Supplementary information

Functionalized alkoxy arene diazonium salts from Paracetamol

Bernd Schmidt*, René Berger and Frank HölterUniversitaet Potsdam, Institut fuer Chemie, Organische Synthesechemie, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam-Golm, Germanybernd.schmidt@uni-potsdam.de
Table of contents Sl
A General remarks S5
B Experimental procedures, analytical data and copies of spectra for acetanilides 2 S6
B1 4-Methoxyacetanilide (2a) S6
B2 4-Benzyloxyacetanilide (2b) S8
B3 4-Cyclopentyloxyacetamide (2c) S10
B4 4-Methoxy-2-nitroacetanilide (2d) S12
B5 4-Benzyloxy-2-nitroacetanilide (2e) S14
B6 4-Methoxy-3-nitroacetanilide (2f) S16
B7 4-Benzyloxy-3-nitroacetanilide (2g) S18
B8 3-Nitro-4-propoxyacetanilide (2h) S22
B9 3-Bromo-4-methoxyacetanilide (2i) S26
B10 4-Benzyloxy-3-bromoacetanilide (2j) S30
C Experimental procedures, analytical data and copies of spectra for arene diazonium salts 3 S32
C1 General experimental procedure for a one-pot deacetylation/diazotation inaqueous solutionS32
C2 General experimental procedure for a one-pot deacetylation/diazotation in
organic reaction media S32
C3 para-Methoxybenzenediazonium tetrafluoroborate (3a) S33
C4 para-Benzyloxybenzenediazonium tetrafluoroborate (3b) S35
C5 para-Cyclopentyloxybenzenediazonium tetrafluoroborate (3c) S37
C6 4-Methoxy-2-nitrobenzenediazonium tetrafluoroborate (3d) S39
C7 4-Benzyloxy-2-nitrobenzenediazonium tetrafluoroborate (3e) S44
C8 4-Methoxy-3-nitrobenzenediazonium tetrafluoroborate (3f) S48
C9 4-Benzyloxy-3-nitrobenzenediazonium tetrafluoroborate (3g) S50
C10 3-Nitro-4-propoxybenzenediazonium tetrafluoroborate (3h) S52
C11 3-Bromo-4-methoxybenzenediazonium tetrafluoroborate (3i) S54
C12 4-Benzyloxy-3-bromobenzenediazonium tetrafluoroborate (3j) S56
D Experimental procedures, analytical data and copies of spectra for the synthesis of de-
O-methyl centrolobine and all intermediates S57
D1 1-(3-(Allyloxy)hex-5-enyl)-4-(benzyloxy)benzene (6) S57
D2 2-(4-(Benzyloxy)phenethyl)-3,4-dihydro-2H-pyran (7) S59
D3 (2SR,6RS)-2-(4-(Benzyloxy)phenethyl)-6-(4-(benzyloxy)phenyl)-3,6-dihydro-
2H-pyran (rac-8) S61
D4 rac-Centrolobol (rac-III) S63
D5 rac-epi-De-O-methyl centrolobine (rac-9) S65
D6 rac-De-O-Methylcentrolobine (rac-II) S67

CAUTION: Although spontaneous combustion or even explosions were never observed in our laboratory upon synthesizing or handling the arene diazonium salts described herein, we recommend to handle these compounds with care. In particular, the mmol-scale should not be exceeded when standard laboratory conditions are used, and heating or melting of the pure substances should be avoided.

A General Remarks

All experiments were conducted in dry reaction vessels under an atmosphere of dry argon. Solvents were purified by standard procedures. ${ }^{1} \mathrm{H}$ NMR spectra were obtained at 300 MHz , 400 MHz , or 500 MHz in CDCl_{3} with $\mathrm{CHCl}_{3}(\delta=7.26 \mathrm{ppm}$) as an internal standard. Coupling constants (J) are given in $\mathrm{Hz} .{ }^{13} \mathrm{C}$ NMR spectra were recorded at $75 \mathrm{MHz}, 100 \mathrm{MHz}$, or 125 MHz in CDCl_{3} with $\mathrm{CDCl}_{3}(\delta=77.0 \mathrm{ppm})$ as an internal standard. Whenever the solubility of the sample was insufficient in CDCl_{3}, one of the following solvents was used for NMRmeasurements: DMSO-d ${ }^{6}\left(\right.$ DMSO-d ${ }^{5}$ as internal standard for ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectroscopy with $\delta=$ 2.50, DMSO-d ${ }^{6}$ as internal standard for ${ }^{13} \mathrm{C}$-NMR-spectroscopy with $\delta=39.5 \mathrm{ppm}$); $\mathrm{CD}_{3} \mathrm{OD}$ $\left(\mathrm{CD}_{2} \mathrm{HOD}\right.$ as internal standard for ${ }^{1} \mathrm{H}$-NMR-spectroscopy with $\delta=3.31, \mathrm{CD}_{3} \mathrm{OD}$ as internal standard for ${ }^{13} \mathrm{C}$-NMR-spectroscopy with $\left.\delta=49.2 \mathrm{ppm}\right) ; \mathrm{CD}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CD}_{3}\left(\mathrm{CD}_{2} \mathrm{HC}(\mathrm{O}) \mathrm{CD}_{3}\right.$ as internal standard for ${ }^{1} \mathrm{H}$-NMR-spectroscopy with $\delta=2.05, \mathrm{CD}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CD}_{3}$ as internal standard for ${ }^{13} \mathrm{C}$-NMR-spectroscopy with $\left.\delta=29.9 \mathrm{ppm}\right)$. Whenever signal assignments in ${ }^{1} \mathrm{H}$ - or ${ }^{13} \mathrm{C}$ NMR spectra are given, these are based on H,H- and H,C-correlation spectroscopy, and NOEspectroscopy if necessary. IR spectra were recorded as films on NaCl or KBr plates or as KBr -discs. Wavenumbers (v) are given in cm^{-1}. The peak intensities are defined as strong (s), medium (m) or weak (w). Mass spectra were obtained at 70 eV . Whenever known compounds were used as starting materials, reagents or catalysts, they were either purchased or were synthesized following literature procedures, which are cited in the appropriate section.

B Experimental procedures, analytical data and copies of spectra for aromatic acetamides 2

B1 4-Methoxyacetanilide (2a) ${ }^{I}$

The title compound was purchased. Alternatively, it can be easily synthesized from 4acetamidophenol: 4-Acetamidophenol (1) ($33.1 \mathrm{mmol}, 5.00 \mathrm{~g}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(50.0 \mathrm{mmol}, 6.60 \mathrm{~g})$ and methyl iodide ($49.6 \mathrm{mmol}, 7.04 \mathrm{~g}, 3.10 \mathrm{~mL}$) in dry acetone $(100 \mathrm{~mL})$ were heated to reflux for 24 hours. The solution was concentrated in vacuum, and the residue partitioned in ethyl acetate and water. The aqueous layer was extracted three times with ethyl acetate (20 mL each). The combined organic layers were dried with MgSO_{4}, filtered, and the solvent was evaporated in vacuum. The residue was chromatographed on silica to give 4methoxyacetanilide (2a) as a colourless solid in quantitative ($33.1 \mathrm{mmol}, 5.47 \mathrm{~g}$) yield. ${ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.41(\mathrm{~d}, J=9.1,2 \mathrm{H}), 6.85(\mathrm{~d}, J=9.1,2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 171.5,158.0,133.0,123.2,115.1,56.0,23.7$.

[^0]${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$):

${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$):

B2 4-Benzyloxyacetanilide (2b) ${ }^{2}$

4-Acetamidophenol (1) (40.0 mmol, 6.00 g), $\mathrm{K}_{2} \mathrm{CO}_{3}(50.0 \mathrm{mmol}, 6.60 \mathrm{~g})$ and benzyl bromide $(44.0 \mathrm{mmol}, 7.50 \mathrm{~g})$ in acetone $(100 \mathrm{~mL})$ were heated to reflux for four hours. The suspension was filtered and washed with cold MTBE $(100 \mathrm{~mL})$. The filtrate was concentrated under reduced pressure to give 4-benzyloxyacetanilide (2b) as a pale solid in $97 \%(39.0 \mathrm{mmol}$, 9.30 g) yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53(\mathrm{~s}(\mathrm{br})$), 1 H), $7.45-7.31(7 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=$ 8.2, 2H), $5.03(\mathrm{~s}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.4,155.6,136.9,131.2$, 128.5, 127.9, 127.4, 121.9, 115.1, 70.3, 24.2; LRMS (ESI): $m / z=242$ (100 \%), 200 (24 \%); HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 242.1181$; found: 242.1166.

[^1]${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

4-Acetamidophenol (1) ($16.0 \mathrm{mmol}, 2.50 \mathrm{~g}$), cyclopentyl bromide ($20.0 \mathrm{mmol}, 2.90 \mathrm{~g}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(20.0 \mathrm{mmol}, 2.70 \mathrm{~g})$ and $\mathrm{NaI}(0.80 \mathrm{mmol}, 120 \mathrm{mg})$ in acetone $(50 \mathrm{~mL})$ were heated to reflux for 24 hours. The suspension was filtered and washed with cold MTBE (100 mL). The filtrate was concentrated under reduced pressure to give a pale residue, which was dissolved in dichloromethane under ultrasonication. The solution was kept at $0^{\circ} \mathrm{C}$ for 12 hours, which led to crystallization of unreacted 4-acetamidophenol (1). The precipitate was filtered and the solution was concentrated to give 4-cyclopentyloxyacetanilide (2c) as a pale solid in 70% $(14.0 \mathrm{mmol}, 3.00 \mathrm{~g})$ yield, $\mathrm{mp} 127^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(\mathrm{~s}(\mathrm{br}), 1 \mathrm{H}), 7.34(\mathrm{~d}$, $J=8.9,2 \mathrm{H}), 6.79(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.71(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.72(6 \mathrm{H}), 1.64-$ $1.58(2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.4,154.9,130.6,121.9,115.7,79.4,32.7,24.2$, 23.9; IR (KBr-disc) v 3294 (w), 2961 (w), 1659 (m), 1603 (w), 1544 (m), 1508 (s), 1240 (s); MS (ESI): $m / z=220(100 \%), 152(74 \%)$. HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{2}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 220.1338; found: 220.1345; Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2}$: C, 71.2 \%; H, 7.8%; N, 6.4 \%; found: C, 71.4%; H, 7.9%; N, 6.4%.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

$\stackrel{+}{i}$

B4 4-Methoxy-2-nitroacetanilide (2d) ${ }^{3}$

4-Methoxyacetanilide (2a) ($3.0 \mathrm{mmol}, 500 \mathrm{mg}$) and nitric acid ($4.0 \mathrm{~mL}, 12 \% \mathrm{ig}$) were heated to $50^{\circ} \mathrm{C}$ for one hour. After ten minutes the colour turned to yellow. The cold solution was treated with ice water (20 mL). The precipitate was filtered and washed with water. The solid was dried under vacuum to give 4-methoxy-2-nitroacetanilide (2d) as a yellow solid in 79% ($2.40 \mathrm{mmol}, 500 \mathrm{mg}$) yield, $\mathrm{mp} 118^{\circ} \mathrm{C}$ (reported in the literature: ${ }^{4} 115-119^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.76(\mathrm{~d}, J=9.0,1 \mathrm{H}), 7.54(\mathrm{~d}, J=3.0,1 \mathrm{H}), 7.24(\mathrm{dd}, J=3.0,9.0,1 \mathrm{H}), 3.86$ (s, 3H), $2.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 172.1,158.4,144.1,128.6,126.2,121.7$, 110.5, 56.7, 23.7; IR (KBr-disc) v 3376 (m), 1698 (s), 1578 (s), 1508 (s), 1314 (s); LRMS (ESI) $m / z=151(8 \%), 169(100 \%), 211(36 \%) ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 211.0719$, found 211.0715; Anal. calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 51.4 \% ; \mathrm{H}, 4.8 \%$; N, 13.3 \%; found C, 51.6% H, 4.9% N, 13.2%.

[^2]${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

B5 4-Benzyloxy-2-nitroacetanilide (2e) ${ }^{5}$

4-Benzyloxyacetanilide (2b) ($3.0 \mathrm{mmol}, 731 \mathrm{mg}$) and nitric acid ($4.0 \mathrm{~mL}, 12 \%$ solution in water) were heated to $95^{\circ} \mathrm{C}$ for one hour. After ten minutes the colour turned to yellow. The cold solution was treated with ice water $(20 \mathrm{~mL})$. The precipitate was filtered and washed with water. The solid was dried under vacuum to give 4-benzyloxy-2-nitroacetanilide (2e) as a yellow solid in $94 \%(2.40 \mathrm{mmol}, 500 \mathrm{mg})$ yield, $\mathrm{mp} 113^{\circ} \mathrm{C}$ (reported in the literature: ${ }^{5} 108$ $\left.114^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.76(\mathrm{~d}, J=9.0,1 \mathrm{H}), 7.63(\mathrm{~d}, J=2.9,1 \mathrm{H}), 7.49-$ $7.27(6 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta$ 172.1, 157.4, 137.9, 129.8, 129.4, 128.9, 128.5, 126.4, 122.6, 111.7, 71.9, 23.7; IR (KBr-disc) v 3347 (m), 1698 (s), 1503 (s), 1306 (s), 1270 (s); MS (ESI) m/z = 199 (7 \%), 245 (100 \%), 287 (46 \%); HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{4}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 287.1032, found 287.1050; Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 62.9 \%; H, 4.9 \%; N, 9.8%; found C, 62.4% H, 4.8%, N, 9.6%.

[^3]${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

${ }^{13} \mathrm{C}$ NMR (75 MHz, $\mathrm{CD}_{3} \mathrm{OD}$)

B6

4-Methoxyacetanilide (2a) ($3.0 \mathrm{mmol}, 500 \mathrm{mg}$) was slowly added at $0^{\circ} \mathrm{C}$ to sulfuric acid ($5 \mathrm{~mL} 85 \%$) and stirred until the solid was completely dissolved. Guanidinium nitrate ($3.0 \mathrm{mmol}, 370 \mathrm{mg}$) was added to the reaction mixture over a period of 30 minutes. After stirring for three hours at $0-5^{\circ} \mathrm{C}$, the solution was treated with ice water $(20 \mathrm{~mL})$. The precipitate was dissolved in EtOAc. The aqueous layer was extracted three times with EtOAc (10 mL each). The combined organic layers were dried with MgSO_{4}, and the solvent was evaporated in vacuum. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, EtOAc:MTBE 1:1) to give 4-methoxy-3-nitroacetanilide (2f) as a yellow solid in 82% ($2.49 \mathrm{mmol}, 520 \mathrm{mg}$) yield, $\mathrm{mp} 151^{\circ} \mathrm{C}$ (reported in the literature: ${ }^{6} 148-153^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.14(\mathrm{~d}, J=2.7,1 \mathrm{H}), 7.69(\mathrm{dd}, J=2.7,9.1,1 \mathrm{H}), 7.23(\mathrm{~d}, J=9.1,1 \mathrm{H}), 3.92$ (s, 3H), $2.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 171.8,150.4,142.3,133.2,126.7,117.9$, 115.6, 57.5, 23.8; IR (KBr-disc) v3372 (m), 1684 (s), 1536 (s), 1323 (s), 1250 (s); MS (ESI) $m / z=99(4 \%), 165(4 \%), 211(100 \%) ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 211.0719, found 211.0720; Anal. calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 51.4%; H, 4.8%; N, 13.3%; found C, 51.2%; H, 4.8%; N, 13.3 \%.

[^4]${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

4-Hydroxy-3-nitroacetanilide: 4-Hydroxyacetanilide (1) ($66.2 \mathrm{mmol}, 10.00 \mathrm{~g}$) was slowly added to ice-cold sulfuric acid ($50 \mathrm{~mL}, 85 \%$ aqueous solution) and stirred until the solid was dissolved. Guanidinium nitrate ($69.5 \mathrm{mmol}, 8.50 \mathrm{~g}$) was then added to the reaction mixture over a period of 30 minutes. After stirring for three hours at $0-5^{\circ} \mathrm{C}$ ice water $(100 \mathrm{~mL})$ was slowly added. The precipitate was dissolved in EtOAc, and the aqueous layer was extracted three times with EtOAc (30 mL each). The combined organic extracts were dried with MgSO_{4} and evaporated in vacuum. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, MTBE) to give 4-hydroxy-3-nitroacetanilide as a yellow solid in $84 \%(55.6 \mathrm{mmol}, 10.00 \mathrm{~g})$ yield, $\mathrm{mp} 158^{\circ} \mathrm{C}$ (reported in the literature: ${ }^{7} 154^{\circ} \mathrm{C}-162^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ $8.43(\mathrm{~d}, J=2.6,1 \mathrm{H}), 7.68(\mathrm{dd}, J=2.7,9.0,1 \mathrm{H}), 7.10(\mathrm{~d}, J=9.0,1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 171.8,152.1,135.1,132.7,130.5,121.1,116.7,23.8$; $\mathrm{IR}(\mathrm{KBr}-\mathrm{disc}) v$ 3283 (m), 1659 (s), 1537 (s), 1480 (s), 1269 (s); MS (EI) $m / z=80$ (41 \%), 119 (53 \%), 196 (100 \%); HRMS (EI) m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}[\mathrm{M}]^{+}: 196.0484$, found 196.0496; Anal. calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 49.0%; H, 4.1%; N, 14.3%; found C, 49.0%; H, 4.1%, N, 14.2%.

[^5]${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

4-Benzyloxy-3-nitroacetanilide (2g): 4-Hydroxy-3-nitroacetanilide ($10.2 \mathrm{mmol}, \quad 2.00 \mathrm{~g}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(13.3 \mathrm{mmol}, 1.80 \mathrm{~g})$ and benzyl bromide ($13.3 \mathrm{mmol}, 2.30 \mathrm{~g}, 1.60 \mathrm{~mL}$) in acetone $(100 \mathrm{~mL})$ were heated to reflux for six hours and then stirred at room temperature for 12 hours. The solution was concentrated in vacuum, and the residue dissolved with EtOAc and water. The aqueous layer was extracted three times with EtOAc (30 mL each). The combined organic layers were dried with MgSO_{4} and evaporated in vacuum. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, EtOAc:MTBE 1:2) to give 4-benzyloxy-3-nitroacetanilide $(\mathbf{2 g})$ as a yellow solid in $80 \%(8.2 \mathrm{mmol}, 2.30 \mathrm{~g})$ yield, mp $124^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.16(\mathrm{~d}, J=2.7,1 \mathrm{H}), 7.64(\mathrm{dd}, J=2.7,9.1,1 \mathrm{H}), 7.48-7.41(2 \mathrm{H}), 7.41-7.29$ (3H), $7.26(\mathrm{~d}, J=9.1,1 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ 171.8, $149.2,141.4,137.7,133.5,129.7,129.3,128.5,126.5,117.8,117.3,72.6,23.8$; IR (KBr-disc) $v 3393(\mathrm{~s}), 1685(\mathrm{~s}), 1527(\mathrm{~m}), 1313(\mathrm{~s}) ;$ MS (ESI) $\mathrm{m} / \mathrm{z} 287$ (10\%), 197 (100 \%), 121 (8%), 99 (20 \%); HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}:$287.1032, found 287.1025; Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 62.9 \%; H, 4.9 \%; N, 9.8 \%; found C, 62.9%; H, 5.0%; N, 9.6 \%.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

${ }^{13} \mathrm{C}$ NMR (75 MHz, $\mathrm{CD}_{3} \mathrm{OD}$)

4-Propoxyacetanilide: 4-Hydroxyacetanilide (1) (13.3 mmol, 2.00 g), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (29.3 mmol , 4.10 g) and Iodopropane ($31.8 \mathrm{mmol}, 5.40 \mathrm{~g}, 3.1 \mathrm{~mL}$) in acetone (30 mL) were heated to reflux for 24 hours. The solution was concentrated in vacuum and the residue dissolved with EtOAc and water. The aqueous layer was extracted three times with EtOAc (30 mL each). The combined organic layers were dried with MgSO_{4} and concentrated in vacuum. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc}: \mathrm{MTBE} 1: 3\right)$ to give 4 propoxyacetanilide as a pale solid in $93 \%(12.4 \mathrm{mmol}, 2.39 \mathrm{~g})$ yield, $\mathrm{mp} 123^{\circ} \mathrm{C}$ (reported in the literature: $\left.:^{8} 118-122^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.40(\mathrm{~d}, J=9.1,2 \mathrm{H}), 6.84(\mathrm{~d}, J=$ $9.1,2 \mathrm{H}), 3.88(\mathrm{t}, J=6.5,2 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{tq}, J=7.4,6.5,2 \mathrm{H}), 1.02(\mathrm{t}, J=7.4,3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 171.5,157.5,132.9,123.2,115.7,70.9,23.8,23.7,11.0$; IR (KBr-disc) v 3253 (m), 3140 (m), 2963 (s), 2874 (s), 1655 (s), 1508 (s); MS (EI) $m / z=150$ (4 \%), 193 (6 \%); HRMS (EI) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}]^{+}:$193.1103, found 193.1114; Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}$: C, 68.4%; $\mathrm{H}, 7.8 \%$; N, 7.3%; found $\mathrm{C}, 68.3 \%$; $\mathrm{H}, 7.9 \%$, N, 7.2 \%.

[^6]${ }^{1} \mathrm{H}$ NMR（ $300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ）

品品品

${ }^{13} \mathrm{C}$ NMR（ $75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ）

3-nitro-4-propoxyacetanilide (2h): 4-Propoxyacetanilide ($1.0 \mathrm{mmol}, 200 \mathrm{mg}$) was slowly added to ice-cold sulfuric acid ($2.0 \mathrm{~mL} 85 \%$ solution in water) and stirred until the solid was dissolved. Guanidinium nitrate ($1.3 \mathrm{mmol}, 152 \mathrm{mg}$) was the added to the reaction mixture over a period of 30 minutes. After stirring for three hours at $0-5^{\circ} \mathrm{C}$, ice water $(20 \mathrm{~mL})$ was carefully added, and the resulting precipitate was dissolved in EtOAc. The aqueous layer was extracted three times with EtOAc (10 mL each). The combined organic layers were dried over MgSO_{4} and concentrated in vacuum. The residue was purified by column chromatography (SiO_{2}, EtOAc:MTBE 1:3) to give 3-nitro-4-propoxyacetanilide (2h) as a yellow solid in 90% $(0.94 \mathrm{mmol}, 220 \mathrm{mg})$ yield, $\mathrm{mp} 109^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.12(\mathrm{~d}, J=2.7,1 \mathrm{H}$), $7.64(\mathrm{dd}, J=2.7,9.1,1 \mathrm{H}), 7.17(\mathrm{~d}, J=9.1,1 \mathrm{H}), 4.05(\mathrm{t}, J=6.3,2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{tq}, J$ $=7.4,6.3,2 \mathrm{H}), 1.04(\mathrm{t}, J=7.4,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 171.8,149.8,141.1$, 133.0, 126.6, 117.7, 116.5, 72.6, 23.8, 23.6, 10.8; IR (KBr-disc) v3297.5 (m), 3120 (m), 1666 (s), 1528 (s), 1257 (s); MS (EI) $m / z 154$ (100 \%), 196 (29 \%), 238 (23 \%); HRMS (EI) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}[M]^{+}$: 238.0954, found 238.0966; Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 55.5 \%; H, 5.9 \%; N, 11.8 \%; found C, 55.6 \%; H, 5.9 \%; N, 11.8 \%.
${ }^{1} \mathrm{H}$ NMR（ $300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ）
No for
名台品
$\xrightarrow[\text { Na }]{\text { N }}$

${ }^{13} \mathrm{C}$ NMR（ $75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ）

3-Bromo-4-hydroxyacetanilide: 4-Hydroxyacetanilide (1) (13.2 mmol, 2.00 g) and AlCl_{3} $(10 \mathrm{~mol} \%, 1.3 \mathrm{mmol}, 186 \mathrm{mg})$ in $\mathrm{DCM}(40 \mathrm{~mL})$ were cooled to $0^{\circ} \mathrm{C}$. A solution of bromine ($13.2 \mathrm{mmol}, 2.12 \mathrm{~g}, 0.70 \mathrm{~mL}$) in $\mathrm{DCM}(10 \mathrm{~mL})$ was then added dropwise over a period of 30 minutes. The resulting suspension was stirred at room temperature for 12 hours, and was then washed with a saturated aqueous solution of sodium thiosulfate (10 mL) until the brownish colour disappeared. The aqueous layer was extracted three times with MTBE (20 mL each). The combined organic layers were dried with MgSO_{4} and evaporated in vacuum. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc}: \mathrm{MTBE}\right.$ 1:3) to give 3-bromo-4hydroxyacetanilide as a pale solid in $91 \%(12.0 \mathrm{mmol}, 2.75 \mathrm{~g})$ yield, $\mathrm{mp} 156^{\circ} \mathrm{C}$ (reported in the literature: ${ }^{9} 155-157^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.73(\mathrm{~d}, J=2.5,1 \mathrm{H}$), 7.26 (dd, J $=2.5,8.7,1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.7,1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 171.5$, 152.2, 132.9, 126.4, 122.1, 117.1, 110.5, 23.7; IR (KBr-disc) v 3159 (m), 1623 (s), 1547 (s), 1409 (s), 1285 (s); MS (EI) $m / z 150$ (4 \%), 187 (100 \%), 229 (M ${ }^{+}, 26 \%$); HRMS (EI) m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{BrNO}_{2}^{+}[\mathrm{M}]^{+}: 228.9738$, found 228.9751; Anal. calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{BrNO}_{2}$: C , 41.8 \%; H, 3.5%, N, 6.1 \%; found C, 42.0%; H, 3.6 \%; N, 6.1 \%.

[^7]${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

${ }^{13} \mathrm{C}$ NMR (75 MHz, $\mathrm{CD}_{3} \mathrm{OD}$)

3-Bromo-4-methoxyacetanilide (2i): ${ }^{10}$ 3-Bromo-4-hydroxyacetanilide ($4.4 \mathrm{mmol}, 1.00 \mathrm{~g}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(8.7 \mathrm{mmol}, 1.20 \mathrm{~g})$ and iodomethane ($8.7 \mathrm{mmol}, 1.24 \mathrm{~g}, 0.55 \mathrm{~mL}$) in dry DMF $(20 \mathrm{~mL})$ were heated to $40^{\circ} \mathrm{C}$ for six hours and stirred at room temperature for 12 hours under nitrogen. The solution was concentrated in vacuum and the residue dissolved with EtOAc and water. The aqueous layer was extracted three times with EtOAc (20 mL each). The combined organic layers were dried with MgSO_{4}, filtered and evaporated. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, EtOAc:MTBE 1:3) to give 3-bromo-4-methoxyacetanilide (2i) as a pale solid in $98 \%(4.27 \mathrm{mmol}, 1.04 \mathrm{~g})$ yield, $\mathrm{mp} 114^{\circ} \mathrm{C}$ (reported in the literature: ${ }^{11}$ $115^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.81(\mathrm{~d}, J=2.5,1 \mathrm{H}), 7.41(\mathrm{dd}, J=2.5,8.9,1 \mathrm{H}) 6.95$ $(\mathrm{d}, J=8.9,1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 171.6,154.2$, 134.0, 126.5, 121.7, 113.3, 112.2, 57.0, 23.8; IR (KBr-disc) v3235 (m), 1657 (s), 1497 (s), 1440 (s); LRMS (ESI) m/z 244 (60\%), 219 (14 \%), 165 (100 \%), 121 (14 \%); HRMS (ESI) m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{BrNO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 243.9973$, found 243.9957; Anal. calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{BrNO}_{2}$: C, 44.3 \%; H, 4.1% N, 5.7%; found C, 44.3%; H, 3.7%; N, 5.7%.

[^8]${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

B10 4-Benzyloxy-3-bromoacetanilide (2j)

3-Bromo-4-hydroxyacetanilide ($4.4 \mathrm{mmol}, 1.00 \mathrm{~g}$), synthesized as described in section B9, $\mathrm{K}_{2} \mathrm{CO}_{3}(5.2 \mathrm{mmol}, 0.72 \mathrm{~g})$ and benzyl bromide ($5.2 \mathrm{mmol}, 0.90 \mathrm{~g}, 0.63 \mathrm{~mL}$) in acetone $(100 \mathrm{~mL})$ were heated to reflux for six hours and then stirred at room temperature for 12 hours. The solution was concentrated in vacuum and the residue was dissolved in EtOAc and water. The aqueous layer was extracted three times with EtOAc (30 mL each). The combined organic layers were dried with MgSO_{4} and concentrated in vacuum. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, EtOAc:MTBE 1:2) to give 4-benzyloxy-3bromoacetanilide ($\mathbf{2} \mathbf{j}$) as a pale solid in $98 \%(4.27 \mathrm{mmol}, 1.36 \mathrm{~g})$ yield, $\mathrm{mp} 133^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.84(\mathrm{~d}, J=2.5,1 \mathrm{H}), 7.46-7.24(6 \mathrm{H}), 7.00(\mathrm{~d}, J=8.9,1 \mathrm{H}), 5.10(\mathrm{~s}$, $2 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ 171.6, 153.2, 138.4, 134.4, 129.6, 129.1, 128.5, 126.4, 121.6, 115.4, 113.1, 72.3, 23.8; IR (KBr-disc) v 3317 (s), 1660 (s), 1547 (s), 1494 (s), 1247 (s); MS (ESI) m/z 320 (100 \%), 278 (6 \%), 150 (4 \%), 91 (13 \%); HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{BrNO}_{2}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 320.0286$, found 320.0272; Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{BrNO}_{2}$: C, 56.3 \%; H, 4.4%; N, 4.4%; found C, $56.4 \% ; \mathrm{H}, 4.3 \%$ N, 4.3%.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

C Experimental procedures, analytical data and copies of spectra for arene diazonium salts 3

C1 General experimental procedure for a one-pot deacetylation/diazotation in aqueous solution

A suspension of the corresponding acetamide 2 (4.2 mmol) in hydrochloric acid (3M, 15 mL) and methanol (5 mL) was heated to reflux until the solid was completely dissolved (approximately 5 hours). The resulting clear solution was cooled to $0^{\circ} \mathrm{C}$, and solid NaNO_{2} $(0.44 \mathrm{~g}, 6.3 \mathrm{mmol})$ was added in small portions. Stirring at this temperature was continued for 1 hour, and $\mathrm{NH}_{4} \mathrm{BF}_{4}(0.66 \mathrm{~g}, 6.3 \mathrm{mmol})$ was then added in small portions. The corresponding diazonium tetrafluoroborate started to precipitate after a few minutes, and stirring at $0^{\circ} \mathrm{C}$ was further continued for 30 minutes to ensure complete precipitation. The ice-cold suspension was filtered via a Büchner-funnel, and the solid was subsequently washed with cold water (10 $\mathrm{mL})$, ethanol $(10 \mathrm{~mL})$, and diethyl ether $(50 \mathrm{~mL})$. It was dried in a stream of air to yield the corresponding diazonium tetrafluoroborates $\mathbf{3}$ as colourless solids.

C2 General experimental procedure for a one-pot deacetylation/diazotation in organic reaction media

To a solution of the corresponding acetanilide $2(3.0 \mathrm{mmol})$ in dry methanol $(5 \mathrm{~mL})$ was added boron trifluoride-methanol ($9.1 \mathrm{mmol}, 1.20 \mathrm{~g}, 0.98 \mathrm{~mL}$). The solution was heated to reflux under an atmosphere of dry nitrogen until the starting acetanilide was completely consumed, as indicated by TLC. The mixture was then cooled to $-15^{\circ} \mathrm{C}$ and tert-butyl nitrite ($4.5 \mathrm{mmol}, 0.47 \mathrm{~g}, 0.54 \mathrm{~mL}$) was added. Over a period of 15 minutes a colourless precipitate was formed. Stirring was continued for another hour, and the solid was collected by filtration, washed subsequently with cold ethanol (20 mL) and MTBE (20 mL) to give the corresponding diazonium salt 3 .

C3 para-Methoxybenzenediazonium tetrafluoroborate (3a)

Procedure C1: Obtained from $2 \mathrm{a}(3.00 \mathrm{~g}, 18.0 \mathrm{mmol})$. Yield: $83 \%(3.30 \mathrm{~g}, 14.9 \mathrm{mmol})$.
Procedure C2: Obtained from 2a ($500 \mathrm{mg}, 3.0 \mathrm{mmol}$). Yield: 72\% ($480 \mathrm{mg}, 2.2 \mathrm{mmol}$).
${ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}\right) \boldsymbol{\delta} 8.61(\mathrm{~d}, 2 \mathrm{H}, J=9.4 \mathrm{~Hz}), 7.48(\mathrm{~d}, 2 \mathrm{H}, J=9.4 \mathrm{~Hz}), 4.04(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO-d $_{6}$, APT) $\delta 168.8,136.1,117.3,103.3,57.4$; IR (KBr-disc) v 3120 (w), 2251 (m, N 2), 1583 (s), 1569 (s), 1494 (s), 1290 (s), 1036 (s); MS (ESI) m/z 135 (100 \%, [M] $\left.]^{+}\right), 107(51 \%), 92(60 \%)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}]^{+}: 135.0553$; found 135.0535 .

IR (KBr-disc)

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6})

$$
\stackrel{+}{+}
$$

${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6})

$$
-57.4
$$

C4 para-Benzyloxybenzenediazonium tetrafluoroborate (3b)

Procedure C1: Obtained from 2b ($1.00 \mathrm{~g}, 4.1 \mathrm{mmol}$). Yield: 65% ($0.81 \mathrm{~g}, 2.7 \mathrm{mmol}$).
Procedure C2: Obtained from 2b ($731 \mathrm{mg}, 3.0 \mathrm{mmol}$). Yield: $71 \%(690 \mathrm{mg}, 2.2 \mathrm{mmol})$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{-\mathrm{d}}^{6}$) $\delta 8.62(\mathrm{~d}, 2 \mathrm{H}, J=9.4 \mathrm{~Hz}$), $7.56(\mathrm{~d}, 2 \mathrm{H}, J=9.4 \mathrm{~Hz}), 7.51-$ $7.39(5 \mathrm{H}), 5.42(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}_{-} \mathrm{d}_{6}\right) \delta 167.8,136.2,134.9,128.7,128.7$, 128.4, 117.9, 103.7, 71.4; IR (KBr-disc) v 3112 (m), 2253 ($\mathrm{s}, \mathrm{N}_{2}$), 1580 (s), 1488 (s), 1280 (s), $1097(\mathrm{~s}) ; \mathrm{MS}(\mathrm{FAB}+\mathrm{LR}) m / z 212\left(95 \%,[\mathrm{M}]^{+}\right), 184(30 \%)$ HRMS (FAB) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}]^{+}: 211.0866$; found 211.0888; Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{BF}_{4} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 52.4 \% ; \mathrm{H}$, 3.7 \%; N, 9.4 \%; found: C, 52.7%; H, 3.6%, N, 9.6%.

IR (KBr-disc)

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6})

品

C5 para-Cyclopentyloxybenzenediazonium tetrafluoroborate (3c)

Procedure C1: Obtained from 2c ($1.80 \mathrm{~g}, 8.2 \mathrm{mmol}$). Yield: $42 \%(1.00 \mathrm{~g}, 3.6 \mathrm{mmol})$.
Procedure C2: 3c was not accessible using this protocol.
${ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}\right) \delta 8.72(\mathrm{~d}, J=9.3,2 \mathrm{H}), 7.49(\mathrm{~d}, J=9.3,2 \mathrm{H}), 5.15(\mathrm{~m}, 1 \mathrm{H})$, $2.13-1.94(2 \mathrm{H}), 1.79-1.62(6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{DMSO}^{-} \mathrm{d}_{6}\right) \delta$ 167.4, 131.6, 118.2, 102.6, 82.2, 32.2, 23.6; IR (KBr-disc) v2959 (w), 2271 (m, N_{2}), 1583 (s), 1481 (m) 1337 (m), 1279 (s), 1063 (s), 1028 (s); MS (ESI) $m / z 189$ (100 \%, [M] $]^{+}$), 190 (20 \%); HRMS (ESI): m / z für $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}]^{+}$: 189.1022; gefunden: 189.1028.

IR (KBr-disc)

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO-d ${ }_{6}$)

C6 4-Methoxy-2-nitrobenzenediazonium tetrafluoroborate (3d)

Procedure C1: 3d was not accessible using this protocol.
Procedure C2: Obtained from 2d ($636 \mathrm{mg}, 3.0 \mathrm{mmol}$). Yield: 92% ($742 \mathrm{mg}, 2.8 \mathrm{mmol}$).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}\right.$, DMSO-d $\left.{ }_{6}\right) \delta 9.00(\mathrm{~d}, J=9.3,1 \mathrm{H}), 8.27(\mathrm{~d}, J=2.5,1 \mathrm{H}), 7.89(\mathrm{dd}, J=$ 2.6, 9.3, 1H), $4.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 169.4,147.6,139.2,120.3$, 115.8, 98.7, 58.9; IR (KBr-disc) v 3412 (m), 2249 (s, N_{2}), 1601 (s), 1561 (s$), 1348$ (s); MS (ESI) $m / z 180(100 \%), 123(57 \%), 91(57 \%) ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{+}[\mathrm{M}]^{+}$: 180.0409, found 180.0427 .

IR (KBr-disc)

${ }^{1}$ H NMR (300 MHz, DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6})

Two-step procedure for the synthesis of 3d: 4-Methoxy-2-nitroaniline (4d). A suspension of $\mathbf{2 d}(2.4 \mathrm{mmol}, 500 \mathrm{mg})$ in hydrochloric acid $(37 \%, 1.5 \mathrm{~mL})$ and ethanol $(3 \mathrm{~mL})$ was heated to reflux for six hours. To the cold solution was added a concentrated aqueous solution of ammonia (1.2 mL). The solid was filtered off, washed with cold water and dried under vacuum to give 4-methoxy-2-nitroaniline (4d) as a red solid in 98% ($2.3 \mathrm{mmol}, 392 \mathrm{mg}$) yield $\mathrm{mp} 124^{\circ} \mathrm{C}$ (reported in the literature: ${ }^{12} 122-130^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51$ (d, $J=3.0,1 \mathrm{H}), 7.04(\mathrm{dd}, J=3.0,9.1,1 \mathrm{H}), 6.74(\mathrm{~d}, J=9.1,1 \mathrm{H}), 5.84(\mathrm{~s}(\mathrm{br}), 2 \mathrm{H}), 3.77(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.0,140.2,131.7,126.9,120.3,106.5,56.1$; IR ($\mathrm{KBr}-$ disc) v 3487 (m), 3370 (m), 1572 (s), 1501 (w), 1337 (s); MS (EI) $m / z 122$ (35 \%), 153 (36 \%), 168 (100 \%); HRMS (EI) m / z calcd for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}]^{+}: 168.0535$, found 168.0541; Anal. calcd for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 50.0 \%; H, 4.8%; N, 16.7 \%; found C, 49.4%; $\mathrm{H}, 4.9 \%$, N, 16.7%.

[^9]${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 d}$

Synthesis of 4-Methoxy-2-nitrobenzenediazonium tetrafluoroborate (3d) from 4d: A solution of $\mathbf{4 d}(3.2 \mathrm{mmol}, 500 \mathrm{mg})$ in diethylether/acetonitrile $(2: 1,10 \mathrm{~mL})$ was cooled to $-15^{\circ} \mathrm{C} . \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(4.8 \mathrm{mmol}, 0.61 \mathrm{~mL})$ was added, and the mixture was stirred for 15 minutes. A solution of tert-butyl nitrite $(3.8 \mathrm{mmol}, 0.46 \mathrm{~mL})$ in diethylether $(5 \mathrm{~mL})$ was added to the reaction mixture over a period of 10 minutes. Stirring at $-15^{\circ} \mathrm{C}$ was continued for one hour. The resulting suspension was filtered, and the precipitate was washed with cold ethanol and cold MTBE to give 4-methoxy-2-nitrobenzenediazonium tetrafluoroborate (3d) as a pale solid in $83 \%(2.7 \mathrm{mmol}, 712 \mathrm{mg})$ yield. All analytical data are identical to those reported above for compound 3d obtained via Procedure C2.

C7 4-Benzyloxy-2-nitrobenzenediazonium tetrafluoroborate (3e)

Procedure C1: 3e was not accessible using this protocol.
Procedure C2: Obtained from 2d ($867 \mathrm{mg}, 3.0 \mathrm{mmol}$). Yield: 82% ($850 \mathrm{mg}, 2.5 \mathrm{mmol}$).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}\right.$, DMSO-d $\left.{ }_{6}\right) \delta 9.00(\mathrm{~d}, J=9.2,1 \mathrm{H}), 8.38(\mathrm{~d}, J=2.5,1 \mathrm{H}), 7.97(\mathrm{dd}, J=$ $2.5,9.3,1 \mathrm{H}), 7.58-7.36(5 \mathrm{H}), 5.59(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO-d $_{6}$) $\delta 168.4,147.6$, 139.1, 134.3, 128.8, 128.7, 128.5, 120.7, 116.4, 98.9, 72.9; IR (KBr-disc) v 3438 (m), 2242 (s, N_{2}), 1596 (s), 1552 (s), 1309 (s); MS (ESI) $m / z 256$ (56 \%), 241 (18 \%), 91 (100 \%). HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{+}[\mathrm{M}]^{+}: 256.0722$, found 256.0701.

IR (KBr-disc)

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO-d 6)

Two-step procedure for the synthesis of 3e: 4-Benzyloxy-2-nitroaniline (4e). A suspension of $\mathbf{2 e}(10.5 \mathrm{mmol}, 3.00 \mathrm{~g})$ in hydrochloric acid $(4 \mathrm{~N}, 9 \mathrm{~mL})$ and ethanol $(18 \mathrm{~mL})$ was heated to reflux for six hours. The solution was cooled to ambient temperature, and an aqueous solution of concentrated ammonia (7.2 mL) was added. The solid was filtered off, washed with cold water and dried under vacuum to give 4-benzyloxy-2-nitroaniline (4e) as a red solid in 86% ($9.0 \mathrm{mmol}, 2.2 \mathrm{~g}$) yield, $\mathrm{mp} 142^{\circ} \mathrm{C}$ (reported in the literature: ${ }^{13} 143^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{~d}, J=2.9,1 \mathrm{H}), 7.48-7.26(5 \mathrm{H}), 7.11(\mathrm{dd}, J=2.9,9.1,1 \mathrm{H}), 6.74(\mathrm{~d}, J=9.1$, $1 \mathrm{H}), 5.87$ ($\mathrm{s}(\mathrm{br}),. 2 \mathrm{H}), 5.01(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.1,140.2,136.6,131.8$, 128.9, 128.4, 127.9, 127.4, 120.3, 108.4, 71.1; IR (KBr-disc) v 3477 (s), 3354 (s), 1570 (s), 1414 (s), 1217 (s); MS (ESI) $m / z 145$ (64 \%), 155 (51 \%), 245 (100 \%); HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 245.0926$, found 245.0941; Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 63.9% H, 5.0%; N, 11.5%; found C, 63.8%; H, 4.9% N, 11.7%.

$$
{ }^{1} \mathrm{H} \text { NMR }\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \text { of } \mathbf{4 e}
$$

[^10]${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4} \mathbf{e}$

Synthesis of 4-Benyzloxy-2-nitrobenzenediazonium tetrafluoroborate (3e) from 4e: A solution of 2e $(1.6 \mathrm{mmol}, 400 \mathrm{mg})$ in diethylether/ acetonitrile $(2: 1,10 \mathrm{~mL})$ was cooled to $-15^{\circ} \mathrm{C} . \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(2.5 \mathrm{mmol}, 0.31 \mathrm{~mL})$ was added, and the solution was stirred at this temperature for 15 minutes. A solution of tert-butyl nitrite ($2.0 \mathrm{mmol}, 0.24 \mathrm{~mL}$) in diethylether (5 mL) was added to the reaction mixture over a period of 10 minutes. Stirring at $-15^{\circ} \mathrm{C}$ was continued for one hour. The suspension was filtered, and the precipitate was washed with cold ethanol and cold MTBE to give 4-benzyloxy-2-nitrobenzenediazonium tetrafluoroborate (3e) as a pale solid in $90 \%(1.5 \mathrm{mmol}, 506 \mathrm{mg})$ yield. All analytical data are identical to those reported above for compound $\mathbf{3 e}$ obtained via Procedure C 2 .

C8 4-Methoxy-3-nitrobenzenediazonium tetrafluoroborate (3f)

Procedure C1: Obtained from $2 f(1.00 \mathrm{~g}, 4.8 \mathrm{mmol})$. Yield: $32 \%(0.40 \mathrm{~g}, 1.5 \mathrm{mmol})$.
Procedure C2: Obtained from $2 f(637 \mathrm{mg}, 3.0 \mathrm{mmol})$. Yield: $72 \%(590 \mathrm{mg}, 2.2 \mathrm{mmol})$.
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d ${ }_{6}$) $\delta 9.40(\mathrm{~d}, J=2.6,1 \mathrm{H}), 8.87(\mathrm{dd}, J=2.6,9.6,1 \mathrm{H}), 7.91(\mathrm{~d}, J$ $=9.6,1 \mathrm{H}), 4.22(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{DMSO}_{-} \mathrm{d}_{6}\right) \delta 161.3,139.0,138.3,131.6,117.8$, 104.8, 59.3; IR (KBr disc) v 3132 (m), 2275 (s, N 2), 1599 (s), 1540 (s), 1300 (s); MS (ESI) $m / z 180(100 \%), 152(12 \%) ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{+}[\mathrm{M}]^{+}: 180.0409$, found 180.0416.

IR (KBr-disc)

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6})

C9 4-Benzyloxy-3-nitrobenzenediazonium tetrafluoroborate (3g)

Procedure C1: Obtained from $2 \mathrm{~g}(0.30 \mathrm{~g}, 1.1 \mathrm{mmol})$. Yield: $58 \%(0.21 \mathrm{~g}, 0.6 \mathrm{mmol})$.
Procedure C2: Obtained from $2 \mathrm{~g}(867 \mathrm{mg}, 3.0 \mathrm{mmol})$. Yield: $83 \%(862 \mathrm{mg}, 2.5 \mathrm{mmol})$.
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 9.43(\mathrm{~d}, J=2.5,1 \mathrm{H}), 8.89(\mathrm{dd}, J=2.5,9.5,1 \mathrm{H}), 8.01(\mathrm{~d}, J$ $=9.5,1 \mathrm{H}), 7.55-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.62(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right) \delta 160.2,138.9$, 138.5, 134.1, 131.7, 128.8, 128.7, 127.9, 118.5, 105.1, 73.1; IR (KBr-disc) v 3425 (m), 2271 (s, N_{2}), 1594 (s), 1563 (s), 1299 (s); MS (ESI) m/z 256 (100 \%), 239 (11 \%), 182 (16 \%), 91 (71 \%); HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{+}[\mathrm{M}]^{+}: 256.0722$, found 256.0742.

IR (KBr-disc)

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6})

C10 3-Nitro-4-propoxybenzenediazonium tetrafluoroborate (3h)

Procedure C1: Obtained from $2 \mathrm{~h}(0.50 \mathrm{~g}, 2.1 \mathrm{mmol})$. Yield: $68 \%(0.42 \mathrm{~g}, 1.8 \mathrm{mmol})$.
Procedure C2: Obtained from 2h ($722 \mathrm{mg}, 3.0 \mathrm{mmol}$). Yield: $66 \%(590 \mathrm{mg}, 2.0 \mathrm{mmol})$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}\right.$, DMSO-d $\left.{ }_{6}\right) \delta 9.39(\mathrm{~d}, J=2.6,1 \mathrm{H}), 8.85(\mathrm{dd}, J=2.6,9.5,1 \mathrm{H}), 7.90(\mathrm{~d}, J$ $=9.6,1 \mathrm{H}), 4.44(\mathrm{t}, J=6.3,2 \mathrm{H}), 1.82(\mathrm{tq}, J=6.3,7.4,2 \mathrm{H}), 1.00(\mathrm{t}, J=7.4,3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}(75$ MHz, DMSO- d_{6}) δ 160.7, 139.0, 138.4, 131.7, 118.2, 104.5, 73.6, 21.4, 10.0; IR (KBr-disc) v 3125 (m), 2974 (m), 2281 ($\mathrm{s}, \mathrm{N}_{2}$), 1596 (s , 1355 (s); MS (ESI) m/z 208 (100 \%), 180 (28%), 138 (51 \%), 91 (16%); HRMS (ESI) m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{3}^{+}[\mathrm{M}]^{+}: 208.0722$, found 208.0718.

IR (KBr-disc)

${ }^{1} \mathrm{H}$ NMR（ 300 MHz, DMSO－ d_{6} ）

ジロ
景热封

${ }^{13} \mathrm{C}$ NMR（ 75 MHz ，DMSO－ d_{6} ）

C11 3-Bromo-4-methoxybenzenediazonium tetrafluoroborate (3i)

Procedure C1: Obtained from $2 \mathbf{i}(0.50 \mathrm{~g}, 2.1 \mathrm{mmol})$. Yield: $25 \%(0.15 \mathrm{~g}, 0.5 \mathrm{mmol})$.
Procedure C2: Obtained from 2i ($739 \mathrm{mg}, 3.0 \mathrm{mmol}$). Yield: 39% ($590 \mathrm{mg}, 1.2 \mathrm{mmol}$).
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d ${ }_{6}$) $\delta 8.96(\mathrm{~d}, J=2.5,1 \mathrm{H}), 8.72(\mathrm{dd}, J=2.5,9.3,1 \mathrm{H}), 7.65(\mathrm{~d}, J$ $=9.3,1 \mathrm{H}), 4.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta 165.3,136.6,136.1,114.7$, 111.7, 104.8, 58.7; IR (KBr-disc) v 3439 (m), 2241 (s, N 2), 1562 (s), 1485 (s), 1297 (s); MS (ESI) $m / z 185(100 \%), 170(6 \%), 155(17 \%), 91$ (2 \%); HRMS (ESI) m/z calcd for $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{BrN}_{2} \mathrm{O}^{+}$ $[M]^{+}: 212.9663$, found: 212.9678 .

IR (KBr-disc)

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6})

C12 4-Benzyloxy-3-bromobenzenediazonium tetrafluoroborat (3j)

Procedure C1: Obtained from 2 j ($0.40 \mathrm{~g}, 1.3 \mathrm{mmol}$). Yield: 52% ($0.25 \mathrm{~g}, 0.7 \mathrm{mmol}$).
Procedure C2: Obtained from 2j ($969 \mathrm{mg}, 3.0 \mathrm{mmol}$). Yield: $66 \%(750 \mathrm{mg}, 2.0 \mathrm{mmol})$.
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 8.99(\mathrm{~d}, J=2.5,1 \mathrm{H}), 8.72(\mathrm{dd}, J=2.5,9.4,1 \mathrm{H}), 7.75(\mathrm{~d}, J$ $=9.4,1 \mathrm{H}), 7.57-7.34(5 \mathrm{H}), 5.53(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}$) $\delta 164.3,136.79$, 135.9, 134.6, 128.7, 128.7, 127.9, 115.58, 112.2, 105.1, 72.4; IR (KBr-disc) v 3454 (m), 2972 (m), 2243 (s, N_{2}), 1563 (s), 1296 (s$) ;$ MS (ESI) $m / z 289$ (19 \%), 261 (24 \%), 185 (6 \%), 91 (100 \%); HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{BrN}_{2} \mathrm{O}^{+}[\mathrm{M}]^{+}: 288.9976$, found 288.9991.

IR (KBr-disc)

${ }^{1}$ H NMR (300 MHz, DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6})

D Experimental procedures, analytical data and copies of spectra for the synthesis of de-O-methyl centrolobine and all intermediates

D1 1-(3-(Allyloxy)hex-5-enyl)-4-(benzyloxy)benzene (6)

To a solution of homoallylic alcohol $5(1.91 \mathrm{~g}, 6.8 \mathrm{mmol})$ in dry and degassed THF (30 mL) was added NaH (60% dispersion in mineral oil, 300 mg , 7.5 mmol). The mixture was heated to reflux for 30 min ., cooled to ambient temperature, and allyl bromide ($0.71 \mathrm{~mL}, 8.2 \mathrm{mmol}$) was added dropwise. The mixture was again heated to reflux for one hour, then cooled to ambient temperature and quenched by addition of water $(25 \mathrm{~mL})$. It was extracted with diethyl ether (100 mL), and the organic layer was separated, dried with MgSO_{4}, filtered and evaporated. The residue was purified by flash chromatography on silica to give the title compound $\mathbf{6}$ as a colourless liquid in $74 \%(1.63 \mathrm{~g}, 5.0 \mathrm{mmol})$ yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.45-7.31(5 \mathrm{H}), 7.11(\mathrm{~d}, J=8.5,2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.6,2 \mathrm{H}), 5.95(\mathrm{dddd}, J=5.6$, $5.6,10.4,17.21 \mathrm{H}), 5.82(\mathrm{dddd}, J=7.1,7.2,10.2,17.21 \mathrm{H}), 5.29(\mathrm{ddm}, J=1.6,17.2,1 \mathrm{H})$, 5.17 (ddm, $J=1.3,10.3,1 \mathrm{H}), 5.11-5.06(2 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 4.07(\mathrm{dd}, J=5.6,12.6,1 \mathrm{H})$, 3.96 (dd, $J=5.6,12.6,1 \mathrm{H}), 3.39(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{ddd}, J=5.9,9.3,13.6,1 \mathrm{H}), 2.59(\mathrm{ddd}, J=$ $5.9,9.3,13.6,1 \mathrm{H}), 2.40-2.27(2 \mathrm{H}), 1.86-1.73(2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{APT}\right) \delta$ $156.9,136.9,134.9,134.4,134.3,129.0,128.2,127.5,127.1,116.7,116.3,114.4,77.4,69.7$, 69.7, 38.0, 35.5, 30.4; IR (NaCl-film): v2930 (w), 2860 (w), 1610 (w), 1510 (s), 1454 (w), $1240(\mathrm{~s}), 1078(\mathrm{~m}) ;$ LRMS (FAB) $m / z 322$ (13 \%) [M + H $]^{+}, 257$ (16 \%); HRMS (FAB) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{2}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 322.1933$, found 322.1964; Anal. calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{2}$: C, 81.9 \%; H, 8.1 \%; found C, 81.4% H, 9.0 \%.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{APT}\right)$

| 160 | 155 | 150 | 145 | 140 | 135 | 130 | 125 | 120 | 115 | 110 | 105 | 100 | 95 | 90 | 85 | 80 | 75 | 70 | 65 | 60 | 55 | 50 | 45 | 40 | 35 | 30 |
| :--- |

D2 2-(4-(Benzyloxy)phenethyl)-3,4-dihydro-2H-pyran (7)

To a solution of $6(0.99 \mathrm{~g}, 3.1 \mathrm{mmol})$ in dry and degassed toluene (25 mL) was added $\left.\left[\mathrm{Cl}_{2}\left(\mathrm{PCy}_{3}\right)_{2} \mathrm{RuCHPh}\right)\right](125 \mathrm{mg}, 5 \mathrm{~mol} \%)$ under an atmosphere of dry argon. The solution is heated to $90^{\circ} \mathrm{C}$ for two hours, resulting in complete conversion of the starting material. 2Propanol (3 mL) and solid $\mathrm{NaOH}(32 \mathrm{mg}, 0.8 \mathrm{mmol})$ were added, and heating to reflux was continued for two hours. TLC revealed complete consumption of the intermediate metathesis product and formation of the cyclic enol ether. All volatiles were evaporated, and the residue was purified by flash chromatography on silica (eluent cyclohexane/MTBE $10: 1$) to give the title compound 7 in $95 \%(0.87 \mathrm{~g}, 2.9 \mathrm{mmol})$ yield. This material is sufficiently pure for further transformations. If required, further purification is possible by recrystalization from cyclohexane, mp $38^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45-7.37(5 \mathrm{H}), 7.13(\mathrm{~d}, J=8.6,2 \mathrm{H})$, $6.91(\mathrm{~d}, J=8.6,2 \mathrm{H}), 6.40(\mathrm{~d}, J=6.1,1 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 4.67(\mathrm{ddd}, J=2.4,4.8,6.1,1 \mathrm{H}), 3.79$ (m, 1H), $2.75(\mathrm{dddd}, J=5.5,5.5,9.8,9.8,1 \mathrm{H}), 2.66(\mathrm{dddd}, J=6.9,9.5,10.4,13.91 \mathrm{H}), 2.06$ $(\mathrm{m}, 1 \mathrm{H}), 1.99-1.89(2 \mathrm{H}), 1.85(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 157.0,143.7,137.2,134.4,129.4,128.5,127.9,127.4,114.7,100.4,74.1,70.1$, 37.2, 30.6, 27.9, 19.8; IR (KBr-disc) v 3052 (m), 3029 (m), 2928 (m), 2847 (w), 1649 (s), 1610 (m), 1581 (w), 1512 (s), 1453(s), 1383 (m), 1297 (w), 1176 (w), 1053 (m), 1023 (m); LRMS (FAB) $m / z 294$ ([M] $]^{+}, 14 \%$), 197 (12%), 91 (100%); HRMS (FAB) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{2}[\mathrm{M}]^{+}$294.1620, found 294.1631; Anal. calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{2}$: C, 81.6%; $\mathrm{H}, 7.5 \%$; found C, 81.0%; H, 7.7 \%.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
-

D3 (2SR,6RS)-2-(4-(Benzyloxy)phenethyl)-6-(4-(benzyloxy)phenyl)-3,6-dihydro-2H-pyran (rac-8)

To a solution of enol ether $7(422 \mathrm{mg}, 1.4 \mathrm{mmol})$ and diazonium salt $\mathbf{3 b}(512 \mathrm{mg}, 1.7 \mathrm{mmol})$ in acetonitrile (10 mL) was added $\mathrm{NaOAc}(469 \mathrm{mg}, 5.7 \mathrm{mmol})$, followed by $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}$ ($30 \mathrm{mg}, 2 \mathrm{~mol} \%$). Immediately after the Pd-catalyst was added, an evolution of gas was observed, which ceased after approximately 3 hours. The mixture was concentrated, and all inorganics were removed by filtration of the mixture over a short pad of silica. The silica pad was thoroughly washed with MTBE, and all volatiles were removed in vacuo. The residue was purified by recrystallization from cyclohexane-diethyl ether, to give the title compound rac-8 in $56 \%(0.37 \mathrm{~g}, 0.8 \mathrm{mmol})$ yield as colourless crystals, $\mathrm{mp} 99^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{~d}, J=7.3,2 \mathrm{H}), 7.41-7.30(10 \mathrm{H}), 6.98(\mathrm{~d}, J=8.6,2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.6,1 \mathrm{H})$, $6.76(\mathrm{~d}, J=8.6,1 \mathrm{H}), 6.03(\mathrm{ddm}, J=5.0,10.2,1 \mathrm{H}), 5.96(\mathrm{dm}, J=10.2,1 \mathrm{H}), 5.25(\mathrm{~s}(\mathrm{br}), 1 \mathrm{H})$, $5.09(\mathrm{~s}, 2 \mathrm{H}), 4.99(\mathrm{~s}, 2 \mathrm{H}), 3.49(\mathrm{~m}, 1 \mathrm{H}), 2.64(\mathrm{ddd}, J=4.7,8.6,13.7,1 \mathrm{H}), 2.44(\mathrm{ddd}, J=8.2$, $8.2,13.8,1 \mathrm{H}), 2.07$ (ddm, $J=9.6,17.5,1 \mathrm{H}), 1.97$ (ddd, $J=4.0,4.0,17.6,1 \mathrm{H}), 1.82$ (dddd, J $=5.0,8.7,8.7,13.8,1 \mathrm{H}), 1.62(\mathrm{dddd}, J=3.6,8.7,8.7,13.3,1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 158.5,156.8,137.2,137.0,134.5,133.6,129.8,129.4,128.6,128.5,128.0,127.8$, $127.6,127.5,127.4,125.9,114.5,114.5,73.8,70.1,70.0,65.8,37.6,31.2,30.6$; IR (KBrdisc) $v 3433$ (w), 3033 (w), 2910 (w), 2887 (m), 2856 (w), 1610 (m), 1582 (w), 1510 (s), 1454 (m), 1383 (m), 1297 (w), 1238 (s), 1174 (s), 1112 (w), 1081 (m), 1066 (m), 1045 (m); LRMS (FAB) $m / z 476$ ([M +H] $\left.{ }^{+}, 13 \%\right), 197$ (11 \%), 136 (65 \%), 91 (55 \%); HRMS (FAB) m / z calcd. for $\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{O}_{3}[\mathrm{M}]^{+}: 476.2351$, found 476.2381; Anal. calcd. for $\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{O}_{3}: \mathrm{C}, 83.2$; H, 6.8; found C, 83.0; H, 6.6.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Rac-8 ($50 \mathrm{mg}, 0.1 \mathrm{mmol}$) was dissolved in dry and degassed toluene (10 mL). Pd on charcoal ($10 \mathrm{wt}-\%$ based on dry mass, 10 mg) was added, and the mixture was three times degassed and saturated with hydrogen, and then stirred under an atmosphere of hydrogen for 12 hours. The solvent was evaporated, and the residue was chromatographed on silica using cyclohexane/MTBE as eluent to give rac-centrolobol (rac-III) in 74% ($22 \mathrm{mg}, 0.07 \mathrm{mmol}$) yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.00-6.96(4 \mathrm{H}), 6.69-6.66(4 \mathrm{H}), 3.50(\mathrm{~m}, 1 \mathrm{H}) 2.65$ (dddd, $J=5.5,5.6,9.5,14.2,1 \mathrm{H}), 2.58-2.48(3 \mathrm{H}), 1.72-1.53(4 \mathrm{H}), 1.50-1.29(4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 156.3,156.3,134.8,134.6,130.3,130.3,116.1,116.0,71.7$, 40.7, 38.3, 36.1, 33.1, 32.2, 26.4.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

T		I		1	1	1	1			1	1	1	1	1	1	
170	160	150	140	130	120	110	100		80	70	60	50	40	30	20	10

D5 rac-epi-De-O-methyl centrolobine (rac-9)

To a solution of rac-8 $(150 \mathrm{mg}, 0.32 \mathrm{mmol})$ in methanol $(20 \mathrm{~mL})$ was added $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(20$ wt. $-\%$ Pd based on dry mass, 9 mg). The suspension was saturated with hydrogen and kept under an atmosphere of hydrogen (1 bar) for 12 hours. The solvent was evaporated, and the residue was purified by flash chromatography on silica (hexanes-ethyl acetate $1: 1$) to give the title compound in 86% ($81 \mathrm{mg}, 0.28 \mathrm{mmol}$) yield as a colourless solid, $\mathrm{mp} 186^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \boldsymbol{\delta} 7.20(\mathrm{~d}, J=8.5,2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.5,2 \mathrm{H}), 6.76(\mathrm{~d}, J=8.6$, $2 \mathrm{H}), 6.68(\mathrm{~d}, J=8.5,2 \mathrm{H}), 4.73(\mathrm{dd}, J=4.1,6.6,1 \mathrm{H}), 3.73(\mathrm{ddd}, J=4.9,8.9,13.8,1 \mathrm{H}), 2.65$ (ddd, $J=5.5,9.9,14.2,1 \mathrm{H}), 2.50(\mathrm{ddd}, J=6.8,9.5,13.8,1 \mathrm{H}), 2.06(\mathrm{dddd}, J=5.4,9.3,9.7$, $14.4,1 \mathrm{H}$), $1.97-1.57(6 \mathrm{H}), 1.45(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}$) $\delta 157.8,156.4$, $134.5,134.3,130.4,129.2,116.2,116.2,73.6,73.0,36.2,32.4,31.6,31.0,20.2$; IR (KBrdisc) v3325(m), $2933(\mathrm{~m}), 2856(\mathrm{~m}), 1613(\mathrm{~m}), 1512(\mathrm{~s}), 1452(\mathrm{~m}), 1240(\mathrm{~s}), 1071(\mathrm{~m}), 1024$ (m); LRMS (ESI) $m / z 227$ (100\%), 299 (42\%); HRMS (ESI) m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{3}{ }^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 299.1647$, found 299.1658; Anal. calcd. for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3}: \mathrm{C}, 76.5 \% ; \mathrm{H}, 7.4 \%$; found C, 75.9 \%, H, 7.4 \%.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

D6 rac-de-O-Methylcentrolobine (rac-II)

To a solution of rac-9 $40 \mathrm{mg}, 0.13 \mathrm{mmol}$) in methanol (1.3 mL) was added HCl (aq., $4 \mathrm{M}, 67$ $\mu \mathrm{L}, 0.26 \mathrm{mmol})$. The solution was stirred for 12 hours at ambient temperature and then diluted with MTBE (10 mL). The organic layer was separated, washed with water, and the aqueous layer was extracted with MTBE. The combined organic extracts were dried with MgSO_{4}, filtered, and all volatiles were removed in vacuo. The residue was purified by column chromatography on silica (hexanes - MTBE $1: 1$) to give rac-de-O-methyl centrolobine (racII) in $95 \%(38 \mathrm{mg}, 0.12 \mathrm{mmol})$ yield, $\mathrm{mp} 162^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.19(\mathrm{~d}, J=$ $8.4,2 \mathrm{H}), 6.99$ (d, $J=8.5,2 \mathrm{H}), 6.76$ (d, $J=8.6,2 \mathrm{H}), 6.68$ (d, $J=8.5,2 \mathrm{H}), 4.23$ (dd, $J=1.8$, $10.9,1 \mathrm{H}), 3.43(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.51(2 \mathrm{H}), 1.94-1.46(8 \mathrm{H}), 1.27(1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 157.8,156.4,135.8,134.6,130.5,128.7,116.2,116.0,81.2,79.0,39.8,34.4,32.6$, 31.9, 25.2; IR (KBr-disc) v 3324 (m), 2935 (m), 2858 (m), 2360 (w), 1614 (m), 1514 (s), 1445 (m), 1228 (s), 1072 (m), 1025 (m); LRMS (ESI) m/z 187 (50\%), 281 (40\%), 299 (100\%); HRMS (ESI) m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 299.1647$, found 299.1629; Anal. calcd. for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3}$: C, $76.5 \% ; \mathrm{H}, 7.4 \%$, gefunden $\mathrm{C}, 75.9 \%$; $\mathrm{H} 7.4 \%$.

[^0]: ${ }^{1}$ T. Cablewski, P. A. Gurr, K. D. Raner and C. R. Strauss, J. Org. Chem., 1994, 59, 5814-5817.

[^1]: ${ }^{2}$ M. Paventi and A. S. Hay, J. Org. Chem., 1991, 56, 5857-5882.

[^2]: ${ }^{3}$ M. Tanno and S. Sueyoshi, Chem. Pharm. Bull., 1987, 35, 1360-1371.
 ${ }^{4}$ P. E. Fanta, D. S. Tarbell, Org. Synth., 1955, Coll. Vol. III, 661.

[^3]: ${ }^{5}$ W. Wiegrebe, L. Faber and H. Budzikiewicz, Liebigs Ann. Chem., 1970, 733, 125-140.

[^4]: ${ }^{6}$ M. M. V. Ramana, S. S. Malik and J. A. Parihar, Tetrahedron Lett., 2004, 45, 8681-8683.

[^5]: ${ }^{7}$ M. Rapoport, C. K. Hancock and E. A. Meyers, J. Am. Chem. Soc., 1961, 83, 3489-3494.

[^6]: ${ }^{8}$ O. Hinsberg, Liebigs Ann., 1899, 305, 276-289

[^7]: ${ }^{9}$ O. Hodurek, Ber. Dt. Chem. Ges.., 1897, 30, 477-480.

[^8]: ${ }^{10}$ P. M. O'Neill, D. J. Willock, S. R. Hawley, P. G. Bray, R. C. Storr, S. A. Ward and B. K. Park, J. Med. Chem., 1997, 40, 437-448.
 ${ }^{11}$ H. Mitchell and Y. Leblanc, J. Org. Chem., 2002, 59, 682-687.

[^9]: ${ }^{12}$ B. Riegel, G. R. Lappin, B. H. Adelson, R. I. Jackson, C. J. Albisetti, R. M. Dodson and R. H. Baker, J. Am. Chem. Soc., 1946, 68, 1264-1266.

[^10]: ${ }^{13}$ Wiegrebe, W.; Faber, L.; Budzikiewicz, H. Liebigs Ann. Chem. 1970, 733, 125-140.

