Supporting Information

Photoactivatable fluorescein derivatives with azidomethyl caging groups for tracing oligonucleotides in living human cells

Kazuhiro Furukawa,^{a,b} Hiroshi Abe,^{* a} Satoshi Tsuneda,^b Yoshihiro Ito^{*a}

 ^aNano Medical Engineering Laboratory, Advance Science Institute, RIKEN, 2-1, Hirosawa, Wako-Shi, Saitama, 351-0198, Japan.
 ^bDepartment of Life Science and Medical Bio-Science, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.

E-mail: h-abe@riken.jp, y-ito@riken.jp

Synthesis of fluorogenic molecules

Monoazidomethyl fluorescein (MAF) $\mathbf{1}$ and bisazidomethyl fluorescein (BAF) $\mathbf{3}$ were synthesized according to the methods we have reported previously.¹

Synthesis of modified oligonucleotides

To prerare the **ODN 1**, the monoazidomethyl fluorescein NHS ester was reacted with 3' amino-modified oligonucleotide. 3' PT-amino-modifier C3 CPG (Glen Research) was used to prepare 3' amino-modified oligonucleotide. 50 nmol of the 3' amino-modified oligonucleotide in 50 µl of 80 mM sodium tetraborate (pH 8.5) were shaken for 5 h at room temperature with 0.75 µmol of the NHS-ester derivative of MAF 1 in 200 µl of dimethylformamide. To prerare the ODN 3, the bromoacetyl group of the bis-azidomethyl fluorescein was reacted with the phosphorothioate group on the oligonucleotides. For 3' phosphorothioate sequences, the 3'-phosphate CPG was sulfurized by the sulfrizing reagent (Glen Research) after the first nucleotide was added. 75 nmol of the 3'-phosphorothioate oligonucleotide in 50 µl of 400 mM triethylammonium bicarbonate buffer were shaken for 5 h at room temperature with 750 nmol of **BAF 3** in 200 μ l of dimethylformamide. The both reacted products were collected by ethanol precipitation. Next, the products were purified by reverse-phase HPLC (0-80% acetonitrile/50 mM triethylammonium acetate gradient). The probe structure was confirmed by ESI-TOF mass spectrometry.

ODN 3 5'-TCGGGGCACCCAT-bisazFlu-3': calculated mass, $C_{152}H_{177}N_{56}O_{84}P_{13}S$ 4564.8; found 4564.7.

Photolysis and spectrum analysis

The photolysis and spectrum analysis were carried out on a UV-VIS spectrometry (V-500; JASCO) and a fluorescence spectrometry (FP-6500; JASCO) using 5 μ M of **MAF 1** or **ODN 1**. Solutions for photolysis and spectrum analysis were prepared in 20 mM of Tris-HCl buffer (pH 7.2). The solution was scanned from 350-550 nm for UV-VIS spectroscopic analysis or 500-650 nm with excitation at 490 nm for fluorescence analysis before irradiation and after every 2 minute of irradiation (λ irr = 365 nm, 200 mW/cm²) using SP-7 Spot Cure (USHIO) to monitor the progress of the photocleavage reaction. The reaction product from **ODN 1** after 14 min of

photocleavage was analyzed by reverse-phase HPLC (0-80 % acetonitrile/50 mM triethylammonium acetate gradient) using hydrosphere C18 column (250×4.6 mm).

Cell experiment

Hela cells were cultured in DMEM medium (Wako) containg 10% fetal bovine serum and 1% penicillin/streptomycin. Cells to be imaged were cultured on 35 mm Petri dishes with glass bottoms. 1 μ M of **ODN 3** was mixed with transfection reagent (Genescilencer; Funakoshi), and then transfected into cells for 1 hour at 37 °C by standard protocol from manufacture. Before the observation under microscope, cells were washed with PBS twice. Imaging was performed on a Olympus FV1000-D laser scanning confocal microscope with a 60x UPLSAPO 1.35 NA objective and a 413/488 dichroic mirror. Photoactivation was performed with ~0.8 mW of 405 nm laser light through the objective. For simultaneous imaging of photoactivated fluroescein, the 488 nm line of a argon laser was used for fluorescein excitation with a 405/488 dichroic mirror and its emission was collected with 500/600 nm band-pass filter. Fluorescent intensities for all ROIs were analysed by Fluoview 2.0 (Olympus).

Reference

1 K. Furukawa, H. Abe, K. Hibino, Y. Sako, S. Tsuneda and Y. Ito, *Bioconjugate Chem.*, 2009, 20, 1026.

Figure S1 HPLC analysis of ODN 1 before (A) and after 14 min of photodeprotection (B). Peak 1, ODN 1; Peak 2, deprotected form of ODN 1. The reaction products were analyzed by reverse-phase HPLC (0-80 % acetonitrile/50 mM triethylammonium acetate gradient) using hydrosphere C18 column (250×4.6 mm).

Figure S2 Thin-layer chromatography of MAF (1) after or before UV irradiation for 20 min. The chromatogram was developed in CHCl₃/MeOH (10:1). Lane 1: Before UV irradiation, Lane 2: Lane 1+3, Lane 3: After UV irradiation for 20min.

Figure S3 ESI-TOF spectrometry of ODN 1

	ABS _{max} (nm)	FLU _{max} (nm)	٤ ₄₉₀ ^b	$\Phi_{ply}{}^{c}$
MAF (1)	n.p.ª	n.p.ª	9240	0.221
BAF (2)	n.p.ª	n.p.ª	9240	0.664
MAF (3)	455	515	117280	_
BAF (4)	491	516	77800	-

 Table S1
 Chemical properties and photolysis quantum yields of compound 1-4

n.p.^a: No peak at the wavelength longer than 400 nm. ϵ_{490}^{b} : Extinction coefficients at 490 nm. Φ_{ply}^{c} : Photolysis quantum yields after UV irradiation for 10 min.

