Supporting Information for

A Flexible Approach for the Asymmetric Syntheses of Hyacinthacines

\mathbf{A}_2 and \mathbf{A}_3 and Structural Confirmation of Hyacinthacine \mathbf{A}_3

Wen-Jun Liu, Jian-Liang Ye,* and Pei-Qiang Huang*

Department of Chemistry and The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China

Contents (27 pages):

• ¹H and ¹³C NMR spectra of compounds **3a**, **10**, **1**, **13a**, **13b**, **14**, **6**, **15a** (pp. 2-17) and **2** (pp. 21-22).

• Compared ¹H and ¹³C NMR data of natural and synthetic hyacinthacine $A_{3.}$ (pp. 19-20)

• Compared ¹H and ¹³C NMR data in D_2O and in CD_3OD of hyacinthacine A_3 (data from this work). (pp.20-21)

• Structural verification and assignment for compound 2. (pp. 22-24)

• ¹H and ¹³C NMR spectra of natural hyacinthacine A_3 provided by Asano, the mixture of synthetic hyacinthacine A_3 (2) and natural hyacinthacine A_3 provided by Asano (pp. 24-27).

• GC-MS results of the mixture of the natural hyacinthacine A₃ and synthetic compound (pp. 27)

General Methods Optical rotations were recorded on a Perkin-Elmer 341 automatic polarimeter. NMR spectra were recorded in CDCl₃ or D₂O (¹H at 400, 500 or 600 MHz and ¹³C at 100, 125 MHz) on Bruker spectrometer. Chemical shifts are expressed in parts per million (δ) relative to internal Me₄Si (in CDCl₃) or TSP (trimethylsilyl-2,2,3,3-tetradeuteropropionic acid, sodium salt) (in D₂O). IR spectra were recorded on a Nicolet Avatar 360 RT-IR spectrophotometer. Mass spectra were recorded by Bruker Dalton Esquire 3000 plus and Finnigan Mat-LCQ (ESI direct injection), HRFABMS spectra were recorded by a Bruker APEX-FTMS apparatus. Elemental analyses were performed using a Vario RL analyzer. Melting points were determined on a Yanaco MP-500 melting point apparatus and are uncorrected.

In the GC-MS analyses, the mixture of the natural hyacinthacine A_3 and synthetic compound were dried and silylated at 20 °C for 60 min using 100 μ L of Sigma Sil-A [HMDS (hexamethyldisilazane)/ TMSCl (trimethylchlorosilane) in pyridine (3:1:9)] per milligram of sample. A 30 m × 0.25 mm HP-5MS (film thickness, 0.25 μ m) capillary column (SGE) column was used. The chromatograph was performed with a 25 min temperature program ran from 160 to

250 °C with an initial rate of increase of 20 °C/ min and then held at 250 °C. The mass spectrometer used is an Agilent 5975C set at 70 eV with a mass range of 45-500 amu.

Tetrahydrofuran was distilled prior to use from sodium benzophenone ketyl. Methylene chloride was distilled from phosphorus pentoxide. Dimethylformamide was distilled from calcium hydride. Silica gel (zhifu, 300-400 mesh) from Yantai silica gel factory (China) was used for column chromatography, eluting (unless otherwise stated) with ethyl acetate/petroleum ether (PE) (60-90 °C) mixture.

lwj-236 H1 ccl3

4

Hyacinthacine A₃ (2) Structural Verification and Assignment

The ¹H NMR, ¹H-¹H COSY, ¹H-¹H NOESY spectra of hyacinthacine A_3 (2) were recorded on a Bruker AV III 600 spectrometer. The ¹³C NMR, HSQC, HMBC, DEPT-135 spectra of hyacinthacine A_3 (2), ¹H and ¹³C NMR of A_3 provided by Asano and mixture of compound 2 and A_3 provided by Asano were recorded on a Bruker AV III 500 spectrometer.

Н	$\delta_{\rm H}$ of synthetic A_3 reported by Izquierdo ^[1]	$\delta_{\rm H}$ of synthetic A_3 reported by Marco ^[2]	$\delta_{\rm H}$ of natural A_3 reported by Asano ^[3]	$\delta_{\rm H}$ re-recorded data of natural A_3 provided by Asano ^[2]	$\delta_{\rm H}$ of Synthetic A ₃ (2) of this work	$\delta_{\rm H}$ of mixture of Synthetic A ₃ (2) and natural A ₃ provided by Asano ^[2]
Me-5	1.26 (d, 3H, J = 6.8 Hz)	1.19 (d, 3H, <i>J</i> = 6.8 Hz)	1.24 (d, 3H, <i>J</i> = 6.8 Hz,)	1.27 (d, 3H, <i>J</i> = 6.8 Hz,)	1.20 (d, 3H, <i>J</i> = 6.81 Hz)	1.31 (d, 3H, <i>J</i> = 6.8 Hz,)
Η-6α	1.68 (1H, m, H-6α)	1.65-1.55 (m, 1H)	1.73–1.63 (m, 1H),	1.74–1.63 (m, 1H),	1.65-1.55 (m, 1H)	1.79–1.68 (m, 1H),
Η-7α	1.85 (1H, m)	1.80-1.75 (m, 1H)	1.88–1.80 (m, 1H)	1.90–1.81 (m, 1H)	1.81-1.72 (m, 1 H)	1.94–1.86 (m, 1H)
Η-6β	1.95 (1H, m)	1.95-1.85 (overl, m,		2.06–1.91 (m, 2H)	1.97-1.84 (m, 1H)	
Η-7β	2.00 (1H, m)	1.95-1.85 (overl, m, 1H)	2.03–1.92 (m, 2H)		1.97-1.84 (m, 1H)	2.09–1.97 (m, 2H)
H-3	3.19 (1H, dt, <i>J</i> = 8.1, 4.9 Hz, H-3)	3.10 (dt, 1H, <i>J</i> = 7.8, 5 Hz)	3.24 (m, 1H)	3.21 (m, 1H)	3.09 (dt, 1H, <i>J</i> = 7.95, 5.26 Hz)	3.26 (dt, 1H, <i>J</i> = 8.03, 4.82 Hz)
H-5	3.36 (1H, m)	3.24 (br, q,, <i>J</i> = ~ 7 Hz)	3.46 (m, 1H,)	3.24 (m, 1H,)	3.17-3.24 (m, 1H)	3.43 (m, 1H,)
H-7a	3.44 (1H, m)	3.30 (td, 1H, <i>J</i> = 7.8, 5 Hz)	3.59 (dt, 1H, $J_{7,7a}$ = $J_{7,7a}$ = 4 Hz)	3.46 (m, 1H)	3.31-3.24 (m, 1H)	3.52 (m)
H-8	3.74 (2H, d, $J = 4.9$ Hz)	3.68 (d, 2H, J = 5 Hz)	3.71 (d, 2H, <i>J</i> = 4.5 Hz)	3.75 (d, 2H, <i>J</i> = 4.9 Hz)	3.69 (d, 2H , <i>J</i> = 5.0 Hz)	3.79 (d, 2H, J = 4.9 Hz)
H-1	3.77 (1H, t, $J_{1,2} = J_{1,7a}$ = 7.3 Hz, H-1)	3.70 (t, 1H, J = 7.8 Hz,)	3.76 (bt, 1H, $J_{1,7a} =$ 7.2 Hz,)	3.77 (bt, 1H, $J = 7.5$ Hz,)	3.71 (t, 1H, <i>J</i> = 7.5 Hz)	3.82 (bt, 1H, $J = 7.4$ Hz,)
H-2	$3.95 (1H, dd, J_{1,2} = 7.3 Hz, J_{2,3} = 8.8 Hz)$	3.90 (t, 1H, <i>J</i> = 7.8 Hz)	3.91 (bt, 1H, <i>J</i> = 7.5 Hz)	3.95 (bt, 1H, J=7.8 Hz)	3.91 (bt, 1H, <i>J</i> = 7.8 Hz)	3.91 (bt, 1H, $J = 7.6Hz)$

Table 1. ¹H NMR data (in D_2O) for synthetic and natural hyacinthacine A_3

			ingue intridente			
C	$\delta_{\rm C}$ of	$\delta_{\rm C}$ of	δ_{C} of natural	δ_{C}	$\delta_{\rm C}$ of	$\delta_{\rm C}$ of
	synthetic A ₃	synthetic	A_3	re-recorde	Synthetic	mixture of
	reported by	A ₃ reported	reported by	d data of	A_3 of this	Synthetic A_3 (2)
	Izquierdo ^[1]	by Marco ^[2]	Asano ^[3]	A ₃	work	and natural A ₃
				provided		provided by
				by		Asano ^[2]
				Asano ^[2]		
C-1	80.86	83.0	82.6	82.6	83.3	82.6
C-2	78.21	81.1	80.4	80.4	81.5	80.5
C-7a	71.26	70.1	70.8	70.9	70.1	71.2
C-8	64.96	60.6	64.8	64.9	66.1	65.1
C-3	62.65	65.6	64.6	64.6	64.4	64.5
C-5	61.82	64.4	61.6	61.8	60.4	62.1
C-6	32.87	34.6	34.3	34.4	34.8	34.4
C-7	29.26	30.5	30.4	30.5	30.7	30.5
Me-5	16.49	18.1	17.9	17.9	18.4	17.9

Table 2. Comparison of the 13 C NMR data (in D2O) for synthetic and natural
hyacinthacine A3

Table 3. ¹H NMR data in D_2O and in CD_3OD of hyacinthacine A_3 (data from this work)

	1 H NMR (D ₂ O) δ_{H}	¹ H NMR (CD ₃ OD) $\delta_{\rm H}$	
Me-5	1.20 (d, 3H, J = 6.81 Hz)	1.14 (d, 3H, J = 6.81 Hz)	
Н-6а	1.65-1.55 (m, 1H)	1.45-1.52 (m, 1H)	
H-7a	1.81-1.72 (m, 1 H)	1.68-1.74 (m, 1 H)	
Η-6β	1.97-1.84 (m, 1H)	1.75 1.81 (m 2 H)	
Η-7β	1.97-1.84 (m, 1H)	1.73-1.81 (m, 2 H)	
H-3	3.09 (dt, 1H, <i>J</i> = 7.95, 5.26 Hz)	2.95 (dt, 1H, <i>J</i> = 7.1, 4.8 Hz)	
H-5	3.17-3.24 (m, 1H)	3.12-3.18 (m, 1H)	
H-7a	3.31-3.24 (m, 1H)	3.19-3.24 (m, 1H)	
H-8	3.69 (d, 2H , <i>J</i> = 5.0 Hz)	3.51 (dd, 1H, $J_1 = J_2 = 6.8$ Hz)	
H-1	3.71 (t, 1H, <i>J</i> = 7.5 Hz)	3.55 (dd, 1H, <i>J</i> = 4.1, 4.6 Hz)	
H-2	3.91 (bt, 1H, <i>J</i> = 7.8 Hz)	3.82 (dd, 1H, $J_1 = J_2 = 6.9$ Hz)	

${}^{13}C \text{ NMR } \delta_H \\ \text{ in } D_2O$		¹³ C NMR δ _H in CD ₃ OD
83.3	C-1	81.7
81.5	C-2	79.3
70.1	C-7a	69.0
66.1	C-8	63.6
64.4	C-3	63.0
60.4	C-5	57.7
34.8	C-6	32.5
30.7	C-7	28.8
18.4	Me-5	15.9

Table 4. ¹³C NMR data in D_2O and in CD_3OD of hyacinthacine A_3 (data from this work)

Figure 1. ¹H NMR spectrum of synthetic hyacinthacine $A_3(2)$

Figure 2. ¹³C NMR spectrum of synthetic hyacinthacine $A_3(2)$

Figure 3. $^{1}H^{-1}H$ NOESY spectrum of synthetic hyacinthacine A₃(2)

Figure 4. ¹H-¹H COSY spectrum of synthetic hyacinthacine $A_3(2)$

Figure 5. HSQC spectrum of synthetic hyacinthacine $A_3(2)$

Figure 6. HMBC spectrum of synthetic hyacinthacine A₃(2)

Figure 7. DEPT-135 spectrum of synthetic hyacinthacine $A_3(2)$

Sample:hyathacine A3 Solvent:D2O Spectrum:H1 March 30,2009

Figure 8. Re-recorded ¹H NMR spectrum of natural hyacinthacine A₃ provided by Asano

Figure 9. Re-recorded $^{13}\mathrm{C}$ NMR spectrum of natural hyacinthacine A3 provided by Asano

Figure 10. ¹H NMR spectrum of the mixture of synthetic hyacinthacine $A_3(2)$ and natural hyacinthacine A_3 provided by Asano

Figure 11. Re-recorded ¹³C NMR spectrum of the mixture of synthetic hyacinthacine $A_3(2)$ and natural hyacinthacine A_3 provided by Asano

Figure 12. GC-MS spectrum of the mixture of synthetic hyacinthacine A_3 (2) and natural hyacinthacine A_3 provided by Asano

Reference:

- Izquierdo, I.; Plaza, M. T.; Franco, F. *Tetrahedron: Asymmetry* 2002, 13, 1581–1585.
- [2] Ribes, C.; Falomir, E. Carda, M.; Marco, J. A. Tetrahedron 2009, 65, 6965–6971.
- [3] Asano, N.; Kuroi, H.; Ikeda, K.; Kizu, H.; Kameda, Y.; Kato, A.; Adachi, I.; Watson, A. A.; Nash, R. J.; Fleet, G. W. J. *Tetrahedron: Asymmetry* 2000, *11*, 1–8.