Antimicrobially Active Cycloundecapeptides Related to Gramicidin S Having A Novel Turn Structure with *cis* D-Phe-Pro Amido Bond

Makoto Tamaki^a*, Ichiro Sasaki^a, Manabu Kokuno^a, Mitsuno Shindo^b, and Yoshiki Uchida^b

¹Department of Chemistry, Toho University, Funabashi, Chiba 274-8510, Japan ²Department of Food Science and Nutrition, Osaka Shoin Women's University, Higashi-Osaka, Osaka 577-8550, Japan *Email: tamaki@chem.sci.toho-u.ac.jp

Table of Contents for the Supplementary data (total 16 pages)

- Page 1-2: Title, authors and their affiliations and Table of Contents.
- Page 3: HPLC analyses of 1-5.
- Page 4: Figure 2. ¹H NMR spectrum of **1** in DMSO- d_6 at 30 °C. Table 1. All ¹H chemical shifts (δ in ppm) of **1**.
- Page 5: Figure 3. ¹H NMR spectrum of **2** in DMSO- d_6 at 30 °C. Table 2. All ¹H chemical shifts (δ in ppm) of **2**.
- Page 6: Figure 4. ¹H NMR spectrum of **3** in DMSO- d_6 at 30 °C. Table 3. All ¹H chemical shifts (δ in ppm) of **3**.
- Page 7: Figure 5. ¹H NMR spectrum of **4** in DMSO- d_6 at 30 °C. Table 4. All ¹H chemical shifts (δ in ppm) of **4**.
- Page 8: Figure 6. ¹H NMR spectrum of **5** in DMSO- d_6 at 30 °C. Table 5. All ¹H chemical shifts (δ in ppm) of **5**.
- Page 9: Figure 7. Temperature dependences of amide protons in 1-5 and GS.
- Page 10: Figure 8. J_{NH-CH}^{α} values of amide protons in 1-5 and GS.
- Page 11: Figure 9. Chemical shift perturbation of α protons in 1-5 and GS.
- Page 12: Figure 10. ROESY spectra of **1**. Figure 11. Proposed secondary structure and spatial ROE crosspeaks of **1**.
- Page 13: Figure 12. ROESY spectra of 2.Figure 13. Proposed secondary structure and spatial ROE crosspeaks of 2.
- Page 14: Figure 14. ROESY spectra of 3.Figure 15. Proposed secondary structure and spatial ROE crosspeaks of 3.

Page 15: Figure 16. ROESY spectra of 4.

Figure 17. Proposed secondary structure and spartial ROE cosspeaks of 4.

Page 16: Figure 18. ROESY spectra of 5.

Figure 19. Proposed secondary structure and spartial ROE cosspeaks of **5**. Page 17: Table 6. Hemolytic activities of GS and **1-5** (% hemolysis).

HPLC analyses of 1-5

HPLC analyses of **1-5** were achieved using analytical reverse phase HPLC system (800 Series, JASCO LTD., Tokyo, Japan), equipped with an 880 intelligent HPLC pump, an 875-UV intelligent UV/Vis detector, an 860-CD column oven, and a TSK-Gel C18 column (4.6 x 150 mm, 10 mm particle size, Tosoh Co., Tokyo, Japan). Chromatographies were carried out by a flow rate of 1 ml/min at 30 °C and monitored at 220 nm. Elution solvents used methanol-0.1% TFAaq (70:30) for **1**, methanol-0.1 % TFAaq (65:35) for **2** and methanol-0.1 % TFAaq (55:45) for **3-5**. HPLC profiles of **1-5** were shown in next figures.

Figure 2. ¹H NMR spectrum of **1** in DMSO- d_6 at 30 °C.

		αNH	αH	[₿] H	Y H	۶H	⁵NH	others
	Val ¹	7.28	4.48	2.09	0.82			
	Orn ²	8.59	4.88	1.57	1.59	2.68	8.09	
	Leu ³	8.56	4.53	1.55	1.57	0.81		
	Leu ⁴	8.03	3.88	1.51 1.35	1.77	0.89		
	$D-Phe^5$	8.67	4.28	3.12 2.67				Ar 7.34-7.1
δ (ppm)	Pro ⁶		5.11	2.12	1.73	3.50 3.34		
	Val ⁷	7.40	4.32	1.77	0.82			
	Orn ⁸	8.87	4.72	1.66 1.82	1.55 1.73	2.76 2.93	7.95	
	Leu ⁹	8.28	4.59	1.21 1.44	1.48	0.82		
	D-Phe ¹⁰	9.11	4.38	3.00 2.87				Ar 7.34-7.1
	Pro ¹¹		4.34	1.99 1.51	1.62	3.58 2.52		

Table 1. All ¹H chemical shifts (δ in ppm) of **1**.

Figure 3. ¹H NMR spectrum of **2** in DMSO- d_6 at 30 °C.

		°NH	αH	[₿] H	$^{\gamma}$ H	δH	δNH	others
	Val ¹	7.24	4.47	2.10	0.81			
	Orn ²	8.66	4.88	1.60	1.45	2.71	7.67	
				1.48				
	Leu ³	8.49	4.53	1.55	1.55	0.78		
				1.48				
	Ala ⁴	8.31	3.88	1.22				
	$D-Phe^5$	8.60	4.27	3.12				Ar
				2.68				7.1-7.32
	Pro ⁶		5.09	2.10	1.77	3.42		
δ (ppm)								
	Val ⁷	7.45	4.29	1.77	0.81			
	Orn ⁸	8.87	4.70	1.88	1.60	2.71	7.67	
				1.77				
	Leu ⁹	8.27	4.59	1.45	1.39	0.84		
				1.22				
	D-Phe ¹⁰	9.13	4.38	2.98				Ar
				2.86				7.1-7.32
	Pro ¹¹		4.30	1.97	1.60	3.62		
				1.48		2.46		

Table 2. All ¹H chemical shifts (δ in ppm) of **2**.

Figure 4. ¹H NMR spectrum of **3** in DMSO- d_6 at 30 °C.

		°NH	αH	[₿] H	ΥH	δH	δNH	others
	Val ¹	7.25	4.47	2.08	0.81			
	Orn^2	8.62	4.88	1.61	1.48	2.71	7.74	
				1.54				
	Leu ³	8.53	4.54	1.51	1.55	0.81		
	Orn ⁴	8.22	3.88	1.64	1.57	2.84	7.66	
	D-Phe ⁵	8.68	4.28	3.15				Ar
				2.68				7.09-7.32
	Pro^{6}		5.10	2.11	1.86	3.41		
δ (ppm)					1.71			
	Val ⁷	7.43	4.31	1.77	0.81			
	Orn ⁸	8.87	4.72	1.80	1.61	2.78	7.78	
				1.73				
	Leu ⁹	8.25	4.56	1.44	1.50	0.81		
	- 10							
	D-Phe ¹⁰	9.10	4.38	3.00				Ar
				2.89				7.09-7.32
	Pro ¹¹		4.32	1.93	1.50	3.59		
				1.50		2.49		

	Table 3. All	¹ H chemical	shifts (δ	in ppm)	of 3 .
--	--------------	-------------------------	-----------	---------	---------------

Figure 5. ¹H NMR spectrum of **4** in DMSO- d_6 at 30 °C.

		°NH	۳H	βH	γH	۴	⁵NH	others
	Val ¹	7.24	4.47	2.09	0.80			
	Orn^2	8.62	4.88	1.59	1.45	2.70	7.68	
				1.48				
	Leu ³	8.51	4.53	1.55	1.52	0.80		
				1.48				
	Lys^4	8.13	3.85	1.56	1.41	1.30		^e H 2.78
								[®] NH 7.68
	D-Phe ⁵	8.60	4.29	3.14				Ar
				2.68				7.34 - 7.10
δ ()	Pro ⁶		5.06	2.09	1.69	3.41		
o (ppm)								
	Val ⁷	7.39	4.32	1.77	0.80			
	Orn ⁸	8.86	4.73	1.82	1.59	2.79	7.69	
				1.77				
	Leu ⁹	8.24	4.59	1.41	1.48	0.80		
				1.22				
	D-Phe ¹⁰	9.09	4.38	2.97				Ar
				2.86				7.34 - 7.10
	Pro ¹¹		4.30	1.96	1.50	3.60		
				1.50		2.50		

Table 4. All	¹ H chemical	shifts (δ	in ppm)	of 4 .
--------------	-------------------------	-----------	---------	---------------

Figure 6. ¹H NMR spectrum of **5** in DMSO- d_6 at 30 °C.

		αNH	۹̈́H	βH	γH	۶H	⁵NH	others
	Val ¹	7.27	4.47	2.10	0.81			
	Orn ²	8.59	4.88	1.57	1.48	2.71	8.04	
	Leu ³	8.51	4.56	1.51	1.57	0.81		
	Arg^4	8.29	3.90	1.63	1.68	2.88	7.95	NH
					1.66	2.82		7.9-7.95
	D-Phe⁵	8.69	4.29	3.12				Ar
				2.68				7.1-7.32
δ (ppm)	Pro ⁶		5.11	2.13	1.77	3.41		
	Val ⁷	7.46	4.29	1.77	0.84			
	Orn ⁸	8.84	4.73	1.80	1.63	3.15	7.90	
	Leu ⁹	8.25	4.59	1.51	1.57	0.81		
	D-Phe ¹⁰	9.08	4.34	3.02				Ar
				2.97				7.1-7.32
	Pro ¹¹		4.32	1.98	1.49	3.59		
				1.48		2.51		

Table 5. All ¹H chemical shifts (δ in ppm) of **5**.

Figure 7. Temperature dependences of amide protons in 1-5 and GS.

Figure 8. $J_{NH-}^{\alpha}_{CH}$ values of amide protons in 1-5 and GS.

Figure 9. Chemical shift perturbations of α protons in 1-5 and GS.

Figure 11. Proposed secondary structure and spatial ROE crosspeaks of $\mathbf{1}$.

Figure 12. ROESY spectra of 2.

Figure 13. Proposed secondary structure and spatial ROE crosspeaks of 2.

Figure 15. Proposed secondary structure and spatial ROE crosspeaks of 3.

p-Phe¹⁰ ^eCH - Pro^{11 ⁸CH}

Figure 16. ROESY spectra of 4

Figure 17. Proposed secondary structure and spatial ROE crosspeaks of 4.

Figure 18. ROESY spectra of 5

Figure 19. Proposed secondary structure and spatial ROE crosspeaks of 5.

	Peptide concentration (µM)							
Peptide	1	10	20	30	40	50		
GS	0.49±0.57	10.27±0.59	27.04±1.16	58.64±0.89	84.06±0.67	94.80±0.75		
1	2.27±0.12	15.20±0.61	44.42±0.63	80.02±0.40	99.88±0.31	100.00±1.22		
2	1.95±0.32	6.68±0.09	8.97±0.44	12.30±0.79	17.97±0.53	23.29±0.52		
3	1.78±0.68	4.49±0.62	6.04±0.30	6.95±0.46	7.85±0.76	8.32±0.03		
4	2.15±0.19	4.26±0.65	5.73±0.78	6.44±0.55	7.60±0.93	8.20±0.21		
5	1.88±0.40	5.20±0.49	8.47±0.45	11.12±0.76	12.91±0.55	13.86±0.82		

Table 6 Hemolytic activities of GS and 1-5 (% hemolysis)
Tuble 0. Hemolytic detivities of 0.5 and 1.5	, o nemory bib).

	Peptide concentration (µM)								
Peptide	60	80	100						
GS	100.00±0.53	100.00±0.56	100.00±0.75						
1	100.00±1.17	100.00±0.67	100.00±0.57						
2	26.69±0.36	38.36±0.51	53.69±0.41						
3	9.19±0.41	9.97±0.38	11.65±0.78						
4	9.46±0.13	10.67±0.15	11.85±0.74						
5	15.32±0.49	17.68±0.55	19.98±0.79						

The experiments were carried out three times for each peptide.