Supporting Information

Synthesis of a glycosidic spacer containing prodrug of a duocarmycin analogue and determination of its biological activity

Heiko J. Schuster,^a Birgit Krewer,^a J. Marian von Hof,^a Kianga Schmuck,^a Ingrid Schuberth,^a Frauke Alves,^b Lutz F. Tietze^{*a}

^a Institut for Organic and Biomolecular Chemistry, Georg-August-University Göttingen, Tammannstrasse 2,37077 Göttingen (Germany); FAX: +49(0)551-399476; ^b Centre of Internal Medicine, Department of Haematology and Oncology of the Georg-August-University of Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany.

ltietze@gwdg.de

Contents:

- 1. Synthesis of compound **14**.
- 2. ¹H and ¹³C NMR spectra of all compounds.
- 3. *in vitro* cytotoxicity data and graph obtained from HTCFA on A549 cells for prodrug **11**.

Synthesis of compound 14.

3-Nitro-4-(2,3,4,6-tetra-O-acetyl-*β***-D-galactopyranosyl)-benzaldehyde (14)**. The acetylated galactosylbromide (1.03 g, 2.50 mmol, 1.0 equiv.), 4-hydroxy-3-nitro-benzaldehyde **13** (752 mg, 4.50 mmol, 1.8 equiv.) and BnEt₃NCI (474 mg, 2.08 mmol, 0.83 equiv.) were suspended in CHCl₃ (11.0 mL), aqueous NaOH solution (1.25 M, 3.64 mL, 4.55 mmol, 1.8 eq.) was added and the reaction mixture heated to 70 °C. After 3.5 h at refluxing temperature the mixture was diluted with H₂O/ CHCl₃ (2:1, 15 mL), phases were separated and the organic layer was successively washed with cold NaOH solution (1.25 M, $2 \times 5 \text{ mL}$) and cold brine. Filtration over cotton wool and removal of the solvents gave a yellow solid which was dissolved in absolute EtOH (~40 mL) and allowed to crystallise overnight at 4 °C. Two fractions yielded the benzaldehyde 14 as slightly yellow crystals (987 mg, 1.98 mmol, 80%). $R_f = 0.46$ (toluene/MeOH = 6:1); ¹H-NMR (300.1 MHz, CDCl₃): $\delta = 2.03$, 2.09, 2.13, 2.20 (4 × s, 12 H, 4 × COCH₃), 4.20 (m_c, 2 H, H-5, H-6_a), 4.28 (dd, *J* = 12.5, 8.5 Hz, 1 H, H-6_b), 5.15 (dd, *J* = 10.4, 3.3 Hz, 1 H, H-3), 5.24 (d, *J* = 7.9 Hz, 1 H, H-1), 5.51 (dd, *J* = 3.3, 0.7 Hz, 1 H, H-4), 5.60 (dd, *J* = 10.5, 7.9 Hz, 1 H, H-2), 7.51(d, *J* = 8.7 Hz, 1 H, H-11), 8.32 (d, *J* = 2.2 Hz, 1 H, H-9), 9.99 (s, 1 H, ArCHO); ¹³C-NMR (75.8 MHz, CDCl₃): $\delta = 2.05$, 20.6 (4 × CO<u>C</u>H₃), 61.3 (C-6), 66.5 (C-4), 67.5 (C-2), 70.3 (C-3), 71.7 (C-5), 99.9 (C-1), 118.6 (C-12), 126.8 (C-9), 131.3 (C-11), 133.2 (C-10), 141.1 (C-7), 153.4 (C-8), 169.1, 170.0, 170.2 (4 × COCH₃), 188.6 (ArCHO); C₂₁H₂₃NO₁₃ (497.41).

Fig. S2: ¹H NMR of **3-Nitro-4-(2,3,4,6-tetra-***O***-acetyl-***β***-D-galactopyranosyl)-benzaldehyde (14)**.

Fig. S3: ¹³C NMR of **3-Nitro-4-(2,3,4,6-tetra-***O***-acetyl-***β***-D-galactopyranosyl)-benzaldehyde (14)**.

Fig. S4: ¹H NMR of **2,3,4,6-Tetra**-*O*-acetyl-[2-nitro-4-(hydroxymethyl)phenyl]-β-D-galactopyranoside (15).

Fig. S5: ¹³C NMR of 2,3,4,6-Tetra-*O*-acetyl-[2-nitro-4-(hydroxymethyl)phenyl]-β-D-galactopyranoside (15).

Fig. S6: ¹H NMR of **2,3,4,6-Tetra-***O*-acetyl-[2-nitro-4-(4-nitrophenoxycarbonyloxymethyl)phenyl]-β-D-galactopyranoside (16).

Fig. S7: ¹³C NMR of **2,3,4,6-Tetra**-*O*-acetyl-[2-nitro-4-(4-nitrophenoxycarbonyloxymethyl)phenyl]-β-D-galactopyranoside (16).

Fig. S8: ¹H NMR of *N*,*N*-Methyl-[4-(2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyl]-3-nitrobenzyl-oxycarbonyl]-2-aminoethanol (19).

Fig. S9: ¹³C NMR of *N*,*N*-Methyl-[4-(2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyl]-3-nitrobenzyl-oxycarbonyl]-2-aminoethanol (19).

Fig. S10: ¹H NMR of *N*,*N*-Methyl-[4-(2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyl]-3-nitrobenzyl-oxycarbonyl]-2-aminoethanol-carbonyl-4nitrophenol (24).

Fig. S11: ¹³C NMR of *N*,*N*-Methyl-[4-(2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyl]-3-nitrobenzyl-oxycarbonyl]-2-aminoethanol-carbonyl-4nitrophenol (24).

Fig. S12: ¹H NMR of *N*,*N*-Methyl-[4-(2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyl]-3-nitrobenzyl-oxycarbonyl]-2-aminoethanol-carbonylchloride (22).

Fig. S13: ¹³C NMR of *N*,*N*-Methyl-[4-(2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyl]-3-nitrobenzyl-oxycarbonyl]-2-aminoethanol-carbonylchloride (22).

carbonate ((1*S*,10*R*)-26).

Fig. S15: ¹³C NMR of (+)-*N*,*N*-Methyl-[4-(2,3,4,6-tetra-*O*-acetyl- β -D-galactopyranosyl]-3-nitrobenzyl-oxycarbonyl]-O-{{methyl-{(1*S*,10*R*)-1-(10-chloro-ethyl)-3-[(5-(2-(*N*,*N*-dimethylamino)-ethoxy)-indol-2-yl)carbonyl]-1,2-dihydro-3H-benz[*e*]indol-5-yl]}-2-aminoethanol-carbonate ((1*S*,10*R*)-26).

Fig. S16: ¹H NMR of N,N'-Dimethyl-[4-(2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl]-3-nitrobenzyl-oxycarbonyl]-N'-(*tert*-butyloxycarbonyl)-ethylendiamine (20a).

Fig. S17: ¹³C NMR of *N*,*N*'-Dimethyl-[4-(2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyl]-3-nitrobenzyl-oxycarbonyl]-*N*'-(*tert*-butyloxycarbonyl)-ethylendiamine (20a).

Fig. S19: ¹³C NMR of *N*,*N*'-Dimethyl-[4-(2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyl]-3-nitrobenzyl-oxycarbonyl]-ethylendiamine-hydrochloride (20b).

Fig. S20: ¹H NMR of *N*,*N*-Methyl-[4-(2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyl]-3-nitrobenzyl-oxycarbonyl]-ethylendiamine-carbonylchloride (21)

Fig. S21: ¹³C NMR of *N*,*N*-Methyl-[4-(2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyl]-3-nitrobenzyl-oxycarbonyl]-ethylendiamine-carbonylchloride (21)

Fig. S22: ¹H NMR of *N*,*N*-Methyl-[4-(2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyl]-3-nitrobenzyl-oxycarbonyl]-ethylendiamine-carbonyl-4nitrophenol (23).

Fig. S23: ¹³C NMR of *N*,*N*-Methyl-[4-(2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyl]-3-nitrobenzyl-oxycarbonyl]-ethylendiamine-carbonyl-4nitrophenol (23).

1-(10-chloro-ethyl)-3-[(5-(2-(*N*,*N*-dimethylamino)-ethoxy)-indol-2-yl)carbonyl]-1,2-dihydro-3H-benz[*e*]indol-5-yl]}-ethylendiamine carbamate ((1*S*,10*R*)-25).

Fig. S25: ¹³C NMR of (+)-N,N'-Dimethyl-[4-(2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl]-3-nitrobenzyl-oxycarbonyl]-O-{{methyl-{(1S,10R)-1-(10-chloro-ethyl)-3-[(5-(2-(N,N-dimethylamino)-ethoxy)-indol-2-yl)carbonyl]-1,2-dihydro-3H-benz[e]indol-5-yl]}-ethylendiamine carbamate ((1S,10R)-25).

[(5-(2-(*N*,*N*-dimethylamino)-ethoxy)-indol-2-yl)carbonyl]-1,2-dihydro-3H-benz[*e*]indol-5-yl]}}-ethylendiamine carbamate ((1*S*,10*R*)-11).

Fig. S27: ¹³C NMR of (+)-*N*,*N*'-Dimethyl-[4-(β-D-galactopyranosyl]-3-nitrobenzyl-oxycarbonyl]-*O*-{{methyl-{(1*S*,10*R*)-1-(10-chloro-ethyl)-3-[(5-(2-(*N*,*N*-dimethylamino)-ethoxy)-indol-2-yl)carbonyl]-1,2-dihydro-3H-benz[*e*]indol-5-yl]}-ethylendiamine carbamate ((1*S*,10*R*)-11).

without β-D-Galactosidase		with β -D-Galactosidase (4 U/mL)	
Concentration	Clone formation rate [%]	Concentration	Clone formation rate [%]
[nM]	pH = 7.4	[nM]	pH = 7.4
0 1.05 10.53 26.25 42.13 52.66 79.00	100 98.46 86.15 58.32 18.06 9.91 0.4	0 0.11 0.53 0.79 1.05 1.58 2.63 5.27	100 98.56 85.7 86.76 66.56 39.46 7.3 0.607
105.33 158.00	0.29 0.028	7.9 10.53	0.215 0.014

HTCFA *in vitro* data results for the β -D-Galactose-diaminespacer (1*S*,10*R*)-11 on A549 cells:

The effective dosis (IC₅₀) of the prodrug (1*S*,10*R*)-**11** is 29 nM without β -D-Galactosidase and 1.3 nM in the presence of β -D-Galactosidase.

→ Spacer-prodrug without enzymeIC₅₀ 29 nmol/l

IC_∞ 1.3 nmol/l

QIC 50 = 20

∽∽ Spacer-prodrug with 4 U/ml

&D-Galactosidase

Graph of HTCFA *in vitro* results of the β -D-Galactose-diaminespacer (1*S*,10*R*)-11: