Supporting Information

Click glycoconjugation of per-azido- and alkynyl-functionalized βpeptides built from aspartic acid.

Marielle Barra^{a,b}, Olivier Roy^{a,b}, Mounir Traïkia^{a,b} and Claude Taillefumier*^{a,b}

^aClermont Université, Université Blaise Pascal, Laboratoire SEESIB, BP 10448, F-63000 CLERMONT-FERRAND ^bCNRS, UMR 6504, Laboratoire SEESIB, F-63177 AUBIERE cedex, France E-mail: claude.taillefumier@univ-bpclermont.fr

Table of Contents

¹H and ¹³C NMR spectra of compounds 3-12, 15-17, 19-28, 30-39, 46-53 (S2-S43) RP-HPLC chromatograms of purified compounds 6, 9-10, 23, 26, 30-39, 46-53 (S42-S53)

¹H and ¹³C NMR spectra of compound 6 (400 MHz, CDCl₃)

¹H and ¹³C NMR spectra of compound 8 (400 MHz, CDCl₃)

¹H and ¹³C NMR spectra of compound 12 (500 MHz, CD₃OH)

¹H and ¹³C NMR spectra of compound 34 (400 MHz, CDCl₃)

¹H and ¹³C NMR spectra of compound 46 (400 MHz, CDCl₃)

¹H and ¹³C NMR spectra of compound 47 (400 MHz, CDCl₃)

HPLC chromatograms of purified compounds

H₂O/MeOH 30:70

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

H₂O/MeCN 50:50

H₂O/MeOH 20:80

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

H₂O (0.1% TFA)/MeOH 20:80