Synthesis and biological evaluation of 5-substituted O⁴-alkylpyrimidines as CDK2 inhibitors

Francesco Marchetti,^a Celine Cano,^a Nicola J. Curtin,^b Bernard T. Golding,^c Roger J. Griffin,^a Karen Haggerty,^a David R. Newell,^b Rachel J. Parsons,^a Sara L. Payne,^a Lan Z. Wang^b and Ian R. Hardcastle^a*

Supporting information

EXPERIMENTAL

Reagents were purchased from fine chemicals vendors, and used as received unless otherwise stated. Solvents were purified and stored according to standard procedures. Petrol refers to that fraction in the boiling range 40-60 °C. Melting points were obtained on a Stuart Scientific SMP3 apparatus and are uncorrected. Thin layer chromatography was performed using silica gel plates (Kieselgel 60F₂₅₄; 0.2 mm), and visualized with UV light or potassium permanganate. Chromatography was conducted under medium pressure in glass columns or using a Biotage SP4 instrument in prepacked columns (FLASH+ Silica columns (40-63 µm, 60 Å), NH FLASH+ cartridges (40-75 µm, 100 Å) and C18 FLASH+ cartridges (40-63 µm, 90 Å)). Semi-preparative HPLC was conducted using using a Varian Prostar instrument equipped with a Waters XTerra column (RP₁₈ OBD 10 μm, 150 x 30 mm) or Phenomenex Synergi 4u Fusion-RP (80Å, 250 x 21.2 mm) as indicated, monitoring by UV at $\lambda = 270$ nm. Proton (1 H) and carbon (13 C) nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Spectrospin AC 300E (¹H at 300 MHz. ¹³C at 75 MHz) or a Jeol JNM-LA500 spectrometer (¹H at 500 MHz, ¹³C at 125 MHz) employing the solvent as internal standard. Coupling constants J values are given in Hz. NH signals appeared as broad singlets (br s) exchangeable with D₂O. Mass spectra were determined on a Micromass Autospec M spectrometer in electron impact (EI) mode. Liquid Chromatography-Mass Spectrometry (LCMS) was carried out on a Micromass Platform instrument operating in positive and negative ion electrospray mode, employing either a Waters Symmetry (30 x 4.6 mm; C18; 5 min run) or Waters Atlantis (50 x 4.6 mm; C18; 12 min run) column with 0.05% aqueous formic acid and acetonitrile (5 to 95% organic). Elemental combustion analyses were either recorded on Carlo-Erba instrument 1106 analyser, in-house, or were performed either by Medac Ltd (Brunel Science Centre, Egham, Surrey, TW20 0JZ), or by the School of Pharmacy at London University (29-39 Brunswick Square, London, WC1N 1AX). Accurate mass analyses were measured using a Finnigan MAR 95 XP or a Finnigan MAR 900 XLT at Swansea EPSRC National Mass Spectrometry Service Centre (EPSRC, Chemistry Department, University of Wales Swansea, Wales, SA2 8PP). Final compounds were found to be >97% purity by LCMS and NMR analysis or gave satisfactory CNH analysis.

General procedure A

Sodium (1.5 eq.) was added to the appropriate alcohol (20 mL) and the resulting mixture was stirred and heated for 2 h, then 4-chloro-2,6-diaminopyrimidine (1 eq.) was added and stirring continued 5h with heating to the specified temperature. After cooling, the mixture was neutralised with glacial acetic acid and concentrated *in vacuo* to yield a yellow oil, which was diluted with water (25 mL) and extracted with EtOAc (4 x 25 mL). The combined organic layers were dried (MgSO₄) and concentrated *in vacuo* giving the desired product.

6-Ethoxypyrimidine-2,4-diamine (3b)

General procedure A: Sodium (0.92 g, 40 mmol), ethanol (40 mL, 696 mmol), 4-chloro-2,6-diaminopyrimidine (1.15 g, 8.0 mmol), at 80 °C. Chromatography (silica; 5% MeOH, DCM) gave **3b** as a light brown powder (0.35 g, 29%) mp 167-169 °C. UV λ_{max} (EtOH): 206 nm; IR ν_{max} / cm⁻¹: 3329, 2985, 1661, 1580; δ_{H} (300 MHz, d_{6} -DMSO) = 1.21 (3H, t, J = 7.1 Hz, C**H**₃), 4.12 (2H, q, J = 7.1 Hz, C**H**₂), 0.88-0.93 (1H, m, C**H**), 5.01 (1H, s, H-5), 5.83 (2H, s, NH₂ ex), 5.98 (2H, s, NH₂ ex); δ_{C} (75 MHz, d_{6} -DMSO) δ = 15.1, 60.5, 76.4, 163.3, 166.3, 170.3; MS (ESI+) m/z 155 [M+H]⁺.

6-Cyclopropylmethoxypyrimidine-2,4-diamine (3c)

General procedure A: Sodium (0.70 g, 30 mmol, 1.5 eq.), cyclopropylmethanol (20 mL, 247 mmol), 4-chloro-2,6-diaminopyrimidine (0.86 g, 5.9 mmol), at 140 °C. Gave **3c** as a yellow oil (4.878 g, 96.7%). UV λ_{max} (EtOH): 266 nm; IR ν_{max} / cm⁻¹: 3329, 2947, 1562; δ_{H} (300 MHz, d_{6} -DMSO): 0.01 (2H, m, CH₂), 0.24-0.30 (2H, m, CH₂), 0.88-0.93 (1H, m, CH), 3.68 (2H, d, J = 7.1 Hz, CH₂O), 4.79 (1H, s, H-5), 5.61 (2H, s, NH₂ ex), 5.75 (2H, s, NH₂ ex); MS (ESI+) m/z 181 [M+H]⁺;

6-sec-Butoxypyrimidine-2,4-diamine (3d)

General procedure A: Sodium (0.95 g, 41.8 mmol), *sec*-2-butanol (35.0 mL, 382 mmol), 4-chloro-2,6-diaminopyrimidine (4.00 g, 27.7 mmol), at 100 °C. Gave **3d** as a yellow oil (4.878 g, 96.7%). UV λ_{max} (EtOH): 266, 235, 214 nm; IR ν_{max} / cm⁻¹: 3326, 3184, 2971, 2934, 1560, 1441, 1200; δ_{H} (300 MHz, d_{6} -DMSO): 0.84 (3H, t, J = 7.5 Hz, CH₃CHORCH₂CH₃), 1.14 (3H, d, J = 6.2 Hz, CH₃CHORCH₂CH₃), 1.44-1.60 (2H, m, CH₃CHORCH₂CH₃), 4.93 (H, m, CH₃CHORCH₂CH₃), 5.01 (1H, s, H-5), 5.88 (2H, s, NH₂ ex), 5.99 (2H, s, NH₂ ex); δ_{C} (75 MHz, d_{6} -DMSO): 9.6, 19.5, 28.7, 70.9, 76.8, 163.0, 166.0, 169.9; MS (ESI+) m/z 183 [M+H]⁺; HRMS (ESI+) m/z: Calc. for C₈H₁₄N₄O: 183.1240 [M+H]⁺. Found 183.1242 [M+H]⁺.

2,6-Diamino-4-heptoxypyrimidine (3e).

A mixture of heptan-1-ol (1.1 ml, 7.8 mmol) and sodium hydride (0.10 g, 4.3 mmol) in DMSO (4 ml) was stirred at rt for 30 min. 4-Chloro-2,6-diaminopyrimidine (0.21 g, 1.4 mmol) was added, and the mixture was heated at 85 °C for 4 days. The reaction mixture was allowed to cool to rt and then neutralised with glacial acetic acid; the solvents were removed *in vacuo*. Chromatography (silica; 10% MeOH, DCM) gave **3e** as a cream solid (0.14 g, 43%) m.p. 90.8–92.6 °C. UV (EtOH): λ_{max} = 240 nm, ϵ = 8.21 dm³ g⁻¹ cm⁻¹; IR ν_{max} / 3211, 3118 cm⁻¹; δ_{H} (200 MHz, d^{6} -DMSO) δ 0.90 (3H, t, J = 6.6 Hz, CH₃), 1.31 (8H, br s, 4 x CH₂), 1.63 (2H, m, OCH₂CH₂), 4.09 (2H, t, J = 6.5 Hz, OCH₂), 5.04 (1H, s, H5), 5.87 (2H, br s, D₂O exch, NH₂), 6.01 (2H, br s, D₂O exch, NH₂). MS (ESI)⁺ m/z = 225.13, [M+H]⁺. C₁₁H₂₀N₄O.CH₃CO₂H requires: C, 54.91; H, 8.51; N, 19.70; found: C, 53.36; H, 8.52; N, 18.83%

General Procedure B

A mixture of 5-bromo-6-cyclohexylmethoxypyrimidine-2,4-diamine (**5**) (0.6 g, 1.99 mmol, 1.0 eq.), the appropriate aryl or heteroaryl boronic acid (2.39 mmol, 1.2 eq.), tetrakis(triphenylphosphine)palladium(0) (0.115 g, 0.1 mmol, 5% mol eq.), K₂CO₃ solution (4 M, 2 mL, 8 mmol, 4.0 eq.), and 1,2-dimethoxyethane (10 mL) was heated under microwave irradiation at 170 °C, for 1-2 h. The resulting mixture was filtered through Celite, washed successively with MeOH (4 x 30 mL) and DCM (4 x 30 mL). The combined fractions were concentrated *in vacuo*. To remove further palladium residues, a thiol-functionalized resin PL-Thiol SPE Tube (StratospheresTM SPE) was employed. The SPE tube was preconditioned with methanol, then the compound sample, previously disolved in the smallest amount possible of methanol, was loaded and allowed to pass through the SPE media under gravity and the filtrate concentrated *in vacuo*. The residues were disolved in water (30 mL) and extracted with EtOAc (3 x 30 mL). The combined organic fractions were dried (Na₂SO₄) and concentrated *in vacuo*. Chromatography (silica; EtOAc, petrol) followed by HPLC, Waters XTerra column, gave the desired product **7a-c** as a white solid.

6-Cyclohexylmethoxy-5-(furan-2-yl)pyrimidine-2,4-diamine (7b)

General procedure B: 2-furan boronic acid (0.27 g, 2.39 mmol, 1.2 eq.). Chromatography and HPLC gave **7b**, Waters XTerra column, as an off-white solid (0.083 g, 15%). m.p. 91-94 °C. UV λ_{max} (EtOH) 286 and 210 nm. IR ν_{max} 3329, 3109, 2920-2984, 1565, 1542, 1426, 1208, 1074 cm⁻¹; δ_{H} (300 MHz, d_{3} -MeCN): 1.02-1.84 (11H, m, C₆H₁₁), 4.09 (2H, d, J = 6.0 Hz, OCH₂), 4.98 (2H, s, NH₂ ex), 5.89 (2H, s, NH₂ ex), 6.50 (1H, m, ArH), 6.65 (1H, d, J = 3.8 Hz, ArH), 7.43 (1H, d, J = 1.8 Hz, ArH); ¹³C-NMR (75 MHz, CDCl₃): 26.1, 26.8, 30.3, 37.8, 72.5, 85.6, 108.8, 111.6, 140.0, 148.4, 159.3, 160.3, 167.6 . MS (ESI+) m/z 289.16 [M+H]⁺; HRMS (ESI+) m/z: Calc. for C₁₅H₂₀N₄O₂: 289.1659 [M+H]⁺. Found 289.1662 [M+H]⁺. C₁₅H₂₀N₄O₂.0.2 CHCl₃: requires C, 59.51; H, 6.71; N, 18.24%; found C, 59.18; H, 6.47, N, 17.96%.

6-Cyclohexylmethoxy-5-(thiophen-2-yl)pyrimidine-2,4-diamine (7c)

General procedure B: 2-thiophene boronic acid (0.27 g, 2.39 mmol, 1.2 eq.). Chromatography and HPLC, Waters XTerra column, gave the **7c** as an off-white solid (0.114 g, 19%), m.p.: 84-86 °C. UV λ_{max} (EtOH): 378 and 244 nm. IR ν_{max} 3392, 3196, 2920-2840, 1540, 1444, 1418, 1337, 1143 cm⁻¹; δ_{H} (300 MHz, CDCl₃): 0.81-1.65 (11H, m, C₆H₁₁), 3.93 (2H, d, J = 9.0 Hz, OCH₂), 5.03 (2H, s, NH₂ ex), 5.07 (2H, s, NH₂ ex), 6.92 (1H, br, ArH), 6.95 (1H, d, J = 4.5 Hz, ArH), 7.24 (1H, d, J = 4.5 Hz, ArH); ¹³C-NMR (75 MHz, CDCl₃): 26.1, 26.9, 30.1, 37.8, 71.8, 86.9, 126.0, 127.0, 127.6, 135.1, 161.8, 163.6, 168.2; MS (ESI+) m/z 305.21 [M+H]⁺. HRMS (ESI+) m/z: Calc. for C₁₅H₂₀N₄OS: 305.1431 [M+H]⁺. Found 305.1430 [M+H]⁺.

General procedure C

A mixture of 6-amino-2-(n-butylsulfanyl)-4(3H)-pyrimidinone (**15**) (1 eq.), the appropriate alcohol (1.5 eq.), and triphenylphosphine (1.5 eq.) in THF (anh) was stirred at 5 °C in an ice-bath and diethyl azodicarboxylate (1.5 eq.) was added dropwise. The resulting mixture was allowed to stir at rt for 72 h then concentrated *in vacuo* to yield a yellow oil, which was triturated with Et₂O in an ice-bath at 0 °C, giving a white precipitate which was removed by filtration. The filtrate was concentrated *in vacuo*, water (30 mL) was added and the mixture was extracted with EtOAc (3 x 30 mL). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. Chromatography (silica; 20-80% EtOAc, petrol) and recrystallisation (MeOH) gave the desired product **16a-c**.

6-sec-Butoxy-2-(*n*-butylsulfanyl)pyrimidin-4-amine (16b)

General procedure C: 15 (0.5 g, 2.51 mmol), sec-2-butanol (2.15 mL, 29 mmol), triphenylphosphine (0.99 g, 3.77 mmol), THF (15.0 mL), diethyl azodicarboxylate (0.549 mL, 3.77 mmol) gave 16b as a yellow oil (0.54 g, 85%). UV λ_{max} (EtOH): 224, 253 nm; IR ν_{max} / cm⁻¹: 3469, 3352, 3181, 2964, 2931, 2872, 1620, 1573, 1545, 1343, 1231, 1035. δ_{H} (300 MHz, d_{6} -DMSO): 0.86 (3H, t, J = 7.3 Hz, CH₃CH₂CH₂CH₂S), 0.89 (3H, t, J = 7.4 Hz, CH₃CHORCH₂CH₃), 1.20 (3H, d, J = 6.2 Hz, CH₃CHORCH₂CH₃), 1.32-1.44 (2H, m, CH₃CH₂CH₂CH₂S), 1.51-1.66 (4H, m, CH₃CH₂CH₂CH₂S, CH₃CHORCH₂CH₃), 2.97 (2H, t, J = 7.4 Hz, CH₃CH₂CH₂CH₂S), 5.00 (1H, m, CH₃CHORCH₂CH₃), 5.38 (1H, s, H-5), 6.55 (2H, s, NH₂ ex); δ_{C} (75 MHz, d_{6} -DMSO): 9.6, 13.5, 19.4, 21.6, 28.5, 29.6, 31.6, 72.4, 82.1, 165,2, 168,4, 169.2; MS (ESI+) m/z 256.13 [M+H]⁺; HRMS (ESI+) m/z: Calc. for C₁₂H₂₁N₃OS: 256.1478 [M+H]⁺. Found 256.1477 [M+H]⁺.

2-(*n*-Butylsulfanyl)-6-ethoxypyrimidin-4-amine (16c)

General procedure C: 15 (4.5 g, 22.6 mmol), ethanol (2.15 mL, 33 mmol,), triphenylphosphine (8.88 g, 33.9 mmol), THF (150 mL), diethyl azodicarboxylate (5.34 mL, 34 mmol) gave **16c** as a white solid (3.6 g, 70%). mp 88-90 °C. UV λ_{max} (EtOH): 211, 223, 252 nm; IR ν_{max} / cm⁻¹: 3378, 3303, 3158, 2958, 2932, 1636, 1573, 1543, 1373, 1266, 1009. δ_{H} (300 MHz, d_{6} -DMSO): 0.88 (3H, t, J = 7.3 Hz, CH₃CH₂CH₂CH₂S), 1.25 (3H, t, J = 7.1 Hz, OCH₂CH₃), 1.32-1.44 (2H, m, CH₃CH₂CH₂CH₂S), 1.55-1.66 (2H, m, CH₃CH₂CH₂CH₂S), 3.01 (2H, t, J = 7.3 Hz, CH₃CH₂CH₂CH₂S), 4.21 (3H, t, J = 7.1 Hz, OCH₂CH₃), 5.39 (1H, s, H-5), 6.65 (2H, s, NH₂ ex); δ_{C} (75 MHz, d_{6} -DMSO): 13.8, 14.8, 21.9, 29.7, 31.9, 63.0, 81.9, 165.5, 168.9, 169.6; MS (ESI+) m/z 228 [M+H]⁺; HRMS (ESI+) m/z: Calc. for C₁₀H₁₇N₃OS: 228.1165 [M+H]⁺. Found 228.1162 [M+H]⁺.

General Procedure D

To a solution of the appropriate 2-(n-butylsulfanyl)-6-alkoxyoxypyrimidin-4-amine (**16a-c**) (1 eq.) in DCM under N₂, m-CPBA (2.5–3 eq.) was added slowly. The resulting mixture was stirred at rt for 24 h, then concentrated *in vacuo*. The residue was extracted with EtOAc (3 x 30 mL). The combined organic fractions were washed with aq. sodium sulfite (sat.; 30 mL), aq. sodium bicarbonate (sat.; 2 x 30 mL) and water (2 x 30 mL), dried (Na₂SO₄) and concentrated *in vacuo* to give a white solid. Chromatography (silica; 20-80% EtOAc, petrol) gave **17a-c** as a white solid.

6-sec-Butoxy-2-(*n*-butylsulfonyl)pyrimidin-4-amine (17b)

General procedure D: 16b (0.54 g, 2.11 mmol), DCM (15 mL), *m*-CPBA (1.46 g, 6.34 mmol, 3 eq.) gave **17b** as a yellow solid (0.3 g, 50%) m.p.: 74-77 °C.

UV λ_{max} (EtOH): 281, 244 nm; IR ν_{max} / cm⁻¹: 3443, 3331, 3133, 2967, 2938, 2877, 1634, 1592, 1527, 1443, 1379, 1234; δ_H (300 MHz, CDCl₃): 0.89 (6H, m, CH₃CH₂CH₂CH₂SO₂, CH₃CHORCH₂CH₃), 1.25 (3H, d, J = 6.1 Hz, CH₃CHORCH₂CH₃), 1.37-1.49 (2H, m, CH₃CH₂CH₂CH₂SO₂), 1.53-1.69 (2H, m, CH₃CHORCH₂CH₃), 1.72-1.82 (2H, m, CH₃CH₂CH₂CH₂CO₂), 3.37 (2H, t, J = 7.4 Hz, CH₃CH₂CH₂CH₂SO₂), 4.98-5.08 (1H, m, CH₃CHORCH₂CH₃), 5.78 (1H, s, H-5), 6.01 (2H, s, NH₂ ex); δ_C (75 MHz, CDCl₃): 9.3, 13.3, 19.2, 21.7, 24.2, 28.9, 50.9, 75.0, 89.2, 164.5, 165.6, 170.6 . MS (ESI+) m/z 288.25 [M+H]⁺; HRMS (ESI+) m/z: Calc. for C₁₂H₂₁N₃O₃S: 288.1376 [M+H]⁺. Found 288.1380 [M+H]⁺.

2-(n-Butylsulfonyl)-6-ethoxypyrimidin-4-amine (17c)

General procedure D: 16c (2.90 g, 12.8 mmol, 1 eq.) DCM (50 mL), *m*-CPBA (7.34 g, 31.9 mol, 2.5 eq.) gave **17c** as a white solid (2.23 g, 67.4%) m.p. 136-139 °C. UV λ_{max} (EtOH): 215 and 270 nm; IR ν_{max} 3430, 3316, 3103, 2964, 2933, 2874, 1635, 1595, 1529, 1475, 1381, 1286 cm⁻¹; δ_H (300 MHz, *d*₆-DMSO 0.88 (3H, t, *J* = 7.3 Hz, C**H**₃CH₂CH₂CH₂CO₂), 1.29 (3H, t, *J* = 7.1 Hz, C**H**₃CH₂O), 1.34-1.46 (2H, m, CH₃C**H**₂CH₂CH₂SO₂), 1.61-1.70 (2H, m, CH₃CH₂CH₂CO₂), 3.43 (2H, t, *J* = 7.9 Hz, CH₃CH₂CH₂CH₂CO₂), 4.26 (2H, q, *J* = 7.1 Hz, CH₃CH₂O), 5.81 (1H, s, H-5), 7.38 (2H, s, NH₂ ex); δ_C (75 MHz, *d*₆-DMSO): 13.8, 14.7, 21.4, 24.3, 49.9, 62.9, 87.3, 164.6, 166.5, 169.6 . MS (ESI+) *m/z* 260.14 [M+H]⁺; HRMS (ESI+) *m/z*: Calc. for C₁₀H₁₇N₃O₃S: 260.1063 [M+H]⁺. Found 260.1065 [M+H]⁺.

General procedure E

A solution of the required pyrimidine (0.50 g, 2.62 mmol, 1 eq.) and the chosen aniline (5.76 mmol, 2.2 eq.) in trifluoroethanol (10 mL) with trifluoroacetic acid (1.0 mL, 13.1 mmol, 5 eq.) was stirred for 48h at rt or heated at reflux 24h as specified. The solvents were removed *in vacuo*, water (30 mL) was added and the pH was adjusted to neutral with saturated aq. sodium bicarbonate and the mixture was extracted with EtOAc (3 x 30 mL). The combined organic layers were washed with water (2 x 30 mL) and dried (Na_2SO_4), and the solvent was removed *in vacuo*. The compounds were purified as specified.

4-Amino-6-chloro-2-(4-methoxyphenylamino)-5-formylpyrimidine (21b)

General procedure E: 4-amino-2,6-dichloro-5-formylpyrimidine (**20**) (0.5 g, 2.62 mmol), p-anisidine (0.71 g, 5.76 mmol,), trifluoroacetic acid (0.48 mL, 6.51 mmol) and trifluoroethanol (10 mL). Chromatography (silica, 20-80% EtOAc, petrol) and recrystallisation (methanol), gave the **21b** as a dark yellow solid (0.61 g, 83.6%) m.p.: 185-186 °C. UV λ_{max} (EtOH): 225 and 337 nm. IR ν_{max} / cm⁻¹: 3343, 3283, 3073, 2935, 1716, 1540, 1502, 1232. δ_{H} (300 MHz, CDCl₃): 3.74 (3H, s, OCH₃), 5.74 (1H, br, NH), 6.81 (2H, d, J = 9.1 Hz, ArH), 7.26 (1H, br, NH), 7.37 (2H, d, J = 9.1 Hz, ArH), 8.77 (1H, br, NH), 10.05 (1H, s, CHO) . δ_{C} (75 MHz, CDCl₃): 55.9, 103.5, 114.8, 123.4, 130.9, 157.4, 159.7, 164.3, 166.0, 188.7 . MS (ESI+) m/z 279.13 [M+H]⁺. HRMS (ESI+) m/z: Calc. for C₁₂H₁₁ClN₄O₂: [M+H]⁺ 279.0643. Found 279.0643. C₁₇H₁₁ClN₄O₂: requires C, 51.72; H, 3.98; N, 20.10%. Found C, 51.95; H, 3.95, N, 19.91%.

Neopentyl 4-(4-amino-6-chloro-5-formylpyrimidin-2-ylamino)benzoate (21c)

General procedure E: 4-amino-2,6-dichloro-5-formylpyrimidine (**20**) (0.84 g, 4.4 mmol), neopentyl 4-aminobenzoate²¹ (1.00 g, 4.83 mmol), trifluoroacetic acid (1.7 mL, 22 mmol) and trifluoroethanol (30 mL). Chromatography (silica, 20-80% EtOAc, petrol) and recrystallisation (methanol), gave **21c** as a yellow solid (0.55 g, 35%) m.p.: 231-233 °C. UV λ_{max} (EtOH): 222 and 337 nm. IR ν_{max} / cm⁻¹: 3314, 3078, 2954, 2847, 1689, 1656, 1575, 1535, 1358. δ_{H} (300 MHz, CDCl₃): 1.04 (9H, s, CH₃), 4.00 (2H, s, OCH₂), 5.87 (1H, br, NH), 7.52 (1H, br, NH), 7.69 (2H, d, *J* = 8.8 Hz, ArH), 8.95 (2H, d, *J* = 8.8 Hz, ArH), 8.92 (1H, br, NH), 10.17 (1H, s, CHO) . δ_{C} (75 MHz, CDCl₃): 26.9, 31.9, 74.5, 104.1, 119.8, 126.5, 131.0, 142.2, 159.3, 164.3, 166.1, 166.3, 188.9 . MS (ESI+) *m/z* 363.24 [M+H]⁺. HRMS (ESI+) *m/z*: Calc. for

 $C_{17}H_{19}CIN_4O_3$: 363. 1218 [M+H]⁺. 363.1214 Found [M+H]⁺. $C_{17}H_{19}CIN_4O$ requires C, 56.28; H, 5.28; N, 15.44%; found C, 56.51; H, 5.21, N, 15.62%.

4-(4-Amino-6-sec-butoxypyrimidin-2-ylamino)benzenesulfonamide (18b)

General procedure E: 6-sec-Butoxy-2-(*n*-butylsulfonyl)pyrimidin-4-amine (**17b**) (0.6 g, 2.09 mmol) and 4-aminobenzensulfonamide (0.72 g, 4.17 mmol) in TFE (6 mL) with TFA (0.8 mL, 10.4 mmol), heated at reflux for 24 h. Chromatography (silica; 30-95% EtOAc, petrol, 5% formic acid) and recrystalisation (MeOH) gave **18b** as a pale yellow solid (0.47 g, 67%) m.p. 111-113 °C. UV λ_{max} (EtOH): 271 nm. IR ν_{max} / cm⁻¹: 3412, 3287, 3097, 2925-2844, 1641, 1557, 1437, 1367, 1192. δ_{H} (300 MHz, CDCl₃): 0.89 (3H, t, J = 7.4 Hz, CH₃CHORCH₂CH₃), 1.25 (3H, d, J = 6.2 Hz, CH₃CHORCH₂CH₃), 1.61-1.76 (2H, m, CH₃CHORCH₂CH₃), 4.91-5.01 (1H, m, CH₃CHORCH₂CH₃), 4.57 (2H, br, NH₂ exchangeable with D₂O), 4.81 (2H, br, NH₂ exchangeable with D₂O), 5.32 (1H, s, H-5), 7.19 (1H, br, NH, exchangeable with D₂O), 7.68 (2H, d, J = 8.9 Hz, ArH), 7.76 (2H, d, J = 8.9 Hz, ArH); δ_{C} (75 MHz, CDCl₃): 9.7, 19.5, 29.1, 73.8, 83.2, 118.2, 127.8, 134.0, 144.4, 158.7, 164.9, 170.9; MS (ESI+) m/z 338.29 [M+H]⁺. HRMS (ESI+) m/z: Calc. for C₁₄H₁₉N₅O₃S: 338.1281 [M+H]⁺. Found 338.1283 [M+H]⁺.

4-(4-Amino-6-ethoxypyrimidin-2-ylamino)benzensulfonamide (18c)

General procedure E: 2-(*n*-Butylsulfonyl)-6-ethoxypyrimidin-4-amine (**17c**) (0.6 g, 2.32 mmol) and 4-aminobenzensulfonamide (0.60 g, 3.47 mmol), TFE (8 mL), TFA (0.89 mL, 11.6 mmol), heated at reflux for 24 h. Chromatography (silica; 20-95% EtOAc, 5% formic acid, petrol) gave **18c** as a white solid (0.45 g, 63%) m.p.: 214-217 °C. UV λ_{max} (EtOH): 295 nm. IR ν_{max} / cm⁻¹: 3435, 3317, 3106, 2913, 2856, 1616, 1553, 1422, 1375 (NH₂SO₂), 1195 (SO₂). δ_{H} (300 MHz, d_{G} -DMSO): 1.29 (3H, t, J = 7.1 Hz, CH₃CH₂O), 4.24 (2H, q, J = 7.1 Hz, CH₃CH₂O), 5.29 (1H, s, H-5), 6.44 (2H, s, NH₂ exchangeable with D₂O), 7.44 (2H, s, NH₂ exchangeable with D₂O), 7.65 (2H, d, J = 8.9 Hz, ArH), 7.92 (2H, d, J = 8.9 Hz, ArH), 9.34 (1H, s, NH exchangeable with D₂O). δ_{C} (75 MHz, d_{G} -DMSO): 14.9, 61.4, 79.2, 117.9, 126.7, 135.8, 144.8, 159.3, 166.1, 170.1 . MS (ESI⁺) m/z 310.25 [M+H]⁺.HRMS (ESI+) m/z. Calc. for C₁₂H₁₅N₅O₃S, 310.0968. Found 310.0970.

General Procedure F

The chosen alcohol (10 eq.) was added dropwise to a suspension of sodium hydride (5 eq.) in THF (anh; 5 mL), and the mixture was stirred at rt under N_2 for 30 min. The chosen 4-amino-6-chloro-2-(arylamino)-5-formylpyrimidine (1 eq.) was added slowly, in small portions and the reaction mixture was heated at reflux 16 h, the allowed to cool to rt, quenched with water (10 mL), and acidified (2 M HCl) to pH < 2, then THF (10 mL) was added, the resulting mixture was stirred overnight, neutralised (saturated aq. sodium bicarbonate), and concentrated *in vacuo*. The residue was extracted with EtOAc (4 x 30 mL) and the combined organic layers were dried (Na_2SO_4), and concentrated *in vacuo* to give a yellow-orange oil. Chromatography (silica; 40-100% EtOAc, petrol, or 10% MeOH, DCM) and recrystallisation (methanol) or HPLC purification, gave the product as a white solid.

4-Amino-6-ethoxy-2-(4-methoxyphenylamino)-5-formylpyrimidine (22b)

General procedure F: 4-amino-6-chloro-2-(4-methoxyphenylamino)-5-formylpyrimidine (**21b**) (0.20 g, 0.72 mmol), ethanol (0.42 mL, 7.2 mmol). Chromatography (silica; 50-100% EtOAc, petrol) and recrystallisation (MeOH, DCM) gave **22b** as an off-white solid (0.093 g, 45%), m.p.: 111-113 °C. UV λ_{max} (EtOH): 324 nm; IR ν_{max} / cm⁻¹: 3271, 3110, 2915, 2833, 1702, 1532, 1475, 1215; δ_H (300 MHz, CDCl₃): 1.39 (3H, t, J = 7.1 Hz, CH₃CH₂O), 3.79 (3H, s, OCH₃), 4.41 (2H, q, J = 7.1 Hz, CH₃CH₂O), 5.69 (1H, s, NH exchangeable with D₂O), 6.86 (2H, d, J = 8.9 Hz, ArH), 7.14 (1H, s, NH exchangeable with D₂O), 7.43 (2H, d, J = 8.9 Hz, ArH), 8.72 (1H, s, NH exchangeable with D₂O), 10.01 (1H, s, CHO); δ_C (75 MHz, CDCl₃): 14.3, 55.5, 62.6, 93.8, 114.2, 122.8, 131.6, 156.4, 160.8, 164.6, 171.9, 186.6; MS (ESI+) m/z 289.28 [M+H][†]. HRMS (ESI+) m/z: Calc. for C₁₄H₁₆N₄O₃: 289.1295 [M+H][†]. Found 289.1299 [M+H][†]. Anal. Calc. for C₁₄H₁₆N₄O₃.0.1CH₂Cl₂: requires C, 57.06; H, 5.50; N, 18.88%; found C, 57.04; H, 5.50, N, 18.41%.

4-Amino-6-isopropoxy-2-(4-methoxyphenylamino)-5-formylpyrimidine (22c)

General procedure F: 4-amino-6-chloro-2-(4-methoxyphenylamino)-5-formylpyrimidine (**21b**) (0.20 g, 0.72 mmol), isopropanol (0.55 mL, 7.2 mmol). Chromatography (silica; 50-100% EtOAc, petrol) and recrystallisation (ethanol) gave **22c** as an off-white solid (0.082 g, 38%) m.p. 137-140 °C. UV λ_{max} (EtOH): 323 nm; IR ν_{max} 3322, 2976, 2926, 2859, 1663, 1521, 1479, 1238 cm⁻¹; δ_{H} (300 MHz, d_{4} -MeOD): 1.32 (6H, d, J = 6.2 Hz, (C**H**₃)₂CHO), 3.72 (3H, s, OCH₃), 5.39 (1H, m, (CH₃)₂C**HO**), 6.82 (2H, d, J = 9.1 Hz, ArH), 7.49 (2H, br, NH₂), 9.81 (1H, s, CHO); δ_{C} (75 MHz, CDCl₃): 21.7, 55.3, 69.7, 93.8, 114.0, 122.7, 131.7, 156.3, 160.8, 164.6, 171.5, 186.5; MS (ESI+) m/z 303.35 [M+H]⁺. HRMS (ESI+) m/z: Calc. for C₁₅H₁₈N₄O₃: 303.1452 [M+H]⁺. Found 303.1448 [M+H]⁺. C₁₅H₁₈N₄O₃.0.1C₂H₅OH: requires C, 59.48; H, 6.11; N, 18.25%; found C, 59.75; H, 6.21, N, 18.23%.

4-Amino-6-sec-butoxy-2-(4-methoxyphenylamino)-5-formylpyrimidine (22d)

General procedure F: 4-amino-6-chloro-2-(4-methoxyphenylamino)-5-formylpyrimidine (**21b**) (0.20 g, 0.72 mmol), sec-butanol (0.7 mL, 7.2 mmol). Chromatography (silica, 50-100% EtOAc, Petrol) and recrystallisation (methanol) gave **22d** as an off-white solid (0.077 g, 34%) m.p. 125 -128 °C. UV λ_{max} (EtOH): 324 nm. IR ν_{max} / cm⁻¹: 3313, 3155, 2963, 2878, 1647, 1560, 1494, 1198. δ_{H} (300 MHz, d_{4} -MeOD): 0.91 (3H, t, J = 7.4 Hz, CH₃CHORCH₂CH₃), 1.28 (3H, d, J = 6.2 Hz, CH₃CHORCH₂CH₃), 1.57-1.76 (2H, m, CH₃CHORCH₂CH₃), 3.72 (3H, s, OCH₃), 5.23 (1H, m, CH₃CHORCH₂CH₃), 6.81 (2H, d, J = 9.2 Hz, ArH), 7.46 (2H, br, NH₂), 9.82 (1H, s, CHO) . δ_{C} (75 MHz, d_{4} -MeOD): 9.9, 19.7, 30.0, 56.1, 75.6, 94.6, 115.1, 124.3, 133.6, 157.8, 162.5, 166.3, 173.3, 187.4 . MS (ESI+) m/z 317.24 [M+H]⁺. HRMS (ESI+) m/z: Calc. for C₁₆H₂₀N₄O₃: 317.1608 [M+H]⁺. Found 317.1608 [M+H]⁺. C₁₆H₂₀N₄O₃.0.4 M MeOH requires C, 60.44; H, 6.61; N, 17.09%; found C, 60.65; H, 6.15, N, 16.77%.

4-(4-amino-6-(cyclohexylmethoxy)-5-formylpyrimidin-2-ylamino)benzoic acid. (22e)

General procedure F: neopentyl 4-(4-amino-6-chloro-5-formylpyrimidin-2-ylamino)benzoate (**21c**) (0.50 g, 1.38 mmol), cyclohexylmethanol (1.7 mL, 13.8 mmol). After cooling to rt, the reaction was quenched with water (5 mL), basified to pH > 12 (2M NaOH), extracted with EtOAc (3 x 30 mL), then acidified to pH < 2 (4M HCl), and extracted with EtOAc (3 x 40 mL). The combined organic fractions were washed with water (2 x 20 mL), dried (Na₂SO₄) and concentrated *in vacuo*. Recrystallisation (EtOAc) gave **22e** as an off-white solid (0.27 g, 53%). m.p.: >250 °C dec. UV λ_{max} (EtOH): 331 and 229 nm; IR ν_{max} 3475, 3297, 3107, 2922, 2851, 1679, 1586, 1514, 1407, 1342 cm⁻¹; δ_H (300 MHz, d_6 -DMSO): 1.02-1.29 (6H, m, C_6 H₁₁), 1.64-1.81 (5H, m, C_6 H₁₁), 4.23 (2H, d, J = 6.0 Hz, OCH₂), 7.85 (2H, d, J = 9.0 Hz, ArH), 7.95 (2H, d, J = 9.0 Hz, ArH), 8.47 (1H, br, NH), 9.96 (1H, s, CHO), 10.01 (1H, br, NH), 12.63 (1H, br, COOH); δ_C (75 MHz, d_6 -DMSO): 25.6, 26.3, 29.6, 37.2, 71.6, 93.4, 119.7, 124.9, 130.3, 144.2, 160.5, 164.4, 167.3, 171.9, 185.8; MS (ESI+) m/z 371.30 [M+H]⁺. HRMS (ESI+) m/z: Calc. for C_{19} H₂₂N₄O₄: 371.1714 [M+H]⁺. Found 371.1714 [M+H]⁺.

4-(4-Amino-6-ethoxy-5-formylpyrimidin-2-ylamino)benzenesulfonamide (22f)

General procedure F: 4-(4-amino-6-chloro-5-formylpyrimidin-2-ylamino)benzenesulfonamide (**21a**) (0.40 g, 1.22 mmol), ethanol (1.4 mL, 24.5 mmol). Chromatography (silica; 2-15% MeOH, DCM) and HPLC, Phenomenex Synergi (35-100% MeCN, water), gave **22f** as a white solid (74 mg, 9%), m.p. 266 -270 °C. UV λ_{max} (EtOH): 300 nm; IR ν_{max} 3329, 3302, 3165, 2921, 2851, 1634, 1578, 1531, 1308, 1147 cm⁻¹; δ_{H} (300 MHz, d_{6} -DMSO): 1.37 (3H, t, J = 7.0 Hz, CH₃CH₂O), 4.47 (2H, q, J = 7.0 Hz, CH₃CH₂O), 7.25 (2H, s, NH₂ ex), 7.72 (2H, d, J = 8.8 Hz, ArH), 7.92 (1H, s, NH ex), 7.99 (2H, d, J = 8.8 Hz, ArH), 8.48 (1H, s, NH ex), 9.95 (1H, s, CHO), 10.0 (1H, s, NH ex); δ_{C} (75 MHz, d_{6} -DMSO): 13.9, 62.0, 92.7, 119.1, 125.9, 137.1, 142.3, 159.7, 163.6, 170.9, 185.2 pm; MS (ESI+) m/z: Calc. for C₁₃H₁₅N₅O₄S: 338.0918 [M+H]⁺. Found 338.0915 [M+H]⁺. C₁₃H₁₅N₅O₄S requires C, 46.28; H, 4.48; N, 20.76%; found C, 46.09; H, 4.47, N, 20.36%.

4-(4-Amino-5-formyl-6-isopropyloxypyrimidin-2-ylamino)benzenesulfonamide (22g)

General procedure F: 4-(4-amino-6-chloro-5-formylpyrimidin-2-ylamino)benzenesulfonamide (**21a**) (0.80 g, 2.45 mmol, 1 eq.), isopropanol (3.1 mL, 24.5 mmol). Chromatography (silica; 2-15% MeOH, DCM), and HPLC Phenomenex Synergi (35-100% MeCN, water), gave **22g** as a white solid (103 mg, 12%). m.p. 236 -240 °C. UV λ_{max}

(EtOH): 326 nm; IR v_{max} 3290, 3209, 3078, 2984, 1641, 1566, 1312, 1149 cm⁻¹; δ_{H} (300 MHz, d_{6} -DMSO): 1.42 (6H, d, J = 6.2 Hz, (CH₃)₂CHO), 5.52 (1H, m, (CH₃)₂CHO), 7.84 (2H, d, J = 8.8 Hz, ArH), 7.97 (2H, d, J = 8.8 Hz, ArH), 9.97 (1H, s, CHO); δ_{C} (75 MHz, d_{6} -DMSO): 21.4, 69.2, 92.8, 119.1, 125.9, 137.3, 142.3, 159.7, 163.7, 170.6, 185.3; MS (ESI+) m/z 352 [M+HI⁺, HRMS (ESI+) m/z; Calc. for C₁₄H₁₇N₅O₄S: 352.1074 [M+HI⁺, Found 352.1070 [M+HI⁺.

(R)-4-(4-Amino-6-sec-butoxy-5-formylpyrimidin-2-ylamino)benzenesulfonamide (22i)

General procedure F: 4-(4-amino-6-chloro-5-formylpyrimidin-2-ylamino)benzenesulfonamide (**21a**) (0.40 g, 1.22 mmol), (*R*)-sec-butanol (1.1 mL, 12.2 mmol). Chromatography (silica; 2-15% MeOH, DCM) and HPLC, Phenomenex Synergi (35-100% MeCN, water) gave **22i** as a white solid (36 mg, 8%), m.p.: 264-266 °C; UV λ_{max} (EtOH): 322 nm; IR ν_{max} 3288, 3218, 3154, 2974, 2877, 1646, 1566, 1483, 1409, 1386, 1155 cm⁻¹; δ_{H} (300 MHz, d_{4} -MeOD): 1.01 (3H, t, J = 7.4 Hz, CH₃CHORCH₂CH₃), 1.38 (3H, d, J = 6.2 Hz, CH₃CHORCH₂CH₃), 1.65-1.89 (2H, m, CH₃CHORCH₂CH₃), 5.28-5.40 (1H, m, CH₃CHORCH₂CH₃), 7.81 (2H, d, J = 8.9 Hz, ArH), 7.95 (2H, d, J = 8.9 Hz, ArH), 9.97 (1H, s, CHO); δ_{C} (75 MHz, d_{4} -MeOD): 9.8, 19.7, 29.9, 76.0, 89.7, 120.9, 127.9, 136.7, 144.3, 155.6, 162.1, 172.3, 188.1 pm; MS (ESI+) m/z 366.23 [M+H]⁺. HRMS (ESI+) m/z: Calc. for C₁₅H₁₉N₅O₄S: 366.1231 [M+H]⁺. Found 366.1234 [M+H]⁺.

4-(4-Amino-6-cyclohexylmethoxy-5-formylpyrimidin-2-ylamino)benzenesulfonamide (22k)

General procedure F: 4-(4-amino-6-chloro-5-formylpyrimidin-2-ylamino)benzenesulfonamide (**21a**) (0.40 g, 1.22 mmol), cyclohexylmethanol (3.1 mL, 24.5 mmol). Chromatography (silica; 2-15% MeOH, DCM) and HPLC, Phenomenex Synergi (35-100% MeCN, water), gave **22k** as a white solid (0.208 g, 21%) m.p. 211-213 °C. UV λ_{max} (EtOH): 297 nm; IR ν_{max} 3302, 3147, 2922, 2849, 1645, 1576, 1524, 1307, 1141 cm⁻¹; δ_{H} (300 MHz, d_{4} -MeOD): 1.02-1.33 (6H, m, C₆H₁₁), 1.67-1.84 (5H, m, C₆H₁₁), 4.23 (2H, d, J = 6.1 Hz, OCH₂), 7.77 (2H, d, J = 8.9 Hz, ArH), 7.91 (2H, d, J = 8.9 Hz, ArH), 9.93 (1H, s, CHO); δ_{C} (75 MHz, d_{4} -MeOD): 26.8, 27.6, 30.9, 38.8, 73.2, 94.9, 120.8, 128.0, 138.3, 144.3, 157.3, 162.2, 173.7, 187.7; MS (ESI+) m/z 406.24 [M+H]⁺; HRMS (ESI+) m/z: Calc. for C₁₈H₂₃N₅O₄S requires C, 53.32; H, 5.72; N, 17.27%; found C, 53.16; H, 5.45, N, 17.01%.

4-(4-Amino-6-(1-cyclohexylethoxy)-5-formylpyrimidin-2-y-lamino)benzenesulfonamide (22l)

General procedure F: 4-(4-amino-6-chloro-5-formylpyrimidin-2-ylamino)benzenesulfonamide (**21a**) (0.40 g, 1.22 mmol), 1-cyclohexylethanol (1.2 mL, 12.2 mmol). Chromatography (silica; 2-15% MeOH, DCM) and HPLC, Waters Xterra (50-100% MeCN, water) gave **22l** as a white solid (77 mg, 15%), m.p. 185-188 °C. UV λ_{max} (EtOH): 327 nm; IR ν_{max} 3347, 3112, 2917, 2847, 1638, 1601, 1519, 1316, 1155 cm⁻¹; δ_{H} (300 MHz, d_{4} -MeOD): 0.99-1.23 (6H, m, C₆H₁₁), 1.27 (3H, d, J = 6.3 Hz CH₃CHOR), 1.57-1.84 (5H, m, C₆H₁₁), 5.17 (1H, m, CH₃CHOR), 7.72 (2H, d, J = 9.0 Hz, ArH), 7.84 (2H, d, J = 9.0 Hz, ArH), 9.87 (1H, s, CHO); δ_{C} (75 MHz, d_{4} -MeOD): 17.2, 27.2, 27.6, 29.9, 44.4, 78.4, 95.1, 120.9, 128.0, 138.8, 145.1, 157.3, 166.2, 173.5, 188.0; MS (ESI+) m/z 420.45 [M+H]⁺; HRMS (ESI+) m/z: Calc. for C₁₉H₂₅N₅O₄S: 420.1700 [M+H]⁺. Found 420.1700 [M+H]⁺. C₁₉H₂₅N₅O₄S requires C, 54.40; H, 6.01; N,16.69 %; found C, 54.53; H, 5.80; N, 16.38%.

General Procedure G

The appropriate O^4 -substituted pyrimidine (1 eq.) was dissolved in 30% aq. acetic acid (1 ml - 4 ml) at rt. The temperature was increased to 80 °C and sodium nitrite (1.3 eq.) in water (1 ml - 3 ml) was added dropwise to give a purple precipitate. The reaction was maintained at 80 °C for 40 min, allowed to cool to rt and the precipitate was collected by filtration. The crude product was purified by recrystallisation from the appropriate solvent.

6-Ethoxy-5-nitrosopyrimidine-2,4-diamine (4b)

General Procedure G: ethoxypyrimidine-2,4-diamine (**3b**) (0.20 g, 1.3 mmol), 30% aq. acetic acid (1.92 mL) sodium nitrite (0.13 g, 1.8 mmol.) in water (0.29 mL). Purple crystals were collected by filtration, washed with distilled water and EtOAc and dried *in vacuo* over P_2O_5 to give **4b** as a violet powder (0.18 g, 75%) m.p. > 230 °C (dec). UV λ_{max} (EtOH): 334 nm; IR ν_{max} 3380, 3098, 1611, 1555, 1501 cm⁻¹; δ_{H} (300 MHz, d_6 -DMSO): 1.40 (3H, t, J = 7.1 Hz,

CH₃), 4.54 (2H, q, J = 7.1 Hz, CH₂), 7.80 (2H, br d, J = 11.3 Hz, NH₂ ex), 8.00 (1H, s, NH ex), 10.09 (1H, s, NH ex); ¹³C-NMR (75 MHz, d_6 -DMSO) $\delta = 14.6$, 63.1, 140.0, 151.5, 163.8, 170.8; MS (ESI+) m/z 184 [M+H]⁺.

6-Cyclopropylmethoxy-5-nitrosopyrimidine-2,4-diamine (4c)

General Procedure G: 6-cyclopropylmethoxypyrimidine-2,4-diamine (**3c**) (0.44 g, 2.4 mmol), 30% aq. acetic acid (3.6 mL) sodium nitrite (0.23 g, 3.4 mmol.) in water (0.6 mL). Purple crystals were collected by filtration, washed with distilled water and EtOAc and dried *in vacuo* over P₂O₅ to give **4c** as a violet powder (0.10 g, 19%) m.p. > 230 °C (dec). UV λ_{max} (EtOH): 333 nm; IR ν_{max} 3287, 2963, 1613, 1572, 1510 cm⁻¹; δ_{H} (300 MHz, d_{6} -DMSO): 0.37-0.41 (2H, m, C**H**₂), 0.57-0.63 (2H, m, C**H**₂), 1.32-1.34 (1H, m, C**H**), 4.33 (2H, d, J = 7.2 Hz, C**H**₂O), 7.79 (2H, br d, J = 12.1 Hz, NH₂ ex), 8.00 (1H, s, NH ex), 10.09 (1H, s, NH ex); MS (ESI+) m/z 232.8 [M+Na]⁺.

6-sec-Butoxy-5-nitrosopyrimidine-2,4-diamine (4d)

General Procedure G: 6-*sec*-butoxypyrimidine-2,4-diamine (**3d**) (0.2 g, 1.1 mmol, 1 eq.), 30% aqueous acetic acid (1.5 mL), sodium nitrite (0.114 g, 1.65 mmol, 1.5 eq.) in water (0.3 mL). Recrystallisation (MeOH, DCM) gave **4d** as a violet powder (0.177 g, 76.4%) m.p. 243-246 °C. UV λ_{max} (EtOH): 235 and 343 nm; IR ν_{max} 3166, 2970, 2927, 2336, 1560, 1521, 1457, 1369, 1261 cm⁻¹; δ_{H} (300 MHz, d_{6} -DMSO): 0.94 (3H, t, J = 7.4 Hz, CH₃CHORCH₂CH₃), 1.36 (3H, d, J = 6.2 Hz, CH₃CHORCH₂CH₃), 1.74 (2H, m, CH₃CHORCH₂CH₃), 5.40 (1H, m, CH₃CHORCH₂CH₃), 7.76 (2H, s, NH₂ ex), 7.99 (1H, s, NH ex), 10.11 (1H, s, NH ex); δ_{C} (75 MHz, d_{6} -DMSO): 9.7, 19.6, 28.8, 74.5, 140.3, 151.4, 164.1, 170.9; MS (ESI+) m/z 212.2 [M+H]⁺; HRMS (ESI+) m/z: Calc. for C₈H₁₃N₅O₂: 212.1142 [M+H]⁺. Found 212.1142 [M+H]⁺. C₈H₁₃N₅O₂-0.08 CHCl₃: requires C, 44.47; H, 6.08; N, 32.08%. Found C, 44.02; H, 5.98; N, 32.38%.

2,6-Diamino-4-heptoxy-5-nitrosopyrimidine, (4e).

General Procedure G: 2,6-diamino-4-heptoxypyrimidine (**3e**)(0.19 g, 0.87 mmol), 30% acetic acid (1.6 ml), and sodium nitrite (0.08 g, 1.2 mmol) in water (1 ml). Recrystallisation (methanol), gave **4e** as purple crystals (0.19 g, 86%), m.p. 208–209 °C. UV (EtOH): λ_{max1} = 356 nm, ε = 9.68 dm³ g⁻¹ cm⁻¹; IR ν_{max} 3270, 3057 N-H; 1362 cm⁻¹; λ_{max2} = 560 nm, ε = 0.26 dm³ g⁻¹ cm⁻¹; δ_{H} (300 MHz, d⁶-DMSO) δ 0.89 (3H, t, J = 6.5 Hz, CH₃), 1.30–1.39 (8H, m, 4 x CH₂), 1.83 (2H, m, OCH₂CH₂), 4.51 (2H, t, *J* = 6.6 Hz, OCH₂), 7.82 (1H, br s, D₂O exch, N²HH), 7.86 (1H, br s, D₂O exch, N²HH), 8.05 (1H, br s, D₂O exch, N⁶HH), 10.12 (1H, br s, D₂O exch, N⁶HH); MS (ESI)⁺ m/z = 254 [M+H]⁺. C₁₁H₁₉N₅O₂ requires C, 52.16; H, 7.56; N, 27.65; found: C, 52.2; H, 7.69; N, 28.0%.

4-(4-Amino-6-ethoxy-5-nitrosopyrimidin-2-ylamino)benzenesulfonamide (20d)

General Procedure G: 4-(4-amino-6-ethoxypyrimidin-2-ylamino)benzensulfonamide (**18c**) (0.12 g, 0.388 mmol, 1 eq.), 30% aqueous acetic acid (5 mL), sodium nitrite (32 mg, 0.465 mmol, 1.2 eq.), water (0.35 mL). HPLC, Waters XTerra (Water, Methanol) provided **20d** as a green solid (15 mg, 12%) m.p. > 235 °C (dec). UV λ_{max} (EtOH): 362 nm. IR ν_{max} / cm⁻¹: 3323, 3047, 2924, 1620, 1540, 1384, 1342, 1149. δ_{H} (300 MHz, d_{3} -MeCN): 1.54 (3H, t, J = 7.1 Hz, CH₃CH₂O), 4.72 (2H, q, J = 7.1 Hz, CH₃CH₂O), 5.68 (2H, br, NH₂ exchangeable with D₂O), 6.69 (1H, br, NH exchangeable with D₂O), 7.85 (2H, d, J = 8.8 Hz, ArH), 7.99 (2H, d, J = 8.8 Hz, ArH), 8.74 (1H, br, NH ex), 10.2 (1H, br, NH exchangeable with D₂O); δ_{C} (75 MHz, d_{6} -DMSO): 14.8, 63.4, 120.8, 126.6, 138.8, 140.5, 142.2, 149.9, 160.0, 171.1 . MS (ESI+) m/z 339.14 [M+H]⁺. HRMS (ESI+) m/z: Calc. for C₁₈H₁₄N₅O₄S [M+H]⁺ 339.0870; found 339.0869.

4-(4-Amino-6-sec-butoxy-5-nitrosopyrimidin-2-ylamino)benzenesulfonamide. (20e)

General Procedure G: 4-(4-amino-6-*sec*-butoxypyrimidin-2-ylamino)benzenesulfonamide (**18b**) (0.275 g, 0.815 mmol, 1 eq.), 30% aq. acetic acid (8.0 mL), sodium nitrite (73 mg, 1.06 mmol, 1.3 eq.), water (0.6 mL). HPLC, Waters XTerra (Water, Methanol) gave **20e** as a green solid (64 mg, 21%) m.p.: 192 -195 °C. UV λ_{max} (EtOH): 362 and 257 nm. IR ν_{max} / cm⁻¹: 3261, 3077, 2924, 1521, 1465, 1397, 1152. δ_{H} (300 MHz, d_{3} -MeCN): 0.85 (3H, t, J = 7.4, CH₃CHORCH₂CH₃), 1.29 (3H, d, J = 6.2, CH₃CHORCH₂CH₃), 1.56-1.78 (2H, m, CH₃CHORCH₂CH₃), 5.29 (1H, m, CH₃CHORCH₂CH₃), 5.72 (2H, br, NH₂ ex), 6.84 (1H, br, NH ex), 7.65 (2H, d, J = 8.7 Hz, ArH), 7.78 (2H, br, ArH), 8.81 (1H, br, NH ex), 10.22 (1 H, br, NH ex). δ_{C} (75 MHz, d_{3} -MeCN): 8.9, 18.6, 28.6, 76.1, 120.4, 126.8, 137.8, 140.7,

142.2, 149.9, 160.3, 171.2 . MS (ESI+) m/z: 367.24 [M+H]⁺. HRMS (ESI+) m/z Calc. for $C_{18}H_{23}N_5O_3$ [M+H]⁺ 367.1188, Found 367.1186.

General Procedure H

To a solution of formylpyrimidine (22) (0.17 mmol) in EtOH (anh; 3 mL) was added hydroxylamine hydrochloride (0.014 g, 0.202 mmol), followed by pyridine (anh., 0.016 mL, 0.202 mmol) and the mixture was stirred 16h at rt under N_2 , then concentrated *in vacuo*. The residues were diluted with water (30 mL) and extracted with EtOAc (3 x 40 mL). The combined organic layers were dried(Na_2SO_4) and concentrated *in vacuo*.

4-(4-Amino-6-cyclohexylmethoxy-5-hydroxyiminomethyl)pyrimidin-2-ylamino)benzenesulfonamide (23b)

General Procedure H: 4-(4-amino-6-cyclohexylmethoxy-5-formylpyrimidin-2-ylamino)benzenesulfonamide (**22k**) (0.05 g, 0.12 mmol). Recrystallisation (methanol) gave **23b** as a white solid (0.044 g, 85%) m.p. 134-136 °C. UV λ_{max} (EtOH): 318, 261 and 219 nm; IR ν_{max} 3410, 3315, 3127, 2921, 2851, 1570, 1514, 1445, 1309, 1146, 947 cm⁻¹; δ_{H} (300 MHz, d_{4} -MeOD): 1.03-1.37 (6H, m, $C_{6}H_{11}$), 1.69-1.83 (5H, m, $C_{6}H_{11}$), 4.13 (2H, d, J = 6.0 Hz, OCH₂), 7.76 (2H, d, J = 9.0 Hz, ArH), 7.87 (2H, d, J = 9.0 Hz, ArH), 8.34 (1H, s, C**H**NOH).

 δ_{C} (75 MHz, d_4 -MeOD): 26.8, 27.6, 30.9, 38.8, 73.0, 87.2, 119.5, 128.0, 136.8, 145.6, 146.1, 159.4, 163.6, 169.4; MS (ESI+) m/z 421.39 [M+H]⁺; HRMS (ESI+) m/z: Calc. for $C_{18}H_{24}N_6O_4S$: 421.1653 [M+H]⁺. Found 421.1645 [M+H]⁺.

4-(4-Amino-6-sec-butoxy-5-(hydroxyiminomethyl)pyrimidin-2-ylamino)benzenesulfonamide (23c)

General Procedure H: 4-(4-amino-6-*sec*-buthoxy-5-formylpyrimidin-2-ylamino)benzenesulfonamide (**22h**) (20 mg, 54.8 μmol, 1 eq.). HPLC, Waters XTerra (35-100% MeCN, water) gave **23c** as a light yellow solid (15 mg, 83%), m.p.: 200-204 °C. UV λ_{max} (EtOH): 316 nm; IR ν_{max} 3466, 3317, 3027, 2972, 1616, 1562, 1517, 1448, 1309, 1136, 951 cm⁻¹; δ_{H} (300 MHz, d_{4} -MeOD): 0.99 (3H, t, J = 7.4 Hz, CH₃CHORCH₂CH₃), 1.35 (3H, d, J = 6.2 Hz, CH₃CHORCH₂CH₃), 1.64-1.82 (2H, m, CH₃CHORCH₂CH₃), 5.21-5.29 (1H, m, CH₃CHORCH₂CH₃), 7.78 (2H, d, J = 8.9 Hz, ArH), 7.91 (2H, d, J = 8.9 Hz, ArH), 8.35 (1H, s, CHNOH); δ_{C} (75 MHz, d_{6} -MeOD): 9.9, 19.8, 30.1, 75.3, 87.4, 119.5, 128.1, 136.8, 145.7, 146.2, 159.6, 163.8, 169.1; MS (ESI+) m/z 381.39 [M+H]⁺; HRMS (ESI+) m/z: Calc. for C₁₅H₂₀N₆O₄S: 381.1340 [M+H]⁺; found 381.1339 [M+H]⁺.