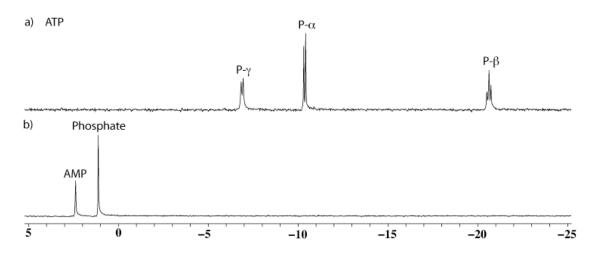
Electronic Supplementary Information for


Implementation of Anion-Receptor Macrocycles in Supramolecular Tandem Assays for Enzymes Involving Nucleotides as Substrates, Products, and Cofactors

Mara Florea and Werner M. Nau*

School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, D–28759 Bremen, Germany. E-mail: <u>w.nau@jacobs-university.de</u>

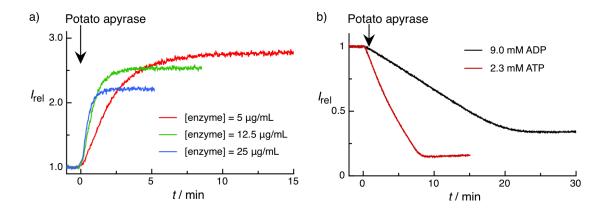
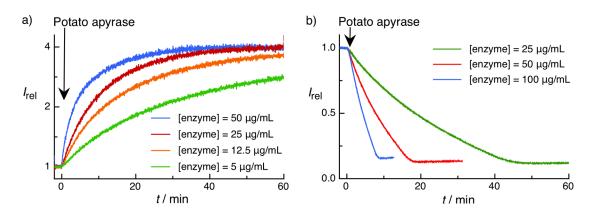

1. Additional Experimental Results

Fig. S1 shows the results from the independent monitoring of the enzymatic activity by using ³¹P NMR. The enzymatic conversion, which transforms ATP into AMP and inorganic orthophosphate resulted in the disappearance of the three ATP ³¹P NMR signals and the concomitant appearance of two new signals corresponding to the two products.


Fig. S1 ³¹P NMR spectra of 5 mM ATP in D₂O with 1.6 mM CaCl₂ a) before and b) after enzymatic conversion to AMP and orthophosphate. The reaction was effected by the addition of 25 μ g/mL apyrase and after a reaction time of 120 min.

The dephosphorylation could also be monitored with ADP as substrate, which is shown in Fig. S2.

Fig. S2 a) Changes in normalized fluorescence intensity of the 1/ANS reporter pair (both 25 μ M, in NaOAc buffer, pH 5.5, with 1.8 mM Mn²⁺, $\lambda_{exc} = 318$ nm, $\lambda_{obs} = 462$ nm) monitoring potato apyrase activity with ADP as substrate; assays were initiated by addition of different concentrations of potato apyrase to 25 μ M ADP. b) Changes in normalized fluorescence intensity of the 2/HPTS reporter pair (both 6.3 μ M, in sodium succinate buffer, pH 6.5, with 1.6 mM Ca²⁺, $\lambda_{exc} = 403$ nm, $\lambda_{em} = 512$ nm) monitoring potato apyrase activity with ADP versus ATP as substrate; assays were initiated by addition of 100 μ g/ml potato apyrase to 9.0 mM ADP (black) and 2.3 mM ATP (red).

Fig. S3 shows the evolution of steady-state fluorescence intensity with time monitoring potato apyarse activity at different enzyme concentrations. The initial rates, v_0 , obtained by linear fits of the normalized intensities (assuming a conversion linear with the fluorescence intensity and full conversion at the plateau region) increased approximately linearly with the enzyme concentration. The v_0 values were as follows: $v_{0, 50 \ \mu g/ml} = 0.23 \ a.u./min$, $v_{0, 25 \ \mu g/ml} = 0.15 \ a.u./min$, $v_{0, 12.5 \ \mu g/ml} = 0.07 \ a.u./min$, and $v_{0, 5 \ \mu g/ml} = 0.02 \ a.u./min$ for the 1/ANS reporter pair (Fig. S3a), and $v_{0, 100 \ \mu g/ml} = 0.17 \ a.u./min$, $v_{0, 50 \ \mu g/ml} = 0.09 \ a.u./min$, and $v_{0, 25 \ \mu g/ml} = 0.04 \ a.u./min$ with the 2/HPTS reporter pair (Fig. S3b). Note that the absolute rates are not directly comparable between the two reporter pairs due to the use of arbitrary units.

Fig. S3 Evolution of normalized fluorescence intensity monitoring potato apyrase activity at different enzyme concentrations a) with the 1/ANS reporter pair (both 25 μ M, in NaOAc buffer, pH 5.5, with 1.8 mM Ca²⁺, $\lambda_{exc} = 318$ nm, $\lambda_{obs} = 462$ nm) and ATP (25 μ M) as substrate, and b) with the 2/HPTS reporter pair (both 6.3 μ M, in sodium succinate buffer, pH 6.5, with 1.6 mM Ca²⁺, $\lambda_{exc} = 403$ nm, $\lambda_{obs} = 512$ nm) and ATP (2.3 mM) as substrate.