78), 117 (77), 105 (95), 100 (97), 91 (100), 77 (55), 55 (45), 43 (79).

HREIMS Found: $\left(\mathrm{M}-\mathrm{CH}_{3} \bullet\right)^{+}$, 219.1021. $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}$ requires $\left(\mathrm{M}-\mathrm{CH}_{3}{ }^{\bullet}\right)^{+}$, 219.1021.
Elemental Analysis Found: C, $71.50 ; \mathrm{H}, 7.75 . \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}$ requires C, $71.77 ; \mathrm{H}, 7.74 \%$.
Optical Rotation $[\alpha]_{\mathrm{D}}=+128\left(c 1.04, \mathrm{CHCl}_{3}\right)$.

## Compounds 27 and 28

A solution of enone 22 ( $129 \mathrm{mg}, 0.46 \mathrm{mmol}$ ) and BHT ( $10 \mathrm{mg}, 0.05 \mathrm{mmol}$ ) in toluene ( 45 mL ) was heated at reflux for 24 h . The cooled reaction mixture was then concentrated under reduced pressure and the residue thus obtained was subjected to flash column chromatography (silica, 1:9 $\rightarrow 3: 7 \mathrm{v} / \mathrm{v}$ ethyl acetate/hexane gradient elution) and so affording two fractions, A and B.

Concentration of fraction A ( $R_{\mathrm{f}}=0.1$ in 3:7 $\mathrm{v} / \mathrm{v}$ ethyl acetate/hexane) afforded the anti-adduct 27 ( $76 \mathrm{mg}, 59 \%$ ) as a white, crystalline solid, m.p. $=174-179^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $(300 \mathrm{MHz}) 7.47(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{~m}, 3 \mathrm{H}), 6.44(\operatorname{broad} \mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 4.34(\mathrm{dd}, J=7.4$ and $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~m}, 1 \mathrm{H})$, $2.49(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( 75 MHz ) 214.9 (C), $136.2(\mathrm{CH}), 136.1(\mathrm{C}), 131.1(\mathrm{CH}), 129.8(\mathrm{CH}), 128.3(\mathrm{CH}), 127.5$ $(\mathrm{CH}), 103.5(\mathrm{CH}), 83.8(\mathrm{CH}), 80.1(\mathrm{CH}), 50.3(\mathrm{CH}), 47.6(\mathrm{C}), 36.9\left(\mathrm{CH}_{2}\right), 35.6(\mathrm{CH}), 28.4\left(\mathrm{CH}_{2}\right)$, $23.7\left(\mathrm{CH}_{2}\right)$.
IR $v_{\max } 2922,2873,1732,1462,1404,1358,1313,1218,1150,1112,1084,1062,994,920,853$, $759,752,705,698 \mathrm{~cm}^{-1}$.
Mass spectrum (EI, 70 eV ) m/z $282\left(\mathrm{M}^{+\bullet}, 9 \%\right), 281\left[(\mathrm{M}-\mathrm{H} \bullet)^{+}, 12\right], 253$ (9), 176 (69), 147 (68), 133 (58), 120 (40), 105 (100), 91 (67), 77 (45), 55 (21).
HREIMS Found: $(\mathrm{M}-\mathrm{H} \bullet)^{+}, 281.1176 . \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3}$ requires $(\mathrm{M}-\mathrm{H} \bullet)^{+}, 281.1178$.
Optical Rotation $[\alpha]_{\mathrm{D}}=-75\left(c 0.5, \mathrm{CHCl}_{3}\right)$.

Concentration of fraction B ( $R_{\mathrm{f}}=0.3$ in 3:7 $v / v$ ethyl acetate/hexane) afforded the syn-adduct 28 (27 $\mathrm{mg}, 21 \%$ ) as a clear, colourless oil.
${ }^{1} \mathbf{H}$ NMR $(300 \mathrm{MHz})(7.50(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~m}, 3 \mathrm{H}), 6.41(\mathrm{dd}, J=8.1$ and $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H})$, $5.89(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=8.4$ and $3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~m}, 1 \mathrm{H})$, $2.84(\mathrm{ddd}, J=9.8,6.1$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-1.99(\mathrm{~m}, 5 \mathrm{H}), 1.50(\mathrm{ddd}, J=12.7,6.8$ and 1.5 Hz , 1H).
${ }^{13}$ C NMR (75 MHz) 217.4 (C), 137.3 (CH), 136.4 (C), $134.1(\mathrm{CH}), 129.8(\mathrm{CH}), 128.6(\mathrm{CH}), 126.8$ $(\mathrm{CH}), 106.2(\mathrm{CH}), 77.8(\mathrm{CH}), 76.3(\mathrm{CH}), 47.8(\mathrm{C}), 46.1(\mathrm{CH}), 36.2\left(\mathrm{CH}_{2}\right), 35.0(\mathrm{CH}), 25.2\left(\mathrm{CH}_{2}\right)$, $23.2\left(\mathrm{CH}_{2}\right)$.

IR $v_{\max } 3041,2917,2869,1740,1458,1405,1298,1220,1444,1108,1086,1063,1025,991,761$, $743,700 \mathrm{~cm}^{-1}$.

Mass spectrum (EI, 70 eV ) $\mathrm{m} / \mathrm{z} 282\left(\mathrm{M}^{+\bullet}, 5 \%\right), 253$ (51), 176 (71), 147 (82), 133 (82), 120 (40), 105 (96), 91 (100), 77 (61), 55 (32).
HREIMS Found: $\mathrm{M}^{+\bullet}$, 282.1255. $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3}$ requires $\mathrm{M}^{+\bullet}, 282.1256$.
Optical Rotation $[\alpha]_{\mathrm{D}}=+59\left(c 0.3, \mathrm{CHCl}_{3}\right)$.

## Compound 29

A solution of enone 23 ( $129 \mathrm{mg}, 0.46 \mathrm{mmol}$ ) and BHT ( $10 \mathrm{mg}, 0.05 \mathrm{mmol}$ ) in mesitylene ( 45 mL )
was heated at reflux for 4 days. The cooled reaction mixture was then concentrated under reduced pressure and subjected to flash column chromatography (silica, 1:9 3:7 $\mathrm{v} / \mathrm{v}$ ethyl acetate/hexane gradient elution) to afford compound 29 ( $58.1 \mathrm{mg}, 45 \%$ ) as a white, crystalline solid, m.p. $=101-$ $104^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $(300 \mathrm{MHz}) 6.31(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{ddd}, J=7.1,2.9$ and $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J=7.1$ and $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{ddd}, J=6.6,2.9$ and $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.22$ $(\mathrm{m}, 3 \mathrm{H}), 1.76(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ( 75 MHz ) $214.6(\mathrm{C}), 136.5(\mathrm{CH}), 129.5(\mathrm{CH}), 109.0(\mathrm{C}), 83.5(\mathrm{CH}), 77.1(\mathrm{CH}), 59.8$ $(\mathrm{CH}), 49.7(\mathrm{C}), 49.5(\mathrm{CH}), 38.6\left(\mathrm{CH}_{2}\right), 37.4(\mathrm{C}), 29.9\left(\mathrm{CH}_{3}\right), 28.5\left(\mathrm{CH}_{2}\right), 25.4\left(\mathrm{CH}_{3}\right), 25.0$ (two signals overlapping, $2 \times \mathrm{CH}_{3}$ ).
IR $v_{\text {max }}$ 2965, 2937, 2910, 2883, 1734, 1381, 1367, 1265, 1206, 1088, 1066, $879,738 \mathrm{~cm}^{-1}$.
Mass spectrum (EI, 70 eV$) \mathrm{m} / \mathrm{z} 262\left(\mathrm{M}^{+\bullet},<1 \%\right), 247\left[\left(\mathrm{M}-\mathrm{CH}_{3} \bullet\right)^{+}, 25\right], 204$ (100), 175 (49), 147 (46), 119 (49), 91 (46), 55 (41), 43 (54).

HREIMS Found: $\left(\mathrm{M}-\mathrm{CH}_{3} \bullet\right)^{+}$, 247.1339. $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}$ requires $\left(\mathrm{M}-\mathrm{CH}_{3} \bullet\right)^{+}$, 247.1334.
Optical Rotation $[\alpha]_{\mathrm{D}}=-107\left(c 0.95, \mathrm{CHCl}_{3}\right)$.

## Compound 30

A solution of enone $23(100 \mathrm{mg}, 0.40 \mathrm{mmol})$ in $\mathrm{MeOH}(4 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ and treated with $\mathrm{NaBH}_{4}$ ( $29 \mathrm{mg}, 0.77 \mathrm{mmol}$ ). The ensuing mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h then warmed to $18^{\circ} \mathrm{C}$ and stirred at this temperature for a further 1 h . Water ( 1 mL ) was then added and the resulting mixture concentrated under reduced pressure. The residue thus obtained was partitioned between half brine ( 10 mL ) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ then the separated aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The combined organic fractions were washed with brine $(1 \times 10 \mathrm{~mL})$ before being dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. Subjection of the resulting yellow oil to flash column chromatography (silica, 1:9 $\rightarrow 3: 7 \mathrm{v} / \mathrm{v}$ ethyl acetate/hexane gradient elution) and concentration of the appropriate fractions ( $R_{\mathrm{f}}=0.4$ in 1:1 $v / v$ ethyl acetate/hexane) gave a ca. 1:1 mixture of the epimeric forms of alcohol $\mathbf{3 0}(88 \mathrm{mg}, 84 \%)$ as a clear, colourless oil.
${ }^{1} \mathbf{H}$ NMR ( 300 MHz ) $5.96(\mathrm{ddd}, J=9.6,5.6$ and 1.6 Hz 1 H$), 5.76(\mathrm{~m}, 2 \mathrm{H}), 5.19(\mathrm{~m}, 1 \mathrm{H}), 4.66(\mathrm{dd}, J$ $=8.6$ and $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{dd}, J=8.6$ and $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.55(\mathrm{~m}$, $2 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 1.5 \mathrm{H}), 1.66(1.5 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 1.5 \mathrm{H}), 1.37(\mathrm{~s}, 1.5 \mathrm{H})$ (resonance due to OH group proton not observed).
${ }^{13} \mathbf{C}$ NMR ( 75 MHz ) 138.0 (C), 137.8 (C), 135.6 (C), 135.2 (C), 127.9 (CH), 127.8 (CH), 124.5 (two signals overlapping, $2 \times \mathrm{CH}$ ), 122.8(4) (CH), 122.7(7) (CH), $118.6(\mathrm{CH}), 118.5(\mathrm{CH}), 105.2(4)$
(C), 105.1(8) (C), 73.4(9) (CH), 73.4(7) (CH), 71.4(4) (CH), 71.4(0) (CH), $68.4(\mathrm{CH}), 68.1(\mathrm{CH})$, $35.2\left(\mathrm{CH}_{2}\right), 35.0\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{3}\right), 26.8\left(\mathrm{CH}_{3}\right), 25.7(9)\left(\mathrm{CH}_{3}\right), 25.7(7)$ $\left(\mathrm{CH}_{3}\right), 25.1\left(\mathrm{CH}_{3}\right), 25.0\left(\mathrm{CH}_{3}\right), 18.3(2)\left(\mathrm{CH}_{3}\right), 18.2(5)\left(\mathrm{CH}_{3}\right)$.
IR $v_{\text {max }} 3435,3044,2984,2931,1448,1377,1235,1209,1158,1046,886,716 \mathrm{~cm}^{-1}$.
Mass spectrum (EI, 70 eV$) \mathrm{m} / \mathrm{z} 246\left[\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right)^{+\bullet}, 1 \%\right), 231\left[\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{3} \bullet\right)^{+}, 4\right]$, 206 (60), 188 (42), 173 (51), 145 (35), 133 (41), 107 (100), 95 (52), 94 (51), 85 (54), 79 (59), 43 (71).

HREIMS Found: $\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right)^{+\bullet}$, 246.1614. $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3}$ requires $\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right)^{+\bullet}, 246.1620$.

## Compound 31

Alcohol $\mathbf{3 1}$ was prepared in the same manner as described immediately above for congener $\mathbf{3 0}$ but now using enone $24(107 \mathrm{mg}, 0.39 \mathrm{mmol})$ as the starting material. In this manner a $c a .1: 1$ mixture of the epimeric forms of the title alcohol $31(89 \mathrm{mg}, 83 \%)$ was obtained as a clear colourless oil ( $R_{\mathrm{f}}$ $=0.2$ in 3:7 $\mathrm{v} / \mathrm{v}$ ethyl acetate/hexane).
${ }^{1} \mathbf{H}$ NMR ( 300 MHz ) $5.69(\mathrm{~m}, 2 \mathrm{H}), 5.19(\mathrm{~m}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 4.37(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 2 \mathrm{H}), 1.87(\mathrm{~s}$, $3 \mathrm{H}), 1.84-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 1.5 \mathrm{H}), 1.66(\mathrm{~s}, 1.5 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 1.5 \mathrm{H})$, $1.35(\mathrm{~s}, 1.5 \mathrm{H})$ (resonance due to OH group proton not observed).
${ }^{13}$ C NMR (75 MHz) 135.5 (C), 135.2 (C), 134.8 (C), 134.6 (C), 132.2 (C), 132.1 (C), $128.0(\mathrm{CH})$, $127.9(\mathrm{CH}), 119.7(\mathrm{CH}), 119.6$ (three signals overlapping, $3 \times \mathrm{CH}$ ), 105.7(9) (C), 105.7(6) (C), 75.8 $(\mathrm{CH}), 75.7(\mathrm{CH}), 74.4(\mathrm{CH}), 74.3(\mathrm{CH}), 68.4(\mathrm{CH}), 68.1(\mathrm{CH}), 35.4\left(\mathrm{CH}_{2}\right), 35.3\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{CH}_{2}\right)$, $29.7\left(\mathrm{CH}_{2}\right)$, $27.0(3)\left(\mathrm{CH}_{3}\right), 26.9(9)\left(\mathrm{CH}_{3}\right), 25.8$ (two signals overlapping, $\left.2 \times \mathrm{CH}_{3}\right)$, $25.4(3)\left(\mathrm{CH}_{3}\right)$, 25.3(6) $\left(\mathrm{CH}_{3}\right)$, 19.8 (two signals overlapping, $2 \times \mathrm{CH}_{3}$ ), 18.3(3) $\left(\mathrm{CH}_{3}\right)$, 18.2(6) $\left(\mathrm{CH}_{3}\right)$. IR $v_{\max } 3434,2983,2932,2914,2879,1448,1377,1235,1209,1159,1064,1045,1021,872,849$ $\mathrm{cm}^{-1}$.

Mass spectrum (EI, 70 eV$) \mathrm{m} / \mathrm{z} 260\left[\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right)^{+\bullet}, 6 \%\right]$, $245\left[\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{3} \bullet\right)^{+}\right.$, 10], 220 (92), 202 (52), 187 (67), 147 (48), 121 (100), 108 (59), 95 (69), 91 (53), 85 (68), 77 (51), 55 (40), 43 (65).

HREIMS Found: $\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right)^{+\bullet}$, 260.1777. $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{3}$ requires $\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right)^{+\bullet}, 260.1776$.

## Compound 32

A solution of a $c a .1: 1$ mixture of the epimeric forms of alcohol $\mathbf{3 0}(43.3 \mathrm{mg}, 0.16 \mathrm{mmol})$ and BHT ( $3.5 \mathrm{mg}, 0.02 \mathrm{mmol}$ ) in mesitylene ( 35 mL ) was heated at reflux for 4 days then cooled and concentrated under reduced pressure to give a yellow oil. Purification of this material by flash column chromatography (silica, 3:7 $\mathrm{v} / \mathrm{v}$ ethyl acetate/hexane elution) and concentration of the appropriate fractions ( $R_{\mathrm{f}}=0.3$ in $1: 1 \mathrm{v} / \mathrm{v}$ ethyl acetate/hexane) afforded the title compound $\mathbf{3 2}$ (19.1 $\mathrm{mg}, 44 \%$ ) as a clear, colourless oil.
${ }^{1} \mathbf{H}$ NMR $(300 \mathrm{MHz}) 6.11(\mathrm{dd}, J=8.1$ and $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{dd}, J=8.1$ and $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.59$ (ddd, $J=7.1,3.0$ and $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=7.1$ and $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{ddd}, J=$ $6.5,3.0$ and $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.23$ $(\mathrm{d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H})$ (resonance due to OH group proton not observed).
${ }^{13} \mathbf{C}$ NMR ( 75 MHz ) $133.0(\mathrm{CH}), 132.3(\mathrm{CH}), 108.4(\mathrm{C}), 84.0(\mathrm{CH}), 77.2(\mathrm{CH}), 74.7(\mathrm{CH}), 59.8$ $(\mathrm{CH}), 50.6(\mathrm{C}), 49.0(\mathrm{CH}), 35.1(\mathrm{C}), 34.0\left(\mathrm{CH}_{2}\right), 30.9\left(\mathrm{CH}_{3}\right), 30.1\left(\mathrm{CH}_{2}\right), 25.4(3)\left(\mathrm{CH}_{3}\right), 25.3(6)$ $\left(\mathrm{CH}_{3}\right), 25.0\left(\mathrm{CH}_{3}\right)$.
IR $v_{\max } 3435,3042,2931,2869,1456,1378,1368,1264,1206,1174,1161,1091,1064,1029$, 1006, 983, 967, 902, 884, 830, 816, 735, $702 \mathrm{~cm}^{-1}$.
Mass spectrum (EI, 70 eV ) m/z 264 ( $\mathrm{M}^{+\bullet},<1 \%$ ), 249 (55), 206 (52), 188 (95), 173 (89), 164 (64), 159 (94), 147 (78), 145 (80), 133 (82), 120 (69), 107 (79), 105 (79), 100 (54), 91 (71), 85 (82), 69 (50), 55 (60), 43 (100).

HREIMS Found: $\mathrm{M}^{+\bullet}, 264.1726 . \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3}$ requires $\mathrm{M}^{+\bullet}, 264.1725$.

## Compound 33

A solution of $c a .1: 1$ mixture of the epimeric forms of alcohol $\mathbf{3 1}(53.1 \mathrm{mg}, 0.19 \mathrm{mmol})$ and BHT $(4.0 \mathrm{mg}, 0.02 \mathrm{mmol})$ in mesitylene ( 40 mL ) was heated at reflux for 96 h then cooled and concentrated under reduced pressure to give a yellow oil. Subjection of this material to flash column chromatography (silica, 3:7 $\mathrm{v} / \mathrm{v}$ ethyl acetate/hexane elution) and concentration of the appropriate fractions ( $R_{\mathrm{f}}=0.3$ in $1: 1 \mathrm{v} / \mathrm{v}$ ethyl acetate/hexane) afforded the title compound $\mathbf{3 3}$ (24.3 $\mathrm{mg}, 46 \%)$ as a colourless, semi-solid.
${ }^{1} \mathbf{H}$ NMR ( 300 MHz ) $5.68(\mathrm{AB}$ quartet, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.24(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.90(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H})$ (resonance due to OH group proton not observed).
${ }^{13} \mathbf{C}$ NMR ( 75 MHz ) $137.9(\mathrm{CH}), 132.2(\mathrm{CH}), 108.3(\mathrm{C}), 84.9(\mathrm{CH}), 81.4(\mathrm{CH}), 74.8(\mathrm{CH}), 61.0$ $(\mathrm{CH}), 49.4(\mathrm{C}), 46.3(\mathrm{C}), 37.4(\mathrm{C}), 34.0\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{3}\right), 25.6\left(\mathrm{CH}_{3}\right), 25.0\left(\mathrm{CH}_{3}\right)$, $21.6\left(\mathrm{CH}_{3}\right), 15.0\left(\mathrm{CH}_{3}\right)$.
IR $v_{\max } 3429,3036,2967,2872,1455,1370,1255,1207,1167,1085,1056,1017,898,870,733$ $\mathrm{cm}^{-1}$.
Mass spectrum (EI, 70 eV$) \mathrm{m} / \mathrm{z} 263\left[\left(\mathrm{M}-\mathrm{CH}_{3} \bullet\right)^{+}, 19 \%\right]$, 220 (73), 202 (28), 187 (31), 178 (99), 163 (48), 121 (65), 119 (100), 105 (42), 91 (41), 77 (27), 43 (64).
HREIMS Found: $\left(\mathrm{M}-\mathrm{CH}_{3} \bullet\right)^{+}$, 263.1647. $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{3}$ requires $\left(\mathrm{M}-\mathrm{CH}_{3} \bullet\right)^{+}$, 263.1647.
Optical Rotation $[\alpha]_{\mathrm{D}}=-5\left(c 0.4, \mathrm{CHCl}_{3}\right)$.

## Compound 34

A solution of alcohol $33(9.8 \mathrm{mg}, 0.04 \mathrm{mmol})$, triethylamine ( $20 \mu \mathrm{~L}, 0.14 \mathrm{mmol}$ ) and DMAP [4( $N, N$ - dimethylamino)pyridine] ( $17.3 \mathrm{mg}, 0.14 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ maintained at $18{ }^{\circ} \mathrm{C}$ was treated with 3,5-dinitrobenzoyl chloride ( $24.2 \mathrm{mg}, 0.105 \mathrm{mmol}$ ). The ensuing mixture was stirred at $18{ }^{\circ} \mathrm{C}$ for 16 h then $\mathrm{NaHCO}_{3}$ ( 2 mL of a saturated aqueous solution) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL}$ ) were added. The separated aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$ and the combined organic fractions were washed with brine $(1 \times 2 \mathrm{~mL})$ before being dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. Subjection of the resulting yellow oil to flash column chromatography (silica, 1:19 $\mathrm{v} / \mathrm{v}$ ethyl acetate/hexane elution) and concentration of the appropriate fractions ( $R_{\mathrm{f}}=0.6,3: 7 \mathrm{v} / v$ ethyl acetate/hexane) afforded the title ester $34(10.1 \mathrm{mg}, 61 \%)$ as a white crystalline solid, m.p. $=178-182^{\circ}$.
${ }^{1} \mathbf{H}$ NMR ( 500 MHz ) $9.24(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.12(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.78$ (AB quartet, $J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 5.09(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~m}$, $1 \mathrm{H}), 1.93(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H})$, 1.08 (s, 3H), 0.84 (s, 3H).
${ }^{13} \mathbf{C}$ NMR ( 75 MHz ) 162.1 (C), 148.7 (C), 138.8 (CH), 134.0 (C), 131.1 (CH), 129.3 (CH), 122.4 $(\mathrm{CH}), 108.7(\mathrm{C}), 84.5(\mathrm{CH}), 81.3(\mathrm{CH}), 80.2(\mathrm{CH}), 58.0(\mathrm{CH}), 49.2(\mathrm{C}), 46.3(\mathrm{C}), 37.6(\mathrm{C}), 31.1$ $\left(\mathrm{CH}_{2}\right), 30.4\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{3}\right), 25.6\left(\mathrm{CH}_{3}\right), 25.0\left(\mathrm{CH}_{3}\right), 22.2\left(\mathrm{CH}_{3}\right), 15.1\left(\mathrm{CH}_{3}\right)$.

IR $v_{\text {max }} 3103,2922,2851,1729,1628,1547,1461,1370,1344,1276,1208,1168,1075,1018,920$, 873, $730,721 \mathrm{~cm}^{-1}$.

Mass spectrum (EI, 70 eV ) $\mathrm{m} / \mathrm{z} 457$ [( $\left.\left.\mathrm{M}-\mathrm{CH}_{3} \bullet\right)^{+}, 11 \%\right], 414$ (22), 202 (100), 187 (39), 173 (50), 160 (58), 145 (79), 121 (45), 69 (40), 57 (51), 55 (48), 43 (77).
HREIMS Found: $\left(\mathrm{M}-\mathrm{CH}_{3} \bullet\right)^{+}$, 457.1609. $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{8}$ requires $\left(\mathrm{M}-\mathrm{CH}_{3} \bullet\right)^{+}$, 457.1611.
Optical Rotation $[\alpha]_{\mathrm{D}}=-57\left(c 0.15, \mathrm{CHCl}_{3}\right)$.

## Compound 35

L-Selectride® ( 0.68 mL of a 1.0 M solution in THF, $0.68 \mathrm{mmol}, 2.0$ molar equiv.) was slowly added to a magnetically stirred solution of ketone $26(80 \mathrm{mg}, 0.34 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ maintained at $-78^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The ensuing mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 $h$ then quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ ( 20 mL of a saturated aqueous solution) and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 10 mL ). After the reaction mixture had warmed to room temperature the separated aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$ and the combined organic fractions were then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, concentrated under reduced pressure. The ensuing light-yellow oil was subjected to flash column chromatography (silica $3: 7 \mathrm{v} / \mathrm{v}$ ethyl acetate/hexane elution) to give, after concentration of
the relevant fractions ( $R_{\mathrm{f}}=0.3$ in $2: 3 \mathrm{v} / \mathrm{v}$ ethyl acetate/hexane) a crystalline solid. Recrystallisation (ethyl acetate) of this material gave the title compound $\mathbf{3 5}$ ( $70 \mathrm{mg}, 87 \%$ ) as a colourless, crystalline solid, m.p. $=90.9^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.21(\mathrm{dd}, J=7.8$ and $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-$ $3.96(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.04(\mathrm{~m}, 3 \mathrm{H}), 1.72-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.44$ $(\mathrm{s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.32-1.25(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 137.5,135.0,112.2,77.6,75.3,73.3,49.3,39.9,36.1,35.9,28.0$, 26.7, 24.7, 22.3.

IR $v_{\max } 3481,3046,2937,1614,1455,1372,1263,1206,1163,1134,1059,976,944,876,804$, $703,649 \mathrm{~cm}^{-1}$.

Mass spectrum (EI, 70 eV ) m/z 236 ( $\mathrm{M}^{+\bullet}, 3 \%$ ), 221 (17), 207 (12), 178 (31), 160 (88), 136 (67), 131 (100), 118 (65), 117 (72), 105 (51), 100 (41), 91 (68), 43 (44).

HREIMS Found: $\mathrm{M}^{+\bullet}, 236.1414 \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3}$ requires $\mathrm{M}^{+\bullet}, 236.1412$.
Optical Rotation $[\alpha]_{\mathrm{D}}=-5.1\left(c 0.82, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

## Compound 36

Sodium hydride ( 26 mg of a $60 \%$ dispersion in oil, $0.66 \mathrm{mmol}, 1.2$ molar equiv.) was added to a magnetically stirred solution of alcohol $35(130 \mathrm{mg}, 0.55 \mathrm{mmol})$ in dry THF ( 5 mL ) maintained at 0 ${ }^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The ensuing mixture was allowed to warm to $18{ }^{\circ} \mathrm{C}$ and stirred at this temperature for 0.5 h before being treated, dropwise, with iodomethane $(0.11 \mathrm{~mL}, 1.65 \mathrm{mmol}$, 3.0 molar equiv.). After being stirred at $18^{\circ} \mathrm{C}$ for a further 18 h the reaction mixture was quenched with $\mathrm{NH}_{4} \mathrm{Cl}\left(25 \mathrm{~mL}\right.$ of a saturated aqueous solution) then diluted with $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$. The separated aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$ and the combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, concentrated under reduced pressure. The resulting light-yellow oil was subjected to flash column chromatography (silica gel, $1: 9 \mathrm{v} / \mathrm{v}$ ethyl acetate/hexane) to give, after concentration of the appropriate fractions ( $R_{\mathrm{f}}=0.6$ in $3: 7 \mathrm{v} / \mathrm{v}$ ethyl acetate/hexane), the title compound 36 ( $117 \mathrm{mg}, 85 \%$ ) as a clear, colourless oil.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.19(\mathrm{dd}, J=7.8$ and $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}$, $J=8.1$ and $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~m}$, $1 \mathrm{H}), 2.10-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.61(\mathrm{~m}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 137.3,132.7,111.9,81.8,77.8,75.6,57.3,49.4,38.7,35.8,32.1$, 28.3, 26.7, 24.7, 22.2.

IR $v_{\max } 3045,2976,2938,2900,2871,2819,1611,1455,1380,1371,1263,1207,1084,1059,973$, $929,877,717,698,649 \mathrm{~cm}^{-1}$.

Mass spectrum (EI, 70 eV$) \mathrm{m} / \mathrm{z} 250\left(\mathrm{M}^{+\bullet}, 21 \%\right), 235$ (15), 221 (12), 192 (27), 160 (83), 150 (65), 131 (93), 118 (72), 117 (67), 105 (51), 91 (65), 86 (62), 84 (86), 49 (100).

HREIMS Found: $\mathrm{M}^{+\bullet}, 250.1564 . \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}$ requires $\mathrm{M}^{+\bullet}, 250.1569$.
Optical Rotation $[\alpha]_{\mathrm{D}}=-44.1\left(c 0.70, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

## Compound 37

DOWEX® 50WX8-100 ion exchange resin ( 500 mg of freshly activated material obtained by successive washing with saturated aqueous $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}, 1 \mathrm{M} \mathrm{HCl}$ and $\mathrm{H}_{2} \mathrm{O}$ ) was added to a magnetically stirred solution of acetonide $36(250 \mathrm{mg}, 1.00 \mathrm{mmol})$ in $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(18 \mathrm{~mL}$ of $5: 1 \mathrm{v} / \mathrm{v}$ mixture) maintained at $18^{\circ} \mathrm{C}$. The resulting mixture was heated at reflux $\left(c a .110^{\circ} \mathrm{C}\right)$ for 72 h then cooled and filtered. The solids thus retained were sonicated with $\mathrm{MeOH}\left(3 \times 15 \mathrm{~mL}\right.$ ) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 $\times 15 \mathrm{~mL}$ ) and then filtered. The combined filtrates were concentrated under reduced pressure and the residue thus obtained was partitioned between $\mathrm{NaCl}(50 \mathrm{~mL}$ of a 1.5 M aqueous solution) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The separated aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$ and the combined organic phases were then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, concentrated under reduced pressure to give a light-yellow oil. Subjection of this material to flash column chromatography (silica gel, 3:7 $\rightarrow 2: 3 \mathrm{v} / \mathrm{v}$ ethyl acetate/hexane gradient elution) gave two fractions, A and B.

Concentration of fraction A ( $R_{\mathrm{f}}=0.6$ in $3: 7 \mathrm{v} / \mathrm{v}$ ethyl acetate/hexane) gave the starting acetonide 36 ( $25 \mathrm{mg}, 10 \%$ recovery) as a clear, colourless oil. This material was identical, in all respects, with an authentic sample.

Concentration of fraction B ( $R_{\mathrm{f}}=0.1$ in $3: 7 \mathrm{v} / \mathrm{v}$ ethyl acetate/hexane) gave title compound 37 (162 $\mathrm{mg}, 77 \%$ at $90 \%$ conversion) as a clear, colourless oil.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.14(\mathrm{dd}, J=8.1$ and $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~m}$, $1 \mathrm{H}), 3.56(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.37(\mathrm{~m}, 2 \mathrm{H}), 3.28(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{~m}, 1 \mathrm{H}), 2.09-$ 1.93 (m, 3H), 1.82-1.58 (m, 3H), $1.38(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.3,131.7,81.9,67.3,64.8,57.3,49.9,38.4,37.9,32.3,27.9$, 22.1.

IR $v_{\max } 3361,3042,2939,2821,1616,1456,1392,1368,1286,1199,1144,1110,1078,1039,923$, $864,809,707,689 \mathrm{~cm}^{-1}$.

Mass spectrum (ESI, +ve ionisation) $m / z 233\left[(\mathrm{M}+\mathrm{Na})^{+}, 6 \%\right], 126$ (95), 102 (100).
HRMS Found: $(\mathrm{M}+\mathrm{Na})^{+}, 233.1150 . \mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3}$ requires $(\mathrm{M}+\mathrm{Na})^{+}$, 233.1154.
Optical Rotation $[\alpha]_{\mathrm{D}}=-31.6\left(c 2.07, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

## Compound 38

$p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ ( $320 \mathrm{mg}, 1.68 \mathrm{mmol}, 2.2$ molar equiv.) was added to a magnetically stirred solution of diol $37(0.77 \mathrm{mmol}, 161 \mathrm{mg})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ maintained at $0{ }^{\circ} \mathrm{C}$ under a nitrogen atmosphere. 4-Acetamido-TEMPO ( $359 \mathrm{mg}, 1.68 \mathrm{mmol}, 2.2$ molar equiv.) was then added (in $c a .5$ $\times 72 \mathrm{mg}$ portions at 0.5 h intervals) and the resulting solution stirred at $18{ }^{\circ} \mathrm{C}$ for 1 h before being quenched with $\mathrm{NaHCO}_{3}$ ( 20 mL of a saturated aqueous solution) then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 20 mL ). The separated aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$ then the combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, concentrated under reduced pressure to give a light-yellow oil. Subjection of this material to flash column chromatography (silica gel, 3:7 v/v ethyl acetate/hexane elution) gave, after concentration of the appropriate fractions ( $R_{\mathrm{f}}=0.2$ ) a white solid. Recrystallisation (ethyl acetate/hexane) of this material afforded the title compound $\mathbf{3 8}$ (134 $\mathrm{mg}, 84 \%$ ) as a colourless, crystalline solid, m.p. $=71.4^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.19(\mathrm{dd}, J=8.1$ and $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~m}$, $1 \mathrm{H}), 3.48(\mathrm{~s}, 1 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{~s}, 1 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.72$ ( $\mathrm{m}, 5 \mathrm{H}, \mathrm{m}$ ).
${ }^{13} \mathbf{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 216.0,139.8,128.1,80.6,73.6,57.1,53.9,47.1,40.4,32.8,28.5$, 27.0.

IR $v_{\max } 3439,2936,2874,2824,1729,1610,1457,1364,1206,1137,1109,1080,926,876,839$, $766,693 \mathrm{~cm}^{-1}$.

Mass spectrum (ESI, +ve ionisation) $m / z 231\left[(\mathrm{M}+\mathrm{Na})^{+}, 100 \%\right], 163$ (55), 131 (92).
HRMS Found: $(\mathrm{M}+\mathrm{Na})^{+}$, 231.0998. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}$ requires $(\mathrm{M}+\mathrm{Na})^{+}$, 231.0997.
Optical Rotation $[\alpha]_{\mathrm{D}}=-204.0\left(c 1.54, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

## Compound 39

Benzoyl chloride ( $0.22 \mathrm{~mL}, 1.93 \mathrm{mmol}, 3.0$ molar equiv.) was slowly added to a magnetically stirred solution of acyloin $38(134 \mathrm{mg}, 0.64 \mathrm{mmol})$ and DMAP ( $314 \mathrm{mg}, 2.57 \mathrm{mmol}, 4.0$ molar equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ maintained at $0{ }^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The resulting solution was stirred at $0^{\circ} \mathrm{C}$ for 2 h and at $18^{\circ} \mathrm{C}$ for 18 h before being quenched with $\mathrm{HCl}(15 \mathrm{~mL}$ of a 1 M aqueous solution) then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The separated aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 15 \mathrm{~mL}\right.$ and the combined organic fractions were then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. The resulting light-yellow oil was subjected to flash column chromatography (silica gel, $3: 17 \rightarrow 1: 4 \mathrm{v} / \mathrm{v}$ ethyl acetate/hexane gradient elution). Concentration of the appropriate fractions ( $R_{\mathrm{f}}=0.4$ in $3: 7 \mathrm{v} / \mathrm{v}$ ethyl acetate/hexane) gave the title compound 39 ( $200 \mathrm{mg}, 99 \%$ ) as a white solid, m.p. $=96.0^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.38(\mathrm{~m}, 2 \mathrm{H}), 6.36(\mathrm{dd}, J=$ 8.1 and $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~m}, 1 \mathrm{H})$, $2.45(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.81(\mathrm{~m}, 3 \mathrm{H}), 1.60(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 208.1,166.2,138.7,133.6,130.4,130.1,129.4,128.7,80.1,73.4$, 57.2, 52.8, 47.9, 42.0, 32.8, 27.6, 27.2.

IR $v_{\text {max }} 3060,2943,2902,2875,2828,1739,1726,1601,1585,1453,1315,1267,1106,1071,711$ $\mathrm{cm}^{-1}$.
Mass spectrum (ESI, +ve ionisation) $m / z 335\left[(\mathrm{M}+\mathrm{Na})^{+}, 100 \%\right], 313\left[(\mathrm{M}+\mathrm{H})^{+}, 2\right], 163(42), 131$ (36).

HRMS Found: $(\mathrm{M}+\mathrm{Na})^{+}, 335.1258 . \mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4}$ requires $(\mathrm{M}+\mathrm{Na})^{+}$, 335.1259.
Optical Rotation $[\alpha]_{D}=-129.8\left(c 2.37, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

## Compounds 40 and 41

A solution of enone $39(49 \mathrm{mg}, 0.15 \mathrm{mmol})$ in dry benzene $(10 \mathrm{~mL})$ was irradiated at 300 nm in a Rayonet photochemical apparatus for 2 h at which point all of the starting material had been consumed. Accordingly, the reaction mixture was concentrated under reduced pressure and the resulting light-yellow oil was subjected to flash column chromatography (silica gel, 1:9 $\rightarrow 1: 4 \mathrm{v} / \mathrm{v}$ ethyl acetate/hexane gradient elution) and thereby affording two fractions, A and B.

Concentration of fraction A ( $R_{\mathrm{f}}=0.4$ in $3: 7 \mathrm{v} / \mathrm{v}$ ethyl acetate/hexane) afforded the title compound $40(30 \mathrm{mg}, 61 \%)$ as a clear, colourless oil.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.00(\mathrm{~m}, 1 \mathrm{H})$, $5.86(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~m}, 1 \mathrm{H})$, 2.25-1.98 (m, 4H), $1.85(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 201.2,165.2,134.0,130.2,130.1,129.8,128.9,119.1,85.9,84.2$, 57.9, 55.9, 43.1, 37.4, 32.5, 28.4, 20.6.

IR $v_{\max } 3034,2931,1789,1726,1601,1584,1451,1314,1264,1116,1063,1025,927,709 \mathrm{~cm}^{-1}$.
Mass spectrum (ESI, +ve ionisation) $m / z 335\left[(\mathrm{M}+\mathrm{Na})^{+}, 100 \%\right], 313\left[(\mathrm{M}+\mathrm{H})^{+}, 78\right], 159$ (80) 101 (87).

HRMS Found: $(\mathrm{M}+\mathrm{Na})^{+}, 335.1259 . \mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4}$ requires $(\mathrm{M}+\mathrm{Na})^{+}$, 335.1259.
Optical Rotation $[\alpha]_{\mathrm{D}}=+233.7\left(c 0.32, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Concentration of fraction B ( $R_{\mathrm{f}}=0.5$ in 3:7 v/v ethyl acetate/hexane) afforded a $4: 1$ mixture (as determined by ${ }^{13} \mathrm{C}$ NMR analysis) of the epimeric forms of compound 41 ( $8 \mathrm{mg}, 16 \%$ ) as a clear, colourless oil.
${ }^{1} \mathbf{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ (major diastereomer) 8.10-7.90(m, 2H), $7.49(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.33$ $(\mathrm{m}, 2 \mathrm{H}), 5.80(\mathrm{~m}, 1 \mathrm{H}), 5.62(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~m}$, $1 \mathrm{H}), 2.08(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.73(\mathrm{~m}, 3 \mathrm{H}), 1.67-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{~m}, 1 \mathrm{H})$ (most of the signals arising from the minor diastereoisomer were obscured by those due to the major one).
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.2,132.1,132.0,129.0,128.5(0), 128.4(6), 128.3,127.4(0)$, $127.3(6), 123.1,119.4,83.5,83.1,64.5,61.4,56.5,56.3,40.9,35.3,30.8,28.7,28.1,27.6,27.2$, 26.0, 25.4, 23.6, 22.4, 20.9, 19.9 (two signals obscured or overlapping).

IR $v_{\text {max }} 3005,2933,2829,2802,1724,1602,1451,1270,1111,710 \mathrm{~cm}^{-1}$.
Mass spectrum (ESI, +ve ionisation) $m / z 307\left[(\mathrm{M}+\mathrm{Na})^{+}, 13 \%\right], 247$ (44), 102 (100).
HRMS Found: $(\mathrm{M}+\mathrm{Na})^{+}, 307.1311 . \mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3}$ requires $(\mathrm{M}+\mathrm{Na})^{+}$, 307.1310.

## Photochemically-induced Conversion of Cyclobutanone 40 into Cyclopropane 41

A solution of cyclobutanone $\mathbf{4 0}(6 \mathrm{mg}, 0.02 \mathrm{mmol})$ in benzene- $\mathrm{d}_{6}(1.5 \mathrm{~mL})$ was irradiated at 300 nm in a Rayonet photochemical apparatus for $2 \mathrm{~h} .{ }^{1} \mathrm{H}$ NMR analysis of the reaction mixture after this time indicated that all the starting material had been consumed. Accordingly, the reaction mixture was concentrated under reduced pressure and the resulting light-yellow oil subjected to flash column chromatography (silica gel, $1: 9 \mathrm{v} / \mathrm{v}$ ethyl acetate/hexane) to give, after concentration of the appropriate fractions ( $R_{\mathrm{f}}=0.5$ in $3: 7 \mathrm{v} / \mathrm{v}$ ethyl acetate/hexane) cyclopropane $41(4 \mathrm{mg}, 73 \%)$ as a clear, colourless oil. This material was identical, in all respects, with an authentic sample.

## Compounds 41 and 42

A solution of ketone 39 ( $52 \mathrm{mg}, 0.17 \mathrm{mmol}$ ) in acetone ( 6 mL of dry, degassed material) was irradiated at 300 nm in a Rayonet photochemical apparatus for 10 h . The reaction mixture was then concentrated under reduced pressure and the resulting light-yellow oil subjected to flash column chromatography (silica gel, 1:9 $\rightarrow 35: 65 \mathrm{v} / \mathrm{v}$ ethyl acetate/hexane gradient elution) and thereby affording two fractions, A and B .

Concentration of fraction A ( $R_{\mathrm{f}}=0.5$ in 3:7 v/v ethyl acetate/hexane) gave the title compound 41 ( 4 $\mathrm{mg}, 8 \%)$ as a clear, colourless oil. This material was identical, in all respects, with an authentic sample.

Concentration of fraction B ( $R_{\mathrm{f}}=0.3$ in $3: 7 \mathrm{v} / \mathrm{v}$ ethyl acetate/hexane) gave the title compound 42 ( $28 \mathrm{mg}, 54 \%$ ) as a clear, colourless oil.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 2 \mathrm{H}), 5.62(\mathrm{~d}, J=$ $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{ddd}, J=14.4,6.3$ and $2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.21-2.01(\mathrm{~m}, 3 \mathrm{H}), 1.98-1.63(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 205.7,165.8,133.6,130.3,130.1,128.7,84.3,81.2,59.4,57.4,51.9$, 35.6, 33.7, 32.3, 31.8, 30.6, 26.5.

IR $v_{\text {max }} 2935,1723,1451,1268,1122,1096,1025,710 \mathrm{~cm}^{-1}$.
Mass spectrum (ESI, +ve ionisation) $m / z 335\left[(\mathrm{M}+\mathrm{Na})^{+}, 100 \%\right]$, 159 (28), 104 (31).
HRMS Found: $(\mathrm{M}+\mathrm{Na})^{+}$, 335.1263. $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4}$ requires $(\mathrm{M}+\mathrm{Na})^{+}$, 335.1259.
Optical Rotation $[\alpha]_{\mathrm{D}}=+57.0\left(c 0.31, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

## X-ray Crystallographic Studies

## Data for Compound 25

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}, M=234.30, T=200 \mathrm{~K}$, orthorhombic, space group $P 2_{1} 2_{1} 2_{1}, Z=4, a=6.3882(1), b=$ 10.3973(2), $c=18.3495(4) \AA, V=1218.77(4) \AA^{3}, D_{x}=1.277 \mathrm{~g} \mathrm{~cm}^{-3}, 1631$ unique data $\left(2 \theta_{\max }=\right.$ $55^{\circ}$ ), refinement on F using 1293 reflections with $I>3.0 \sigma(I) ; R=0.0258, R w=0.0301, S=1.1495$.

## Data for Compound 26

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}, M=234.30, T=200 \mathrm{~K}$, orthorhombic, space group $P 2_{1} 2_{1} 2_{1}, Z=4, a=6.2050(1), b=$ 11.5001(3), $c=17.0648(5) \AA, V=1217.71(5) \AA^{3}, D_{x}=1.278 \mathrm{~g} \mathrm{~cm}^{-3}, 1612$ unique data ( $2 \theta_{\max }=$ $55^{\circ}$ ), refinement on F using 1169 reflections with $I>3.0 \circ(I) ; R=0.0286, R w=0.0331, S=1.1573$.

## Data for Compound 27

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3}, M=282.34, T=200 \mathrm{~K}$, orthorhombic, space group $P 2_{1} 2_{1} 2_{1}, Z=4, a=9.7159(2), b=$ 9.7758(2), $c=14.8253(4) \AA, V=1408.12(6) \AA^{3}, D_{x}=1.332 \mathrm{~g} \mathrm{~cm}^{-3}, 2326$ unique data ( $2 \theta_{\max }=$ $60^{\circ}$ ), refinement on $\mathrm{F}^{2}$ using all data, $R=0.030$ [for 2075 reflections with $I>2.0 o(I)$ ]; $R w=0.081$, $S=0.96$.

## Data for Compound 29

$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}, M=262.35, T=200 \mathrm{~K}$, monoclinic, space group $P 2_{1}, Z=4$, $a=6.3467(2), b=$ 21.7077(6), $c=10.3198(3) \AA, \beta=90.9585(16)^{\circ}, V=1421.58(7) \AA^{3}, D_{x}=1.226 \mathrm{~g} \mathrm{~cm}^{-3}, 2589$ unique data ( $2 \theta_{\max }=50^{\circ}$ ), refinement on F using 2064 reflections with $I>2.0 \sigma(I) ; R=0.028, R w=$ $0.031, S=1.19$.

## Data for Compound 34

$\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{8}, M=472.49, T=200 \mathrm{~K}$, monoclinic, space group $P 2_{1}, Z=2, a=9.1347(6), b=$ 6.1641(4), $c=21.3826(15) \AA, \beta=98.820(3)^{\circ}, V=1189.76(14) \AA^{3}, D_{x}=1.319 \mathrm{~g} \mathrm{~cm}^{-3}, 2322$ unique data $\left(2 \theta_{\max }=50^{\circ}\right)$, refinement on F using 1661 reflections with $I>1.5 \sigma(I) ; R=0.082, R w=0.077$, $S=1.15$.

## Data for Compound 35

$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3}, M=236.31, T=200 \mathrm{~K}$, orthorhombic, space group $P 2_{1} 2_{1} 2_{1}, Z=4, a=6.3638(1), b=$ $12.4427(3), c=15.6175(4) \AA, V=1236.64$.(5) $\AA^{3}, D_{x}=1.269 \mathrm{~g} \mathrm{~cm}^{-3}, 2075$ unique data ( $2 \theta_{\max }=$ $60^{\circ}$ ), refinement on $\mathrm{F}^{2}$ using all data, $R=0.032$ [for 1595 reflections with $I>2.0 o(I)$ ]; $R w=0.070$, $S=0.81$.

## Structure Determination

Images were measured on a Nonius Kappa CCD diffractometer (MoKa, graphite monochromator, 1 $=0.71073 \AA$ ) and data extracted using the DENZO package. ${ }^{11}$ Structure solution was by direct methods (SIR92). ${ }^{12}$ The structures of the abovementioned compounds were refined using the CRYSTALS program package. ${ }^{13}$ Atomic coordinates, bond lengths and angles, and displacement parameters for these compounds have been deposited at the Cambridge Crystallographic Data Centre. Deposition numbers are: 747028 (for 25), 747029 (for 26), 747030 (for 27), 747031 (for 29), 747032 (for 34) and 750107 (for 35). These data can be obtained free-of-charge via www.ccdc.cam.ac.uk/data_request/cif, by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223336033.


Figure S1. Molecular structure of $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}$ (compound 25) with labeling of selected atoms. Anisotropic displacement ellipsoids show $30 \%$ probability levels. Hydrogen atoms are drawn as circles with small radii.


Figure S2. Molecular structure of $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}$ (compound 26) with labeling of selected atoms. Anisotropic displacement ellipsoids show $30 \%$ probability levels. Hydrogen atoms are drawn as circles with small radii.


Figure S3. Molecular structure of $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3}$ (compound 27) with labeling of selected atoms. Anisotropic displacement ellipsoids show $30 \%$ probability levels. Hydrogen atoms are drawn as circles with small radii.


Figure S4. Molecular structure of molecule one of $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}$ (compound 29) with labeling of selected atoms. Anisotropic displacement ellipsoids show 30\% probability levels. Hydrogen atoms are drawn as circles with small radii.


Figure S5. Molecular structure of molecule two of $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}$ (compound 29) with labeling of selected atoms. Anisotropic displacement ellipsoids show 30\% probability levels. Hydrogen atoms are drawn as circles with small radii.


Figure S6. Molecular structure of $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{8}$ (compound 34) with labeling of selected atoms. Anisotropic displacement ellipsoids show $30 \%$ probability levels. Hydrogen atoms are drawn as circles with small radii.


Figure S7. Molecular structure of $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3}$ (compound 35) with labeling of selected atoms. Anisotropic displacement ellipsoids show $30 \%$ probability levels. Hydrogen atoms are drawn as circles with small radii.

## References

1. W. C. Still, M. Kahn and A. Mitra, J. Org. Chem., 1978, 43, 2923.
2. A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen and F. J. Timmers, Organometallics, 1996, 15, 1518.
3. Compound 7 ( $\mathrm{X}=\mathrm{I}$ ) and its 6-methylated derivative were obtained from Questor, Queen's University of Belfast, Northern Ireland. Questor Centre Contact page: http://questor.qub.ac.uk/newsite/contact.htm (accessed October 7, 2009).
4. D. R. Boyd, N. D. Sharma, N. M. Llamas, C. R. O'Dowd and C. C. R. Allen, Org. Biomol. Chem., 2006, 4, 2208.
5. S. F. Reed, J. Org. Chem., 1962, 27, 4116.
6. J. Rickerby, M. Vallet, G. Bernardinelli, F. Viton and E. P. Kündig, Chem. Eur. J., 2007, 13, 3354.
7. P. Bertus, L. Drouin, C. Laroche and J. Szymoniak, Tetrahedron, 2004, 60, 1375.
8. W. Oppolzer, R. L. Snowden and D. P. Simmons, Helv. Chim. Acta, 1981, 64, 2002.
9. P. Y. Johnson and G. A. Berchtold, J. Org. Chem., 1970, 35, 584.
10. G. S. Mironov, M. I. Farberov and I. M. Orlova, Russ. J. Gen. Chem., 1963, 33, 1476.
11. DENZO-SMN. Z. Otwinowski and W. Minor, Processing of X-ray diffraction data collected in oscillation mode, in Methods in Enzymology, Volume 276: Macromolecular Crystallography, Part A, eds. C. W. Carter, Jr. and R. M. Sweet, Academic Press, New York, 1997, pp. 307-326.
12. SIR92. A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori and M. Camalli, J. Appl. Crystallogr., 1994, 27, 435.
13. P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout and D. J. Watkin, J. Appl. Crystallogr., 2003, 36, 1487.

## Selected ${ }^{1}$ H and/or ${ }^{13}$ C NMR Spectra of Compounds 17-42

$75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectrum of Compound $\mathbf{1 7}$ Recorded in $\mathrm{CDCl}_{3}$


17

$75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectrum of Compound 18 Recorded in $\mathrm{CDCl}_{3}$


18


[^0]$75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectrum of Compound 19 as a $60 \%$ solution in $\mathrm{Et}_{2} \mathrm{O}$ /Pentane Recorded in $\mathrm{CDCl}_{3}$

$300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR Spectrum of Compound 20 Recorded in $\mathrm{CDCl}_{3}$

$300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR Spectrum of Compound 21 Recorded in $\mathrm{CDCl}_{3}$

$300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR Spectrum of Compound 22 Recorded in $\mathrm{CDCl}_{3}$

$75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectrum of Compound 23 Recorded in $\mathrm{CDCl}_{3}$


$300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR Spectrum of Compound 24 Recorded in $\mathrm{CDCl}_{3}$


## $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR Spectrum of Compound 25 Recorded in $\mathrm{CDCl}_{3}$



$300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR Spectrum of Compound 26 Recorded in $\mathrm{CDCl}_{3}$


26

$75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectrum of Compound 27 Recorded in $\mathrm{CDCl}_{3}$



$75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectrum of Compound 28 Recorded in $\mathrm{CDCl}_{3}$


28

Two signals partially obscured by peaks due to $\mathrm{CDCl}_{3}$

$75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectrum of Compound 29 Recorded in $\mathrm{CDCl}_{3}$


29


$75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectrum of a ca. 1:1 Mixture of the
Diastereoisomeric Forms of Compound $\mathbf{3 0}$ Recorded in $\mathrm{CDCl}_{3}$


30


20
ppm
$75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectrum of a ca. $1: 1$ Mixture of the Diastereoisomeric Forms of Compound 31 Recorded in $\mathrm{CDCl}_{3}$


31


| 180 | 160 | 140 | 120 | 100 | 80 | 60 | 40 | 20 | ppm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

$300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR Spectrum of Compound 32 Recorded in $\mathrm{CDCl}_{3}$



$75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectrum of Compound $\mathbf{3 3}$ Recorded in $\mathrm{CDCl}_{3}$



$300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR Spectrum of Compound 35 Recorded in $\mathrm{CDCl}_{3}$

$300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR Spectrum of Compound 36 Recorded in $\mathrm{CDCl}_{3}$


36

$300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR Spectrum of Compound 37 Recorded in $\mathrm{CDCl}_{3}$


$300 \mathrm{MHz}^{1} \mathrm{H}$ NMR Spectrum of Compound 39 Recorded in $\mathrm{CDCl}_{3}$


$75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectrum of Compound 40 Recorded in $\mathrm{CDCl}_{3}$



$75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectrum of a ca. $4: 1$ Mixture of the Diastereoisomeric Forms of Compound 41 Recorded in $\mathrm{CDCl}_{3}$

$300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR Spectrum of Compound 42 Recorded in $\mathrm{CDCl}_{3}$



* $=$ impurity



[^0]:    

