#### **Electronic Supplementary Information**

### A New Synthetic Access to Bicyclic Polyhydroxylated Alkaloid

### **Analogues from Pyranosides**

Ning Wang, Li-He Zhang, and Xin-Shan Ye\*

The State Key Laboratory of Natural and Biomimetic Drugs, Peking University and School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China. E-mail: <u>xinshan@bjmu.edu.cn</u>

### **Table of contents**

| <sup>1</sup> H and <sup>13</sup> C NMR Spectra of Compound 4a          | S3-S4   |
|------------------------------------------------------------------------|---------|
| <sup>1</sup> H and <sup>13</sup> C NMR Spectra of Compound 4b          | S5-S6   |
| <sup>1</sup> H and <sup>13</sup> C NMR Spectra of Compound 4c          | S7-S8   |
| <sup>1</sup> H and <sup>13</sup> C NMR Spectra of Compound 5a          | S9-S10  |
| <sup>1</sup> H and <sup>13</sup> C NMR Spectra of Compound 5b          | S11-S12 |
| <sup>1</sup> H and <sup>13</sup> C NMR Spectra of Compound 5c          | S13-S14 |
| <sup>1</sup> H and <sup>13</sup> C NMR Spectra of Compound 6a          | S15-S16 |
| <sup>1</sup> H and <sup>13</sup> C NMR Spectra of Compound 6b          | S17-S18 |
| <sup>1</sup> H, <sup>13</sup> C NMR and 2D NMR Spectra of Compound 6c  | S19-S22 |
| <sup>1</sup> H and <sup>13</sup> C NMR Spectra of Compound 7a          | S23-S24 |
| <sup>1</sup> H and <sup>13</sup> C NMR Spectra of Compound 7b          | S25-S26 |
| <sup>1</sup> H and <sup>13</sup> C NMR Spectra of Compound 7c          | S27-S28 |
| <sup>1</sup> H, <sup>13</sup> C NMR and 2D NMR Spectra of Compound10a  | S29-S31 |
| <sup>1</sup> H, <sup>13</sup> C NMR and 2D NMR Spectra of Compound 10b | S32-S37 |
| <sup>1</sup> H and <sup>13</sup> C NMR Spectra of Compound 11a         | S38-S39 |
| <sup>1</sup> H, <sup>13</sup> C NMR and 2D NMR Spectra of Compound 11b | S40-S43 |
| <sup>1</sup> H and <sup>13</sup> C NMR Spectra of Compound 12          | S44-S45 |
| <sup>1</sup> H NMR Spectrum of Compound 13                             | S46     |
| <sup>1</sup> H and <sup>13</sup> C NMR Spectra of Compound 15a         | S47-S48 |
| <sup>1</sup> H and <sup>13</sup> C NMR Spectra of Compound 15b         | S49-S50 |
| <sup>1</sup> H and <sup>13</sup> C NMR Spectra of Compound 15c         | S51-S52 |
| <sup>1</sup> H, <sup>13</sup> C NMR and 2D NMR Spectra of Compound 16a | S53-S58 |
| <sup>1</sup> H and <sup>13</sup> C NMR Spectra of Compound 16b         | S59-S60 |
| <sup>1</sup> H and <sup>13</sup> C NMR Spectra of Compound 16c         | S61-S62 |
| <sup>1</sup> H and <sup>13</sup> C NMR Spectra of Compound 17b         | S63-S64 |

| <sup>1</sup> H and <sup>13</sup> C NMR Spectra of Compound 17c         | S65-S66 |
|------------------------------------------------------------------------|---------|
| <sup>1</sup> H and <sup>13</sup> C NMR Spectra of Compound 18a         | S67-S68 |
| <sup>1</sup> H, <sup>13</sup> C NMR and 2D NMR Spectra of Compound 18b | S69-S72 |
| <sup>1</sup> H and <sup>13</sup> C NMR Spectra of Compound 18c         | S73-S74 |
| <sup>1</sup> H and <sup>13</sup> C NMR Spectra of Compound 19          | S75-S76 |
| <sup>1</sup> H, <sup>13</sup> C NMR and 2D NMR Spectra of Compound 20  | S77-S81 |
| Supplementary Section                                                  | S82-S89 |
|                                                                        |         |











Ν



PRIVILEGED DOCUMENT FOR REVIEW PURPOSES ONLY





BBO BnO BnO **4b** 







- 56.421

286.74



85' 016



842 .881------





0

22

3

22

OBn

BnO



OBn

Ν

BnO

| 5a | DFILE     D.: \PF aff. IJ.\WN-060811-B-C. als       0BNIC     13C       EXMOD     RM       008FRQ     75.45       EXMOD     RM       008FRQ     75.45       008FRQ     75.45       018     124.00       018     124.00       018     124.00       011     32768       REQU     20408.1       RADIN     32768       REQU     20408.1       SCAMS     16605       ROTIN     1.606       ROTIN     1.606       RATN     511       CTEMP     511       CTEMP     511       CTEMP     511       CTEMP     21.4       SLVNT     CDCL3       EXREF     77.00       BF     2.00       RAIN     24 | Mddd           |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|    | 889 '61   898 '29   901 '89   901 '82   901 '82   901 '82   900 '82   921 '92   000 '12   671 '22   92 '88   011 '12   92 '88                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00 75 75 50 25 |
|    | 299   111     069   121     111   299     121   121     129   121     120   121     121   121     122   121     128   121     128   121     129   1821     291   11     129   11     291   121     292   121     293   121     294   121     295   121     293   121     294   121     295   121     295   121     295   121     295   121     295   121     295   121     205   121     205   121     205   121     205   121     205   121     205   121     205   121     205   121     205   121     205   12                                                                         | 150 125 10     |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200 175        |

BnO

OBn



OBn



OBn

BnO

BnO









OBn

## BnO

| D | n | $\cap$ |
|---|---|--------|
| в | n | ()     |

N "

| D:\牛猪山\wn071229-g33-c.al | Sat Dec 28 20.53.35 2007 | 13C   | BCM   | 75.45 MHz | 124.00 KHz | 1840.0 Hz | 32768 | 20408. 1 Hz | 1749  | 1.606 sec | 1.394 sec | 4.2 us | IH    | 18.8 c | CDCL3 | 77.00 ppm | 2.00 Hz | 25    |  |
|--------------------------|--------------------------|-------|-------|-----------|------------|-----------|-------|-------------|-------|-----------|-----------|--------|-------|--------|-------|-----------|---------|-------|--|
| DFILE                    | DATTM                    | OBNUC | EXMOD | OBFRQ     | OBSET      | OBFIN     | POINT | FREQU       | SCANS | ACQTM     | ß         | IMd    | IRNUC | CITEMP | SLVNT | EXREP     | BF      | RGAIN |  |







OBn



# OBn

### BnO



OBn



OBn

BnO











wn080430-G53-B









PRIVILEGED DOCUMENT FOR REVIEW PURPOSES ONLY



| НО | ОН |             |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                   |                              |   |                   |     |
|----|----|-------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------|------------------------------|---|-------------------|-----|
| НО | Ν  |             |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                   |                              |   |                   |     |
|    | 7b |             |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                   |                              |   |                   | mdd |
|    |    |             |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                   |                              |   |                   | -   |
|    |    |             |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                   | 232.162<br>23.162<br>23.162  |   |                   | 20  |
|    |    |             |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                   |                              |   |                   | 40  |
|    |    |             |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 | 825,92-           | es.ste                       | * | <br>              | 6.0 |
|    |    |             |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                   | \$\$7.07<br>187.78<br>\$7.07 |   |                   | 0   |
|    |    |             |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                   |                              |   |                   |     |
|    |    |             |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                   |                              |   |                   | 100 |
|    |    |             |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                   |                              |   |                   | 120 |
|    |    |             |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                   |                              |   |                   | 140 |
|    |    |             |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                   |                              |   |                   |     |
|    |    |             |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                   |                              |   |                   | 1   |
|    |    |             |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | sec                                                                             |                   |                              |   |                   | 180 |
|    |    |             | s2pul<br>298.1 K<br>00"                                      | 000 sec<br>ees<br>sec<br>z<br>sc<br>5.706565 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ted<br>3.5 Hz<br>, 14 min, 0                                                    | -,<br>,<br>,      | _/                           |   | والمراجع والمراجع | 200 |
|    |    | 214-G43-dep | Sequence:<br>ent: d20<br>. 25.0 C /<br>1-14-87<br>-500 "BMU5 | <pre>k. delay 1.<br/>time 1.300<br/>time 1.300<br/>31421.8 H<br/>f cl3 12<br/>f cl3 12<br/>t cl3 12</pre> | F 38 dB<br>inuously on<br>2-16 modula<br>PROCESSING<br>broadening<br>time 14 hr | $\langle \rangle$ |                              |   |                   | 220 |
|    |    | wn0713      | Pulse<br>Solve<br>Temp.<br>User:<br>INOVA-                   | Pulse<br>Acq.<br>21188<br>052ERV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Power<br>Contine<br>MALTA<br>DATA P<br>Line<br>FI ine<br>Fotal                  |                   |                              |   | and and the       | -   |



НО

### пΟ

HO

7c

Ν

ОН





wn070803-G1c-d1hy

File: PRDTON









Pulse Sequence: s2pul

File: PROTON







S35






| D:\P+新山\WN\WN081204-G34-DEP-c.ALS<br>13C<br>BCM | 75.45 MHz | 124.00 KHz | 1840.0 Hz | 32768 | 20408. 1 Hz | 5172  | 1.606 sec | 1.394 sec | 4.2 us | - 211 | 23.5 c | D20   | 77.00 ppm | 2.00 Hz | 25      |  |
|-------------------------------------------------|-----------|------------|-----------|-------|-------------|-------|-----------|-----------|--------|-------|--------|-------|-----------|---------|---------|--|
| DFILE<br>OBNUC<br>EXMOD                         | OBFRQ     | OBSET      | OBFIN     | POINT | FREQU       | SCANS | ACQTM     | R         | Ind    | IRATN | CITEMP | SLVNT | EXREP     | 出       | " RGAIN |  |

١

,

,

,

۱



| 186 .53  |
|----------|
| 747 .00- |
|          |
|          |
| 989 939  |
| 281 .69  |
| 849 .69  |









Solvent: D20 Temp. 25.0 C / 298.1 K User: 1-14-87 File: wn070917-044-dep-C INOVA-500 "BMU500"

Pulse Sequence: s2pul



Relax. delay 1.000 sec Acq. time 1.300 sec Acq. time 1.300 sec Vidth 31421.8 Hz Vidth 31421.8 Hz Vidth 31421.8 Hz CollPLE H1, 495.9055708 MHz Dever 32 dB Continuously on Continuously on DATA PROCESSING Line broadening 3.5 Hz F size 131072 F size 131072 F size 131072 F size 131072















| D: \中新山 \wn061018-man-rearr -C. als<br>Sun Oct 22 17:27:17 2006<br>BGM 75.45 MHz<br>124.00 KHz<br>124.00 KHz<br>1840.0 Hz<br>32768<br>20408.1 Hz<br>81<br>1.606 sec<br>1.394 sec<br>1.394 sec<br>1.394 sec<br>1.394 sec<br>2.00 Hz<br>2.00 Hz<br>2.00 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| DF1LE<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT<br>DCMNT |     |
| 48, 962<br>48, 962<br>48, 962<br>48, 962<br>74, 544<br>72, 409<br>74, 544<br>77, 658<br>77, 758<br>77, 758<br>78,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| 645 111<br>921 220<br>921 220<br>921 220<br>926 121<br>928 121<br>120 821<br>928 121<br>928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S48 |









PRIVILEGED DOCUMENT FOR REVIEW PURPOSES ONLY











wn061226-man-add













PRIVILEGED DOCUMENT FOR REVIEW PURPOSES ONLY

wn070930-M43-A



| DFILE D:\P+∯rIJ\WN\WN0811192H.ALS<br>DBNUC 1H<br>SXM0D N0N<br>300,40 MHz<br>300,40 MHz<br>3130,00 KHz<br>3130,00 KHz<br>3130,0 Hz<br>POINT 32768<br>POINT 32768<br>POINT 8000,0 Hz | SCANS 12<br>COTM 4. 096 sec<br>PU 1.551 sec<br>PU 1.551 sec<br>PU 5.11 us<br>IRATN 5.11 19.4 c<br>SLIVNT CDCL3 19.4 c<br>SLIVNT CDCL3 0.00 ppm<br>BF 0.12 Hz<br>RGAIN 22 Hz | Bno N N N N N N N N N N N N N N N N N N N |                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------|
|                                                                                                                                                                                    |                                                                                                                                                                             |                                           | Md                                      |
| 000 °0<br>690 °0                                                                                                                                                                   |                                                                                                                                                                             |                                           | - 0                                     |
| 600.10                                                                                                                                                                             |                                                                                                                                                                             | )                                         | _                                       |
| 188.0                                                                                                                                                                              |                                                                                                                                                                             |                                           |                                         |
| 1' 109<br>1' 523                                                                                                                                                                   |                                                                                                                                                                             |                                           | _                                       |
|                                                                                                                                                                                    |                                                                                                                                                                             | 1516.2                                    |                                         |
| 1. 704                                                                                                                                                                             | 1                                                                                                                                                                           | 1720 8 -5                                 | -                                       |
| 121.2                                                                                                                                                                              |                                                                                                                                                                             | 2                                         | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|                                                                                                                                                                                    |                                                                                                                                                                             | - T 4836                                  |                                         |
| 5' 913                                                                                                                                                                             |                                                                                                                                                                             | 5- 2.0833                                 | -                                       |
| 287.282                                                                                                                                                                            |                                                                                                                                                                             | 2, 4347                                   | L                                       |
| 3' 542                                                                                                                                                                             |                                                                                                                                                                             | 0E02 T                                    | -                                       |
| 3, 683                                                                                                                                                                             |                                                                                                                                                                             | 1. 0513                                   | F                                       |
|                                                                                                                                                                                    |                                                                                                                                                                             | T' 0000                                   |                                         |
| 942 4-                                                                                                                                                                             |                                                                                                                                                                             |                                           | _                                       |
| 919 %                                                                                                                                                                              |                                                                                                                                                                             | 2612.5                                    |                                         |
| 989                                                                                                                                                                                |                                                                                                                                                                             |                                           |                                         |
| 7 929                                                                                                                                                                              | ,                                                                                                                                                                           |                                           | LO                                      |
| 4.723                                                                                                                                                                              |                                                                                                                                                                             |                                           |                                         |
| 169 '9<br>11 <i>L</i> '9                                                                                                                                                           |                                                                                                                                                                             | 2862 · T                                  | - 9                                     |
| 112.7                                                                                                                                                                              |                                                                                                                                                                             |                                           | -                                       |
| 2, 261                                                                                                                                                                             | 0940 '54' 0490                                                                                                                                                              |                                           | -                                       |
| 2, 348<br>27, 348<br>262, 7<br>27, 348                                                                                                                                             | VIEV IV                                                                                                                                                                     |                                           |                                         |

ł.

S65

PRIVILEGED DOCUMENT FOR REVIEW PURPOSES ONLY









File: CARBON Pulse Sequence: s2pul

Solvent: d20 Temp. 25.0 C / 258.1 K USer: 1-14-87 INOVA-500 "BMU500" Relax. delay 1.000 sec Acq. time 1.300 sec Acq. time 1.300 sec Vidth 3142.8 Hz 25600 repetitions DBSERVE C13, 125.7005556 MHz DBSERVE C13, 125.7006556 MHz DBSERVE C15.700656 MHz DBSERVE C15.7007 MHz DBSERVE C15.7007 MHz



JL-1008-C

Puise Sequence: s2pul Solvent: d20 Solvent: d20 User: 1-14-87 File: vn071010-M43-dep-C INOVA-500 "BHU500" Relax, delay 1.000 sec

Relax. delay 1.000 sec Acq. time 1.000 sec Acq. time 1.000 sec Vidth 31221.8 Hz 20480 repetitions 085.RWE Cl3, 125.7006556 MHz 085.RWE Cl3, 125.7006556 MHz DESCUPLE H1, 499.9056708 MHz DESCUPLE H1, 499.9056708 MHz DESCUPLE H1, 499.9056708 MHz DESCUPLE H1, 499.9056708 MHz DESCUPLE F1, 125.00 DATA PROCESSING 3.5 Hz F1 size 65536 T0tal time 11 hr, 25 min, 42 sec



-53'402 -53'402 -52'830

> 772.82. 58.638

01.100 -02.891 -03.108 -20.108 -20.208









wn071010-M43-dep


-9

| D:\PF新山/WN\081201-M53-DEP-C.ALS<br>13C<br>BCM | 75.45 MHz | 124.00 KHz | 1840.0 Hz | 32768 | 20408.1 Hz | 10988 | 1.606 sec | 1.394 sec | 4.2 us | 511 - | 23.7 c | D20   | 0.00 ppn | 2.00 Hz | 26    |  |
|-----------------------------------------------|-----------|------------|-----------|-------|------------|-------|-----------|-----------|--------|-------|--------|-------|----------|---------|-------|--|
| DFTLE<br>OBNUC<br>EXMOD                       | OBFRQ     | OBSET      | OBFIN     | POINT | FREQU      | SCANS | ACQTM     | D0        | [ M.J  | IRATN | CTEMP  | SLVNT | EXREF    | BF      | RGAIN |  |



|  | , |  |
|--|---|--|
|  |   |  |
|  |   |  |

,



--24, 544 --26, 752 --27, 733 --30, 272

902 '92-----









S77





S78

Relax. delay 1.000 sec Pulse 64.3 degress Acq. time 1.000 sec Vidth 31421.8 Hz 1280 repetitions 7006547 MHz 0528 EVE C13, 125, 7006547 MHz 0600 EVE C13, 125, 7006547 MHz 11 ne Vec State Fisce 6505 Fisce 6505 Fisce 6505 Fisce 6505 Fisce 7 hr, 8 min, 34 sec

Solvent: D2D Temp. 25.0 C / 298.1 K User: 1-14-87 INOVA-500 "BMU500" Pulse Sequence: s2pul

wn071018-M44-dep

File: CARBON

hr, 8 min, 34 sec









S81

## **Supplementary Section**

(1R,2R,3S,10aS,Z)-1,2,3-Tris(benzyloxy)-1,2,3,4,6,7,8,10a-octahydropyrido[1,2-a]azepine (6c). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  1.33-1.38 (m, 1H, H-7), 1.67-1.80 (m, 1H, H-7), 2.13-2.22 (m, 1H, H-8), 2.29-2.34 (m, 1H, H-8), 2.62 (dd, J = 3.9 Hz, J = 11.1 Hz, 1H, H-4), 2.82-2.89 (m, 1H, H-4), 3.01-3.09 (m, 1H, H-6), 3.17-3.22 (m, 1H, H-6), 3.57-3.69 (m, 3H, H-1, H-2, H-3), 3.94 (br.s, 1H, H-10a), 4.63-4.92 (m, 6H, PhCH<sub>2</sub>), 5.86-5.90 (m, 1H, H-10), 6.03-6.04 (m, 1H, H-9), 7.27-7.36 (m, 15H, Ar). Proton NMR assignment was proceeded by analysis of COSY and other 2D NMR spectra.



COSY spectra of 6c

(1R,2S,6S,7R,8R,8aS)-6,7,8-Tris(benzyloxy)octahydroindolizine-1,2-diol (10a). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  2.27 (dd, J = 4.0 Hz, J = 10.0 Hz, 1H, H-3), 2.46-2.52 (m, 2H, H-5, H-8a), 2.99 (dd, J = 3.5 Hz, J = 12.0 Hz, 1H, H-5), 3.47-3.50 (m, 2H, H-3, H-6), 3.65 (t, J = 2.5 Hz, 1H, H-7), 3.72 (br.s, 1H, H-8), 4.22-4.28 (m, 2H, H-1, H-2), 4.38-4.68 (m, 6H, PhCH<sub>2</sub>), 7.18-7.35 (m, 15H, Ar). Proton NMR assignment was proceeded by analysis of COSY.

QBn OH



COSY spectra of 10a

(1R,2S,7S,8R,9R,9aS)-7,8,9-Tris(benzyloxy)octahydro-1H-quinolizine-1,2-diol (10b). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  1.71-1.74 (m, 1H, H-3), 1.93-2.00 (m, 1H, H-3), 2.51 (dd, *J* = 3.5 Hz,

J = 12.0 Hz, 1H, H-6ax), 2.53-2.56 (m, 1H, H-4eq), 2.61-2.65 (m, 1H, H-4ax), 2.70 (dd, J = 2.5 Hz, J = 9.5 Hz, 1H, H-9a), 2.90 (dd, J = 5.0 Hz, J = 12.5 Hz, 1H, H-6eq), 3.51 (dd, J = 4.0 Hz, J = 8.0 Hz, 1H, H-7), 3.67-3.71 (m, 2H, H-8, H-9), 4.00 (dd, J = 3.5 Hz, J = 10.0 Hz, 1H, H-1), 4.01-4.03 (m, 1H, H-2), 4.46-4.62 (m, 5H, PhCH<sub>2</sub>), 4.71 (d, J = 12.0 Hz, 1H, PhCH<sub>2</sub>), 7.25-7.35 (m, 15H, Ar). Proton NMR assignment was proceeded by analysis of COSY and other 2D NMR spectra. The axial orientations of H<sub>4ax</sub>, H<sub>6ax</sub> and H<sub>9a</sub> were proved by the NOESY spectrum which showed their intimacy in geometry.



NOESY spectra of 10b

(1R,2R,3S,8S,9R,9aS)-Octahydro-1H-quinolizine-1,2,3,8,9-pentaol (11b). <sup>1</sup>H NMR (300 MHz, D<sub>2</sub>O)  $\delta$  1.87-1.90 (m, 2H, H-7), 3.12-3.28 (m, 3H, H-4, H-6), 3.32-3.39 (m, 2H, H-4, H-9a), 3.85 (dd, J = 2.7 Hz, J = 10.8 Hz, 1H, H-9), 3.91-3.94 (m, 1H, H-3), 3.95-3.96 (m, 1H, H-2), 4.05-4.06 (m, 2H, H-1, H-8). Proton NMR assignment was proceeded by analysis of COSY and other 2D NMR spectra.



COSY spectra of 11b

(2S,3R,4R,5R)-1-Allyl-3,4,5-tris(benzyloxy)-2-vinylpiperidine (16a). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  2.51 (t, J = 10.5 Hz, 1H, H-6ax), 2.84-2.91 (m, 2H, H-6eq, NCH<sub>2</sub>), 3.09 (d, J = 8.7 Hz, 1H, H-2), 3.32 (dd, J = 5.7 Hz, J = 13.8 Hz, 1H, NCH<sub>2</sub>), 3.47 (br.s, 1H, H-3), 3.61 (t, J = 3.3 Hz, 1H, H-4), 3.86-3.90 (m, 1H, H-5), 4.34-4.67 (m, 6H, PhCH<sub>2</sub>), 5.12-5.21 (m, 4H, =CH<sub>2</sub>), 5.83-6.00 (m, 2H, -CH=), 7.17-7.32 (m, 15H, Ar). Proton NMR assignment was proceeded by analysis of COSY and other 2D NMR spectra. The axial orientations of H<sub>6ax</sub> and H<sub>2</sub> were also proved by the NOESY spectrum which showed their intimacy in geometry.





NOESY spectra of 16a

(1R,2R,3R,9aS)-Octahydro-1H-quinolizine-1,2,3-triol (18b). <sup>1</sup>H NMR (500 MHz, D<sub>2</sub>O)  $\delta$ 1.57-1.82 (m, 4H, H-7, H-8, H-9), 1.91-1.94 (m, 2H, H-7, H-8), 3.06-3.13 (m, 2H, H-4, H-6), 3.21 (dd, J = 5.0 Hz, J = 12.0 Hz, 1H, H-4), 3.34 (dd, J = 5.0 Hz, J = 10.0 Hz, 1H, H-9a), 3.42-3.45 (m, 1H, H-6), 3.91 (d, J = 4.0 Hz, 1H, H-1), 4.08 (t, J = 3.5 Hz, 1H, H-2), 4.22 (ddd, J = 3.0 Hz, J =5.0 Hz, J = 12.0 Hz, 1H, H-3). Proton NMR assignment was proceeded by analysis of COSY and other 2D NMR spectra.



COSY spectra of 18b

(1R,2R,3R,8S,9R,9aS)-Octahydro-1H-quinolizine-1,2,3,8,9-pentaol (20). <sup>1</sup>H NMR (500 MHz, D<sub>2</sub>O)  $\delta$  1.93-2.08 (m, 2H, H-7), 3.18 (t, J = 12.0 Hz, 1H, H-4ax), 3.25-3.38 (m, 3H, H-4eq, H-6), 3.47 (dd, J = 1.5 Hz, J = 10.5 Hz, 1H, H-9a), 3.93 (dd, J = 3.0 Hz, J = 10.5 Hz, 1H, H-9), 4.12 (t, J = 3.5 Hz, 1H, H-2), 4.21 (dd, J = 2.5 Hz, J = 6.0 Hz, 1H, H-8), 4.24-4.28 (m, 1H, H-3), 4.29 (dd, J = 3.5 Hz, 1H, H-2), 4.21 (dd, J = 2.5 Hz, J = 6.0 Hz, 1H, H-8), 4.24-4.28 (m, 1H, H-3), 4.29 (dd, J = 3.5 Hz, 1H, H-2), 4.21 (dd, J = 2.5 Hz, J = 6.0 Hz, 1H, H-8), 4.24-4.28 (m, 1H, H-3), 4.29 (dd, J = 3.5 Hz, 1H, H-2), 4.21 (dd, J = 2.5 Hz, J = 6.0 Hz, 1H, H-8), 4.24-4.28 (m, 1H, H-3), 4.29 (dd, J = 3.5 Hz, 1H, H-2), 4.21 (dd, J = 2.5 Hz, J = 6.0 Hz, 1H, H-8), 4.24-4.28 (m, 1H, H-3), 4.29 (dd, J = 3.5 Hz, 1H, H-2), 4.21 (dd, J = 2.5 Hz, J = 6.0 Hz, 1H, H-8), 4.24-4.28 (m, 1H, H-3), 4.29 (dd, J = 3.5 Hz, 1H, H-2), 4.21 (dd, J = 2.5 Hz, J = 6.0 Hz, 1H, H-8), 4.24-4.28 (m, 1H, H-3), 4.29 (dd, J = 3.5 Hz, 1H, H-2), 4.21 (dd, J = 2.5 Hz, J = 6.0 Hz, 1H, H-8), 4.24-4.28 (m, 1H, H-3), 4.29 (dd, J = 3.5 Hz, J = 6.0 Hz, 1H, H-8), 4.24-4.28 (m, 1H, H-3), 4.29 (dd, J = 3.5 Hz, J = 6.0 Hz, 1H, H-8), 4.24-4.28 (m, 1H, H-3), 4.29 (dd, J = 3.5 Hz, J = 6.0 H

= 1.0 Hz, J = 4.0 Hz, 1H, H-1). Proton NMR assignment was proceeded by analysis of COSY and other 2D NMR spectra. The axial orientations of H<sub>4ax</sub> and H<sub>9a</sub> were also proved by the NOESY spectrum which showed their intimacy in geometry.



COSY spectra of 20

