Novel polycarboxylated EDTA-type cyclodextrins as ligands for lanthanide binding, study of their luminescence, relaxivity properties of Gd(III) complexes, and PM3 theoretical calculations

Davide Maffeo,^a Maria Lampropoulou,^a Michael Fardis,^b Yannis G. Lazarou,^a Irene M. Mavridis,^a Despoina A.I. Mavridou,^a Elena Urso,^d Harris Pratsinis,^cDimitris Kletsas,^c Konstantina Yannakopoulou^a*

^aInstitute of Physical Chemistry, ^bInstitute of Materials, ^cInstitute of Biology, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15310, Athens, Greece, ^d Istituto di Ricerche Chimiche e

Biochimiche "G. Ronzoni" Città Studi, via Giuseppe Colombo 81, 20133 Milano - Italy

Supplementary Data

Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

Figure S1a. ¹H NMR spectra of the *t*-Bu esters **5** of **AEDTA**, **BEDTA** and **GEDTA** (500 MHz, CDCl₃, 298K)

Figure S1b. ¹H NMR spectra of the products 6, AEDTA, BEDTA and GEDTA (500 MHz, D₂O, 298K)

Figure S2. MALDI-TOF spectra (reflectron mode, positive polarity) of **5a** (top) and **5c** (bottom). Matrix solution: 2,5-dihydroxybenzoic acid in EtOH 80%.

The MALDI-TOF spectrum shows the signal at m/z 1853.7 attributable to the sodiated molecular ion of the DMaEDTA .and the other signals probably due to the laser desorbtion-ionization process.

Figure S3. MALDI-TOF spectra (reflectron mode) of **AEDTA** in positive polarity (top), and negative polarity (bottom). Matrix solution: 2,5-dihydroxybenzoic acid in EtOH 80%.

A649 (BEDTA pure)

A649 (BEDTA pure)

Figure S4. MALDI-TOF spectra (reflectron mode) of **BEDTA** in positive polarity (top), and negative polarity (bottom). Matrix solution: 2,5-dihydroxybenzoic acid in EtOH

Figure S5. MALDI-TOF spectra (reflectron mode) of **GEDTA** in positive polarity. Matrix solution: 2,5-dihydroxybenzoic acid in EtOH 80%.

AEDTA-Eu(III) complex

Figure S6. ESI-TOF spectra of EDTA-CDs with lanthanide ions.

Table S1. Binding energies (in kJ mol⁻¹) between lanthanide cations and anions of model ligands, calculated by PM3 and DFT (B3P86/3-21G*_Ln11eECP).

		PM3	DFT
La	EDTA	4564.0	6062.0
	NLIG	4379.4	5848.8
Eu	EDTA	4749.2	6303.6
	NLIG	4570.0	6085.4
Gd	EDTA	5303.0	6339.9
	NLIG	5085.3	6120.7
Tb	EDTA	4914.5	6401.4
	NLIG	4745.4	6140.2
Lu	EDTA	5061.2	6724.2
	NLIG	4895.1	6464.8

Table S2. Total binding energies (in kJ mol⁻¹) for the successive complexation of n = 1 - 4 lanthanide cations by fully deprotonated anions of substituted cyclodextrins, calculated at the PM3 level of theory. Numbers in parentheses indicate the stepwise binding energies of single lanthanide cations.

	n	AEDTA	BEDTA	GEDTA
	1	7130.5 (7130.5)	7501.8 (7501.8)	7703.1 (7703.1)
Eu	2	12930.6 (5800.1)	13993.7 (6491.9)	14520.1 (6817.0)
	3	17897.9 (4967.3)	19513.6 (5519.9)	20685.6 (6165.5)
	4		23312.4 (3798.8)	25795.4 (5109.8)
	1	7740 1 (7740 1)	8000 0 (8000 0)	0222 1 (0222 1)
~ •	1	//49.1 (//49.1)	8090.0 (8090.0)	8555.1 (8555.1)
Gd	2	14131.9 (6382.8)	15246.8 (/156./)	15/85.8 (7452.7)
	3	19726.5 (5594.5)	21368.2 (6121.4)	22574.3 (6788.6)
	4		25411.7 (4043.5)	28316.0 (5741.7)
	1	7300.6 (7300.6)	7674.1 (7674.1)	7874.9 (7874.9)
Tb	2	13272.7 (5972.1)	14338.2 (6664.1)	14863.5 (6988.6)
	3	18412.0 (5139.3)	20026.2 (5688.0)	21204.8 (6341.4)
	4		24058.8 (4032.6)	26481.1 (5276.2)

Table S3. Average values for the distances (in Å) between lanthanide atoms and coordinated heteroatoms (O, N,) for substituted cyclodextrins, calculated by PM3. The distances with two different types of oxygen atoms coordinated (in carboxyl group and glucopyranose ring, respectively) are shown separately.

		Ln-O (Carboxyl)	Ln-O (Glucopyranose)	Ln-N
	AEDTA	2.433	2.540	2.603
Eu	BEDTA	2.432	2.526	2.607
	GEDTA	2.433	2.533	2.613
	AEDTA	2.372	2.496	2.578
Gd	BEDTA	2.370	2.493	2.574
	GEDTA	2.372	2.490	2.582
	AEDTA	2.391	2.500	2.598
Tb	BEDTA	2.390	2.492	2.603
	GEDTA	2.391	2.493	2.600