Electronic Supporting Information

Micro-scale Process Development of Transaminase Catalysed Reactions

Matthew D. Truppo^{*a} and Nicholas J. Turner^{*a}

^a School of Chemistry, University of Manchester, Manchester Interdisciplinary Biocentre, 131 Princess Street, Manchester M17DN, UK Fax: (+44)161 306 5173; E-mail: <u>Nicholas.turner@manchester.ac.uk</u>

Contents

Reagent Sources	S2
Conventional HPLC assay conditions	S2
Conventional transaminase reactions	S2
pH indicator based micro-scale transaminase reactions	S2
25 mL scale up demonstration reaction	S3
Chiral HPLC Chromatograms	S4
Proton NMR	S5
Carbon NMR	S6
MS	S7

Reagent Sources

Commercial grade reagents and solvents were purchased from Sigma-Aldrich and used without further purification. All enzymes including transaminase (ATA-117 0.45 "U/mg"), glucose dehydrogenase (GDH-103 "80 U/mg") and lactate dehydrogenase (LDH-102 "4 U/mg") were generously supplied by Codexis (Redwood City, CA).

One unit of transaminase was defined as the amount of enzyme that catalyzes the formation of 1 μ mol acetophenone from α -methylbenzylamine per minute at pH 9.0 and 22 °C

One unit of LDH or GDH activity was defined as the amount of enzyme that catalyzes the consumption or formation respectively of 1 µmol NADPH per minute at pH 8.0 and 22 °C

Conventional HPLC assay conditions

Reaction conversion determination by reverse phase high performance liquid chromatography (HPLC) was conducted at 210 nm using an Agilent 1100 series HPLC and a Zorbax Eclipse XDB-C18 (50 x 4.6 mm) column with a flow rate of 1 mL/min (60% acetonitrile / 40% water) for 3 minutes.

Enantiomeric excess was determined by normal phase high performance liquid chromatography (HPLC) at 210 nm using an Agilent 1100 series HPLC and a Chiralpak OD-H (250 x 4.6 mm) column with a flow rate of 1 mL/min (90% hexanes / 10% 2-propanol) for 12 minutes.

Specific rotation of the methylbenzylamine product was established by comparison to known standards purchased from Sigma-Aldrich.

Conventional transaminase reactions

Conventional reactions were run at 1 mL scale in potassium phosphate buffer using 1 g/L transaminase (ATA-117) enzyme, 1 g/L lactate dehydrogenase (LDH), 1 g/L glucose dehydrogenase (GDH), 9 g/L glucose (50 mM), 1 g/L NAD cofactor, 0.5 g/L pyridoxal-5-phosphate cofactor, 45 g/L alanine (500 mM), 10 mM acetophenone. The reactions were run in 2 mL Eppendorf tubes and placed in a shaking, temperature controlled incubator (Thermomixer).

40 µL samples were taken for reverse phase HPLC analysis. The samples were diluted 1:10 with acetonitrile, filtered and run using the method described above.

Samples for normal phase HPLC were extracted with 2X volumes methyl tertbutyl ether (MTBE), dried down, re-suspended in the mobile phase (90% hexanes / 10% 2-propanol), and run according to the method described above.

pH indicator based micro-scale transaminase reactions

100 μ L reactions were run in a 96 well microtiter plate using the following conditions and concentrations: 50 mM potassium phosphate buffer, 0.036 g/L phenol red (100 μ M), 1 g/L NAD, 0.5 g/L pyridoxal-5-phosphate, 9 g/L glucose (50 mM), 45 g/L alanine (500 mM), 10 mM acetophenone, 1 g/L glucose dehydrogenase (GDH), 1 g/L lactate dehydrogenase (LDH), and 1 g/L transaminase (ATA-117). Absorbance was measured by plate spectrophotometer at a wavelength of 560 nm every 30 seconds.

25 mL scale up demonstration reaction

A 25 mL scale reaction was run in potassium phosphate buffer using 1 g/L transaminase (ATA-117) enzyme, 1 g/L lactate dehydrogenase (LDH), 1 g/L glucose dehydrogenase (GDH), 9 g/L glucose (50 mM), 1 g/L NAD cofactor, 0.5 g/L pyridoxal-5-phosphate cofactor, 45 g/L alanine (500 mM), 10 mM acetophenone. The reaction was run in a Mettler-Toledo Multimax at 30 °C, an overhead agitation speed of 300 rpm, and with automated pH control using 2 M NaOH to keep the reaction at pH 8.0.

 $40 \ \mu L$ samples were taken for reverse phase HPLC analysis. The samples were diluted 1:10 with acetonitrile, filtered and run using the method described above. Samples for normal phase HPLC were extracted with 2X volumes methyl tertbutyl ether (MTBE), dried down, re-suspended in the mobile phase (90% hexanes / 10% 2-propanol), and run according to the method described above

After 9 hours, the reaction reached >99 % conversion. 0.5 g NaCl was added to the reaction mixture, and the reaction was extracted with 50 mL MTBE. The product *R*-methylbenzylamine was isolated via vacuum distillation. >95 % isolated yield was obtained with >99 % ee product. $\delta_{\rm H}$ (400 MHz; CDCl3) 1.42 (3H, d, *J* 6.8, *CH*₃), 1.53 (2H, br s, N*H*₂), 4.15 (1H, q, *J* 6.7, *CHCH*₃), 7.36 – 7.40 (5H, m, Ph); $\delta_{\rm C}$ (400 MHz; CDCl3) 25.75 (C1), 51.36 (C2), 125.71 (C3), 126.81 (C4), 128.50 (C5), 147.89 (C6); *m/z* 105.1 (M⁺–NH2 requires 105.07). A Bruker 400MHz NMR was used for NMR analysis. An Agilent LC/MSD SL and Agilent 1100 series HPLC were used for MS analysis: Agilent XDM-C18 column (3 x 150 mm, 3.5 µm), 0.75 mL/min flowrate gradient method (5-95% acetonitrile over 10 minutes), pH 3.5, scan 100-300 amu, Frag 120, Vcap 3000, 215 nm.

HPLC Chromatograms of racemic methylbenzylamine and R-methylbenzylamine product

nmr400b c-13

MS of product methylbenzylamine:

