[Electronic Supplementary Information]

Reverse-direction synthesis of oligonucleotides containing a 3'-S-phosphorothiolate linkage and 3'terminal 3'-thionucleosides

James W Gaynor, Michael Piperakis, Julie Fisher and Richard Cosstick

Table of Contents:	Page
1. All ¹³ C NMR spectra (S1)	S1
2. All spectra (S2)	S 5
3. Expedite 8909 protocols used for synthesis of ON1 .	S24

1. Experimental – ¹³C NMR data

All ¹³C NMR spectra were recorded on a Bruker spectrometer operating at 100 MHz. CDCl₃ was used for all samples and spectra were recorded relative to an internal standard of tetramethylsilane. ¹³C spectra were ¹H decoupled and were singlets unless otherwise stated.

5'-O-(tert-Butyldiphenylsilyl)-3'-S-acetyl-3'-thiothymidine (6a)

¹³C NMR δ = 12.1(Me); 19.4(<u>C</u>Me₃); 27.0(C<u>Me₃</u>); 30.6(SCO<u>Me</u>); 39.0(C2'); 40.1(C3'); 63.5(C5'); 84.3(C1'); 84.9(C4'); 111.4(C5); 127.91 & 127.94(*m*-Ph); 130.0 & 130.1(*p*-Ph); 132.4 & 133.0(*i*-Ph); 135.1(C6); 135.3 & 135.6(*o*-Ph); 150.5(C2); 164.0(C4); 194.4(S<u>C</u>OMe).

5'-O-(4,4'-Dimethoxytrityl)- 3'-S-acetyl-3'-thiothymidine (6b)

¹³C NMR δ = 11.9(Me); 30.5(SCO<u>Me</u>); 39.4(C2'); 40.0(C3'); 55.2(OMe); 62.5(C5'); 84.0(C4'); 84.6(C1'); 86.95(<u>C</u>PhAr₂); 111.1(C5); 113.1(*m*-Ar₂); 127.8(*p*-Ph); 128.5 & 129.2(*o*-Ph, *m*-Ph); 130.1(*o*-Ar₂); 135.4(*i*-Ar₂); 135.8(C6); 144.2(*i*-Ph); 150.4(C2); 158.7(*p*-Ar₂); 163.9(C4); 194.4(S<u>C</u>OMe).

3'-S-(4,4'-Dimethoxytrityl)-3'-thiothymidine (7T)

¹³C NMR δ = 12.8(Me); 41.1(C3'); 41.7 (C2'); 55.7(OMe); 61.1(C5'); 67.4(<u>CPhAr_2</u>); 85.43 & 85.45(C1', C4'); 110.8(C5); 113.7(*m*-Ar_2); 127.3(*p*-Ph); 128.4(*m*-Ph); 129.7(*o*-Ph); 131.0(*o*-Ar_2); 136.5(C6); 137.2(*i*-Ar_2); 145.5(*i*-Ph); 150.6(C2); 158.8(*p*-Ar_2); 164.2(C4).

3'-S-(4,4'-Dimethoxytrityl)-2'-deoxy-4-N-benzoyl-3'-thiocytidine (7C)

¹³C NMR δ = 39.4(C3'); 42.6(C2'); 55.7(OMe); 60.4(C5'); 67.5(<u>CPhAr_2</u>); 86.2(C1'); 87.4(C4'); 113.7(*m*-Ar_2); 127.4(*p*-Ph); 127.9(*o*-Bz); 128.5(*m*-Ph); 129.5(*m*-Bz, *o*-Ph); 130.8(*o*-Ar_2); 133.6(*p*-Bz); 137.1(*i*-Ar_2); 145.5(C6); 158.8(*p*-Ar_2); 162.5(C4). C2, C5, *i*-Ph and *i*-Bz not observed.

3'-S-(4,4'-Dimethoxytrityl)-3'-thiothymidine-5'-O-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite (2T)

¹³C NMR δ = 12.7 & 12.8(^aMe, ^bMe); 20.7 & 20.8(^aCH₂CN, ^bCH₂CN); 24.9, 25.0 & 25.1(^aCH<u>Me₂</u>, ^bCH<u>Me₂</u>); 41.1 & 41.5(^aC2', ^bC2'); 42.5(^aC3', ^bC3'); 43.4, 43.6, 43.7 & 43.8(^aCHMe₂, ^bCHMe₂); 55.7(^aOMe, ^bOMe); 58.8 & 59.0(2xd, ²*J*_{OCH2-P} = 81 & 87, ^aOCH₂, ^bOCH₂); 62.4 & 64.7(2xd, ²*J*_{C5'-P} = 61 x 2, ^aC5', ^bC5'); 67.3&67.4(^aCPhAr₂, ^bCPhAr₂); 84.6 & 85.0(2xd, ³*J*_{C4'-P} = 41 & 35, ^aC4', ^bC4'); 84.8 & 85.4(^aC1', ^bC1'); 110.9(^aC5, ^bC5); 113.76 & 113.79(*m*-^aAr₂, *m*-^bAr₂); 117.67 & 117.73(^aCN, ^bCN); 127.2 & 127.3(*p*-^aPh, *p*-^bPh); 128.46 & 128.50(*m*-^aPh, *m*-^bPh); 129.68 & 129.7(*o*-^aPh, *o*-^bPh); 131.0(*o*-^aAr₂, *o*-^bAr₂); 135.8 & 136.1(^aC6, ^bC6); 137.1 & 137.2(*i*-^aAr₂, *i*-^bAr₂); 145.4 & 145.5(*i*-^aPh, *i*-^bPh); 150.47 & 150.54(^aC2, ^bC2); 158.70 & 158.72(*p*-^aAr₂, *p*-^bAr₂); 164.06 & 164.08(^aC4, ^bC4).

3'-S-(4,4'-Dimethoxytrityl)-2'-deoxy-4N-benzoyl-3'thiocytidine-5'-O-[(2cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite (2C)

¹³C NMR (weak spectrum) $\delta = 20.7 \& 20.8(^{a}\underline{CH}_{2}CN, ^{b}\underline{CH}_{2}CN); 25.0, 25.08, 25.13 \& 25.2(^{a}CH\underline{Me}_{2}, ^{b}CH\underline{Me}_{2}); 41.1-43.7(^{a}C2', ^{b}C2', ^{a}C3', ^{b}C3', ^{a}\underline{C}HMe_{2}, ^{b}\underline{C}HMe_{2}); 55.67 \& 55.67(^{a}OMe, ^{b}OMe); 59.0-67.31(^{a}OCH_{2}, ^{b}OCH_{2}, ^{a}C5', ^{b}C5', ^{a}\underline{C}PhAr_{2}, ^{b}\underline{C}PhAr_{2}); 85.7(^{a}C1', ^{b}C1', ^{a}C4', ^{b}C4'); 100.0(^{a}C5, ^{b}C5); 113.7 \& 113.8(m-^{a}Ar_{2}, m-^{b}Ar_{2}); 117.8(^{a}CN, ^{b}CN); 127.2-133.6(o-^{a}Ar_{2}, o-^{b}Ar_{2}, p-^{a}Ph, p-^{b}Ph, m-^{a}Ph, m-^{b}Ph, o-^{a}Ph, o-^{b}Ph, m-^{a}Bz, m-^{b}Bz, o-^{a}Bz, o-^{b}Bz); 133.6(p-^{a}Bz, p-^{b}Bz); 137.0 \& 137.1(i-^{a}Ar_{2}, i-^{b}Ar_{2});$

145.2 & 145.4(^aC6, ^bC6); 158.7(p-^aAr₂, p-^bAr₂). C2, C4, *i*-Ph, *i*-Bz and <u>C</u>OPh not observed.

5-*O*-(4,4-dimethoxytrityl)-3-*O*-(4*N*-benzoyl-4-aminopyrimidin-2-yl)-2-deoxyalpha-D-threo-pentofuranosyl-1-*S*-thiobenzoate (11)

¹³C NMR δ = 40.6(C2'); 55.5(OMe); 61.2(C5'); 76.0(C3'); 81.4(C4'); 81.9(C1'); 86.6(<u>C</u>PhAr₂); 104.8(C5); 113.4(*m*-Ar₂); 127.0-129.4(*o*-Ph, *m*-Ph, *p*-Ph, *o*-NBz, *m*-NBz, *o*-SBz, *m*-SBz); 130.4 & 130.5(*o*-Ar₂); 133.3(*p*-NBz); 133.6(*i*-NBz); 134.0(*p*-SBz); 136.2 & 136.4(*i*-Ar₂); 137.3(*i*-SBz); 145.2(*i*-Ph); 158.8(*p*-Ar₂); 159.7(C2); 160.8(C6); 164.2(C4); 166.3(NH<u>C</u>OPh); 191.0(S<u>C</u>OPh).

5-*O*-(4,4-dimethoxytrityl)-3-*O*-(4*N*-benzoyl-4-aminopyrimidin-2-yl)-2-deoxyalpha-D-threo-pentofuranosyl-1-mercaptan (12)

¹³C NMR δ = 43.4(C2'); 55.5(OMe); 61.3(C5'); 76.4(C3'); 78.4(C1'); 80.2(C4'); 86.5(<u>CPhAr_2</u>); 104.7(C5); 113.4(*m*-Ar_2); 127.0(*o*-Bz); 127.7-130.5(*m*-Ph, *p*-Ph, *o*-Ph, *o*-Ar_2, *m*-Bz); 133.4 & 133.7(*p*-Bz, *i*-Bz); 136.1 & 136.4(*i*-Ar_2); 145.2(*i*-Ph); 158.7(C2); 159.5(*p*-Ar_2); 160.8(C6); 164.0(C4); 166.3(<u>C</u>OPh).

General procedure for 3'-S-trityl-3'-thionucleosides (14)

3'-Thio-3'-S-tritylthymidine (14T). ¹³C NMR δ = 12.9(Me); 40.9(C2'); 41.6(C3'); 60.8(C5'); 68.3(<u>CPh_3</u>); 85.3 & 85.4(C1', C4'); 110.9(C5); 127.5(*p*-Ph); 128.5(*o*-Ph); 129.9(*m*-Ph); 136.5(C6); 144.9(*i*-Ph); 150.5(C2); 164.2(C4).

3'-S-trityl-2'-deoxy-4N-benzoyl-3'-thiocytidine (14C). ¹³C NMR $\delta = 39.3(C3')$; 42.5(C2'); 60.3(C5'); 68.4(<u>CPh_3</u>); 86.2&87.3(C1', C4'); 127.6(*p*-Ph); 127.9(*o*-Bz); 128.5(*o*-Ph); 129.4(*m*-Bz); 129.8(*m*-Ph); 133.6(*p*-Bz); 144.8(*i*-Ph/C6); C2, C4, *i*-Bz and C5 not observed.

3'-S-trityl-2'-deoxy-6N-benzoyl-3'-thioadenosine (14A). ¹³C NMR δ = 41.0(C2'); 43.4(C3'); 63.0(C5'); 68.3(<u>CPh</u>₃); 86.7(C4'); 87.8(C1'); 124.3(C5); 127.5(*p*-Ph); 128.3(*o*-Bz); 128.6(*o*-Ph); 129.3(*m*-Bz); 129.9(*m*-Ph); 133.3(*p*-Bz); 133.9(*i*-Bz); 142.4(C2); 144.5(*i*-Ph); 150.3(C4); 151.1(C6); 152.6(C8); 165.0(<u>C</u>OPh).

5'-O-(4,4'-dimethoxytrityl)-2'-deoxy-6N-benzoyl-3'-thioadenosine (9A)

¹³C NMR δ = 35.4(C3'); 42.9(C2'); 55.6(OMe); 62.1(C5'); 84.9(C1'); 87.0(<u>C</u>PhAr₂) 88.9(C4'); 113.6(*m*-Ar₂); 127.4(p-Ph); 128.3, 128.5 & 128.8(*o*-Ph, *m*-Ph, *o*-Bz); 129.3(*m*-Bz); 130.0 & 130.4(*o*-Ar₂); 133.2 & 133.3(*i*-Bz & *p*-Bz); 136.0(*i*-Ar₂); 142.0(C2); 144.8 (*i*-Ph); 153.0(C8); 158.9(*p*-Ar₂); 164.9(NH<u>C</u>OPh). C4, C5 & C6 not observed.

3'-S-Trityl-3'-thiothymidine-5'-O-[(2-cyanoethyl)-(N,N-diisopropyl)]phosphoramidite (3T)

¹³C NMR $\delta = 12.7 \& 12.9(^{a}Me, ^{b}Me)$; 20.7 & 20.8($^{a}CH_{2}CN, ^{b}CH_{2}CN$); 25.0 & 25.1($^{a}CH\underline{Me}_{2}, ^{b}CH\underline{Me}_{2}$); 40.9 & 41.3($^{a}C2', ^{b}C2'$); 42.3($^{a}C3', ^{b}C3'$); 43.4, 43.5, 43.6 & 43.8($^{a}CHMe_{2}, ^{b}CHMe_{2}$); 58.7 & 59.0(2xd, $^{2}J_{OCH2-P} = 81, 85, ^{a}OCH_{2}, ^{b}OCH_{2}$); 62.2 & 64.6(2xd, $^{2}J_{C5'-P} = 61 \& 62, ^{a}C5', ^{b}C5'$); 68.1 & 68.2($^{a}CPh_{3}, ^{b}CPh_{3}$); 84.5 & 84.9(2xd, $^{3}J_{C4'-P} = 40 \& 35, ^{a}C4', ^{b}C4'$); 84.7 & 85.3($^{a}C1', ^{b}C1'$); 110.9 & 111.0($^{a}C5, ^{b}C5$); 117.7 & 117.8($^{a}CN, ^{b}CN$); 127.38 & 127.42(*p*- $^{a}Ph, p$ - ^{b}Ph); 128.56 & 128.61(*o*- $^{a}Ph, o$ - ^{b}Ph); 129.86 & 129.88(*m*- $^{a}Ph, m$ - ^{b}Ph); 135.9 & 136.1($^{a}C6, ^{b}C6$); 144.7 & 1 44.8(*i*- $^{a}Ph, i$ - ^{b}Ph); 150.46 & 150.53($^{a}C2, ^{b}C2$); 164.08 & 164.11($^{a}C4, ^{b}C4$).

3'-S-Trityl-2'-deoxy-4N-benzoyl-3'-thiocytidine-5'-O-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite (3C)

¹³C NMR (weak spectrum) $\delta = 20.8(^{a}\underline{C}H_{2}CN, ^{b}\underline{C}H_{2}CN); 25.0, 25.08, 25.15 & 25.2(^{a}CH\underline{Me}_{2}, ^{b}CH\underline{Me}_{2}); 40.9(^{a}C2', ^{b}C2',); 42.4 & 42.7(^{a}C3', ^{b}C3'); 43.5-43.7(^{a}\underline{C}HMe_{2}, ^{b}\underline{C}HMe_{2}); 58.9(^{a}OCH_{2}, ^{b}OCH_{2}); 68.1 & 68.2(^{a}\underline{C}Ph_{3}, ^{b}\underline{C}Ph_{3}); 87.6(^{a}C1', ^{b}C1', ^{a}C4', ^{b}C4'); 127.4, 127.5(p-^{a}Ph, p-^{b}Ph); 127.9(o-^{a}Bz, o-^{b}Bz) 128.5 & 128.6(o-^{a}Ph, o-^{b}Ph); 129.5(m-^{a}Bz, m-^{b}Bz); 129.8 & 129.9(m-^{a}Ph, m-^{b}Ph); 133.6(p-^{a}Bz, p-^{b}Bz); 144.7(i-^{a}Ph, i-^{b}Ph, ^{a}C6 & ^{b}C6). C5', C2, C4, C5, CN, i-^{b}Bz and NCOPh not observed.$

3'-S-Trityl-2'-deoxy-6N-benzoyl-3'-thioadenosine-5'-O-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite (3A)

¹³C NMR (weak spectrum) $\delta = 20.7(^{a}CH_{2}CN, ^{b}CH_{2}CN); 24.8 \& 25.0(^{a}CH\underline{Me}_{2}, ^{b}CH\underline{Me}_{2}); 41.1-43.7(^{a}C2', ^{b}C2', ^{a}C3', ^{b}C3', ^{a}CHMe_{2}, ^{b}CHMe_{2}); 58.8(^{a}OCH_{2}, ^{b}OCH_{2}); 63.2(^{a}C5', ^{b}C5'); 68.0(^{a}CPh_{3}, ^{b}CPh_{3}); 84.7(^{a}C1', ^{b}C1', ^{a}C4', ^{b}C4'); 127.4 \& 127.5(p-^{a}Ph, p-^{b}Ph); 128.2(o-^{a}Bz, o-^{b}Bz) 128.5(o-^{a}Ph, o-^{b}Ph); 129.3(m-^{a}Bz, m-^{b}Bz); 129.8 \& 129.9(m-^{a}Ph, m-^{b}Ph); 144.8(i-^{a}Ph, i-^{b}Ph); 149.6(^{a}C4, ^{b}C4); 152.6(^{a}C8, ^{b}C8). C2, C5, C6, CN, i-Bz, p-Bz \& COPh not observed.$

2. Experimental – All spectra

All spectra were analysed using TopSpin v2.1

Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is The Royal Society of Chemistry 2010

3. Expedite 8909 protocols for synthesis of ON1

For function definitions and general reagents, see 3.5. Modified thymidine phosphoramidite (**2T**) was placed in phosphoramidite port 5. DTT was placed in the auxillary port. Dichloromethane was placed in amidite port 6.

3.1. Cycle for the incorporation of the reverse thymidine phosphoramidite into DNA.

Function	Mode	Amount	Time	Description
CD allo allo a		(pulse)	(sec)	
SDediocking	*/\\T_A	1	0	"Event out ON"
144 / Index Fract. Coll.		1	1.5	Event out ON
141 /*Tritul Mar. Or/Off	*/WAI1	0	1.3	Wall
141 /* Inityl Mon. On/OII	*/NA	1	1	START data collection
	*/PULSE	10	0	"Dblk to column"
16 /*Dblk	*/PULSE	50	135	"Deblock"
38 /*Diverted Wsh A	*/PULSE	40	0	"Flush system with Wsh A"
141 /*Trityl Mon. On/Off	*/NA	0	1	"STOP data collection"
38 /*Diverted Wsh A	*/PULSE	40	0	"Flush system with Wsh A"
144 /*Index Fract. Coll.	*/NA	2	0	"Event out OFF"
\$Coupling				
1 /*Wsh	*/PULSE	5	0	"Flush system with Wsh"
2 /*Act	*/PULSE	5	0	"Flush system with Act"
21 /*T + Act	*/PULSE	6	0	"T + Act to column"
21 /*T + Act	*/PULSE	1	15	"Couple monomer"
2 /*Act	*/PULSE	4	60	"Couple monomer"
1 /*Wsh	*/PULSE	7	105	"Couple monomer"
1 /*Wsh	*/PULSE	8	0	"Flush system with Wsh"
\$Capping				
12 /*Wsh A	*/PULSE	20	0	"Flush system with Wsh A"
13 /*Caps	*/PULSE	8	0	"Caps to column"
12 /*Wsh A	*/PULSE	6	15	"Cap"
12 /*Wsh A	*/PULSE	14	0	"Flush system with Wsh A"
\$Oxidizing				
15 /*Ox	*/PULSE	15	0	"Ox to column"
12 /*Wsh A	*/PULSE	6	15	"Oxidise"
12 /*Wsh A	*/PULSE	15	0	"Flush system with Wsh A"
\$Capping				
13 /*Caps	*/PULSE	7	0	"Caps to column"
12 /*Wsh A	*/PULSE	6	5	"Cap"
12 /*Wsh A	*/PULSE	30	0	"End of cycle wash"

3.2. Incorporation of modified thymidine phosphoramidite (2T) using the X-cycle

This cycle was used for the introduction of a modified thymidine phosphoramidite (**2T**) after a natural derivative, where the 3'-terminal residue bound to the solid support is a masked hydroxyl.

Function	Mode	Amount (pulse)	Time (sec)	Description
\$Deblocking				
144 /*Index Fract. Coll.	*/NA	1	0	"Event out ON"
0 /*Default	*/WAIT	0	1.5	"Wait"
141 /*Trityl Mon. On/Off	*/NA	1	1	"START data collection
16 /*Dblk	*/PULSE	10	0	"Dblk to column"

16 /*Dblk	*/PULSE	50	135	"Deblock"
38 /*Diverted Wsh A	*/PULSE	40	0	"Flush system with Wsh A"
141 /*Trityl Mon. On/Off	*/NA	0	1	"STOP data collection"
38 /*Diverted Wsh A	*/PULSE	40	0	"Flush system with Wsh A"
144 /*Index Fract. Coll.	*/NA	2	0	"Event out OFF"
12 /*Wsh A	*/PULSE	5	0	"Flush system with Wsh A"
17 /*Aux	*/PULSE	6	0	"DTT to column"
17 /*Aux	*/PULSE	54	600	"DTT reduction"
\$Coupling				
1 /*Wsh	*/PULSE	5	0	"Flush system with Wsh"
2 /*Act	*/PULSE	5	0	"Flush system with Act"
22 /*5 + Act	*/PULSE	6	0	" $5 + \text{Act to column}$ "
22 /*5 + Act	*/PULSE	1	15	"Couple monomer"
2 /*Act	*/PULSE	4	60	"Couple monomer"
1 /*Wsh	*/PULSE	7	105	"Couple monomer"
1 /*Wsh	*/PULSE	8	0	"Flush system with Wsh"
\$Capping				
12 /*Wsh A	*/PULSE	20	0	"Flush system with Wsh A"
13 /*Caps	*/PULSE	8	0	"Caps to column"
12 /*Wsh A	*/PULSE	6	15	"Cap"
12 /*Wsh A	*/PULSE	14	0	"Flush system with Wsh A"
\$Oxidizing				
15 /*Ox	*/PULSE	15	0	"Ox to column"
12 /*Wsh A	*/PULSE	6	15	"Oxidise"
12 /*Wsh A	*/PULSE	15	0	"Flush system with Wsh A"
\$Capping				
13 /*Caps	*/PULSE	7	0	"Caps to column"
12 /*Wsh A	*/PULSE	6	5	"Cap"
12 /*Wsh A	*/PULSE	30	0	"End of cycle wash"

3.3. Incorporation of modified thymidine phosphoramidite (22) using the Y-cycle

This cycle was used for the introduction of a modified thymidine phosphoramidite (22) after another modified residue, where the 3'-terminal residue bound to the solid support is a masked thiol.

Function	Mode	Amount (pulse)	Time	Description
SDablocking		(puise)	(Sec)	
SDebiocking			-	
144 /*Index Fract. Coll.	*/NA	1	0	"Event out ON"
0 /*Default	*/WAIT	0	1.5	"Wait"
141 /*Trityl Mon. On/Off	*/NA	1	1	"START data collection
16 /*Dblk	*/PULSE	10	0	"Dblk to column"
16 /*Dblk	*/PULSE	50	135	"Deblock"
38 /*Diverted Wsh A	*/PULSE	40	0	"Flush system with Wsh A"
141 /*Trityl Mon. On/Off	*/NA	0	1	"STOP data collection"
38 /*Diverted Wsh A	*/PULSE	40	0	"Flush system with Wsh A"
144 /*Index Fract. Coll.	*/NA	2	0	"Event out OFF"
12 /*Wsh A	*/PULSE	5	0	"Flush system with Wsh A"
17 /*Aux	*/PULSE	6	0	"DTT to column"
17 /*Aux	*/PULSE	54	600	"DTT reduction"
\$Coupling				
1 /*Wsh	*/PULSE	60	0	"Flush system with Wsh"
4 /*6	*/PULSE	60	0	"Flush system with
				Dichloromethane"
1 /*Wsh	*/PULSE	10	0	"Flush system with Wsh"
2 /*Act	*/PULSE	5	0	"Flush system with Act"

22 /*5 + Act	*/PULSE	6	0	" $5 + \text{Act to column}$ "
22 /*5 + Act	*/PULSE	1	25	"Couple monomer"
2 /*Act	*/PULSE	4	100	"Couple monomer"
1 /*Wsh	*/PULSE	7	175	"Couple monomer"
1 /*Wsh	*/PULSE	8	0	"Flush system with Wsh"
\$Capping				
12 /*Wsh A	*/PULSE	20	0	"Flush system with Wsh A"
13 /*Caps	*/PULSE	8	0	"Caps to column"
12 /*Wsh A	*/PULSE	6	15	"Cap"
12 /*Wsh A	*/PULSE	14	0	"Flush system with Wsh A"
\$Oxidizing				
15 /*Ox	*/PULSE	15	0	"Ox to column"
12 /*Wsh A	*/PULSE	6	15	"Oxidise"
12 /*Wsh A	*/PULSE	15	0	"Flush system with Wsh A"
\$Capping				
13 /*Caps	*/PULSE	7	0	"Caps to column"
12 /*Wsh A	*/PULSE	6	5	"Cap"
12 /*Wsh A	*/PULSE	30	0	"End of cycle wash"

3.4. Incorporation of thymidine phosphoramidite using the Z-cycle

This cycle was used for the introduction of a natural thymidine phosphoramidite (2T) after a modified residue, where the 3'-terminal residue bound to the solid support is a masked thiol.

Function	Mode	Amount	Time	Description
		(pulse)	(sec)	
\$Deblocking				
144 /*Index Fract. Coll.	*/NA	1	0	"Event out ON"
0 /*Default	*/WAIT	0	1.5	"Wait"
141 /*Trityl Mon. On/Off	*/NA	1	1	"START data collection
16 /*Dblk	*/PULSE	10	0	"Dblk to column"
16 /*Dblk	*/PULSE	50	135	"Deblock"
38 /*Diverted Wsh A	*/PULSE	40	0	"Flush system with Wsh A"
141 /*Trityl Mon. On/Off	*/NA	0	1	"STOP data collection"
38 /*Diverted Wsh A	*/PULSE	40	0	"Flush system with Wsh A"
144 /*Index Fract. Coll.	*/NA	2	0	"Event out OFF"
\$Coupling				
1 /*Wsh	*/PULSE	60	0	"Flush system with Wsh"
4 /*6	*/PULSE	60	0	"Flush system with
				Dichloromethane"
1 /*Wsh	*/PULSE	10	0	"Flush system with Wsh"
2 /*Act	*/PULSE	5	0	"Flush system with Act"
21 /*T + Act	*/PULSE	6	0	"T + Act to column"
21 /*T + Act	*/PULSE	1	25	"Couple monomer"
2 /*Act	*/PULSE	4	100	"Couple monomer"
1 /*Wsh	*/PULSE	7	175	"Couple monomer"
1 /*Wsh	*/PULSE	8	0	"Flush system with Wsh"
\$Capping				
12 /*Wsh A	*/PULSE	20	0	"Flush system with Wsh A"
13 /*Caps	*/PULSE	8	0	"Caps to column"
12 /*Wsh A	*/PULSE	6	15	"Cap"
12 /*Wsh A	*/PULSE	14	0	"Flush system with Wsh A"
\$Oxidizing				
15 /*Ox	*/PULSE	15	0	"Ox to column"
12 /*Wsh A	*/PULSE	6	15	"Oxidise"
12 /*Wsh A	*/PULSE	15	0	"Flush system with Wsh A"

\$Capping				
13 /*Caps	*/PULSE	7	0	"Caps to column"
12 /*Wsh A	*/PULSE	6	5	"Cap"
12 /*Wsh A	*/PULSE	30	0	"End of cycle wash"

3.5. Function definitions and general reagents used for DNA Reverse Synthesis Protocol and DNA Modified Reverse Synthesis Protocol.

Function Definitions	Function	Reagent
Dblk	Deblock	Trichloroacetic acid in dichloromethane
Wsh	Anhydrous wash	Anhydrous acetonitrile
Act	Activator	1 <i>H</i> -Tetrazole
Wsh A	General wash	Acetonitrile
Caps	Comping reagents	Cap A: Acetic anhydride in pyridine/THF
	Capping reagents	Cap B: <i>N</i> -Methylimidazole in pyridine/THF
Ox	Oxidiser	Iodine solution in THF/H ₂ O/pyridine.