- Electronic Supporting Information (ESI) -

Nucleophilicities and Lewis basicities of imidazoles, benzimidazoles, and benzotriazoles

Mahiuddin Baidya, Frank Brotzel and Herbert Mayr*

Department Chemie Ludwig-Maximilians-Universität München (LMU) Butenandtstraße 5-13 (Haus F) 81377 München (Germany)

herbert.mayr@cup.uni-munchen.de

Table of Contents

	Page
Materials	S 3
Product studies	S 3
Determination of equilibrium constants	S6
Kinetics for the reactions of amines $1-3$ with benzhydrylium ions (Ar ₂ CH ⁺) in CH CN and DMSO	S15
Kinetics for the reactions of imidazoles 1 with benzhydrylium ions in H_2O	S49
References	S58

Materials

Commercially available CH₃CN (VWR, Prolabo, HPLC-gradient grade) and DMSO (>99.8%, Acros extra dry) were used as received. The benzhydrylium tetrafluoroborates $Ar_2CH^+ BF_4^-$ were prepared as described before.^[S1] All imidazoles, benzimidazoles, and benzotriazoles were purchased from commercial sources and (if necessary) purified by crystallizations or distillation prior to use.

Product studies

¹H NMR chemical shifts are reported in ppm relative to the deuterated solvent as internal standard ($\delta_{\rm H} = 7.24$ for CDCl₃). The ¹³C NMR chemical shifts refer to the solvent as internal standard ($\delta_{\rm C} = 77.23$ for CDCl₃).

Product studies with imidazoles (1)

General procedure: The blue CH₃CN solution of $(dma)_2$ CH⁺BF₄⁻ (1.0 equiv.) was added drop by drop to a solution of an appropriate imidazole **1** (10.0 eqiv.) in dry CH₃CN (10 mL) under nitrogen at room temperature. After the disappearance of the blue color of the solution, solid K₂CO₃ (1.2 equiv.) was added, and the reaction mixture was allowed to stir for a few more minutes. Then the solvent was removed in vacuum and the residue was directly transferred to the column (neutral alumina^[S2]). Purification by column chromatography (EtOAc/isohexane, 1:1 as eluent) gave the desired product.

Reaction of imidazole (1a) with (dma)_2CH^+BF_4^-: Imidazole **1a** (200 mg, 2.94 mmol) and $(dma)_2CH^+BF_4^-$ (100 mg, 0.294 mmol) gave a light brown gummy solid (82.0 mg, 0.256 mmol, 87 %).

 $\delta_{\rm H}$ (300 MHz, CDCl₃) 2.92 (s, 12 H), 6.32 (s, 1 H), 6.65 (d, *J* 8.8 Hz, 4 H), 6.82-8.83 (m, 1 H), 6.95 (d, *J* 8.8 Hz, 4 H), 7.04 (m, 1 H) and 7.38 (s, 1 H); $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 40.7, 64.5, 112.5, 119.6, 127.6, 128.9, 129.0, 137.5 and 150.3.

Reaction of 4-methylimidazole (1e) with (dma)_2CH^+BF_4^-: 4-Methylimidazole **1e** (242 mg, 2.95 mmol) and $(dma)_2CH^+BF_4^-$ (100 mg, 0.294 mmol) gave a 1.0 : 0.4 mixture of two regioisomers as a yellow oil (80.8 mg, 0.242 mmol, 82 %).

Major isomer: $\delta_{\rm H}$ (300 MHz, CDCl₃) 2.18 (s, 3 H), 2.92 (s, 12 H), 6.24 (s, 1 H), 6.54 (s, 1 H), 6.65 (d, 4 H, *J* 9.0 Hz), 6.95 (d, 4 H, *J* 9.0 Hz) and 7.24-7.25 (m, 1 H); $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 14.0, 40.7, 64.3, 112.4, 116.0, 127.8, 129.0, 136.6, 137.9 and 150.3.

Product studies with benzimidazoles (2)

General procedure: The blue DMSO solution of $(dma)_2CH^+BF_4^-$ (1.0 equiv.) was added drop by drop to a solution of an appropriate benzimidazole **2** (3.0 equiv.) in dry DMSO (12 mL) under nitrogen at room temperature. After the disappearance of the blue color of the solution, solid K₂CO₃ (1.2 equiv.) was added, and reaction mixture was allowed to stir for a few more minutes. Then, the mixture was diluted with H₂O and extracted with ethyl acetate. The extract was washed several times with water and then dried (MgSO₄). The solvent was removed in vacuum, and the gummy residue was purified by column chromatography (neutral alumina, EtOAc/isohexane, 1:2 as eluent) to give pure product.

Reaction of benzimidazole (2a) with (dma)_2CH^+BF_4^-: Benzimidazole **2a** (104 mg, 0.880 mmol) and $(dma)_2CH^+BF_4^-$ (100 mg, 0.294 mmol) gave a gummy oil (82.3 mg, 0.222 mmol, 76 %).

 $\delta_{\rm H}$ (400 MHz, CDCl₃) 3.00 (s, 12 H), 6.65 (s, 1 H), 6.73 (d, *J* 8.8 Hz, 4 H), 7.06 (d, *J* 8.8 Hz, 4 H), 7.20-7.33 (m, 3 H), 7.71 (s, 1 H) and 7.88 (d, *J* 8.0 Hz, 1 H); $\delta_{\rm C}$ (101 MHz, CDCl₃) 40.6, 63.1, 111.4, 112.5, 120.2, 122.3, 122.8, 126.4, 129.1, 134.2, 143.0, 143.9 and 150.3.

Reaction of 5–methylbenzimidazole (2d) with (dma)_2CH^+BF_4^-: 5-Methylbenzimidazole **2d** (117 mg, 0.885 mmol) and $(dma)_2CH^+BF_4^-$ (100 mg, 0.294 mmol) gave 1 : 1 mixture of two regioisomers as a yellow gummy oil (83.1 mg, 0.216 mmol, 74 %).

 $\delta_{\rm H}$ (400 MHz, CDCl₃) 2.39/2.44 (2 s, 2 × 3 H), 2.92/2.93 (2 s, 2 × 12 H), 6.54/6.55 (2 s, 2 × 1 H) = 2 H), 6.64-6.67 (m, 2 × 4 H = 8 H), 6.96-7.07 (m, 2 × 6 H = 12 H), 7.57-7.58 (m, 1 H + 2 H = 3 H), 7.68 (d, *J* = 8.2 Hz, 1 H); $\delta_{\rm C}$ (101 MHz, CDCl₃) 21.7/22.0 (2 × C), 40.6 (2 × C), 62.7/63.1 (2 × C), 110.8/110.9 (2 × C), 112.5 (2 × C), 119.8/120.0 (2 × C), 123.9/124.2 (2 × C), 126.6/126.7 (2 × C), 129.1 (2 × C), 131.8/132.5/132.6/143.6 (4 × C), 142.4/142.6/143.0/144.7 (4 × C) and 150.1 (2 × C).

Reaction of 5,6-dimethylbenzimidazole (2f) with (dma)_2CH^+BF_4^-: 5,6-Dimethylbenzimidazole **2f** (129 mg, 0.882 mmol) and $(dma)_2CH^+BF_4^-$ (100 mg, 0.294 mmol) gave a colorless solid (98.0 mg, 0.246 mmol, 84 %); mp. 193 °C.

 $\delta_{\rm H}$ (400 MHz, CDCl₃) 2.27 (s, 3 H), 2.33 (s, 3 H), 2.92 (s, 12 H), 6.52 (s, 1 H), 6.65 (d, *J* 8.8 Hz, 4 H), 6.96-6.98 (m, 5 H), 7.51 (s, 1 H) and 7.54 (s, 1 H); $\delta_{\rm C}$ (101 MHz, CDCl₃) 20.5, 20.8, 40.6, 62.8, 111.2, 112.6, 120.3, 126.9, 129.1, 131.0, 131.8, 133.1, 142.4, 143.0 and 150.3.

Determination of equilibrium constants

Equilibrium constants were measured by UV/Vis spectroscopy in acetonitrile as follows: To solutions of the benzhydrylium tetrafluoroborates in acetonitrile small volumes of stock solutions of amines 1-3 were added and the decay of the absorptions was monitored. When the absorbance was constant, another portion of stock solution was added. This procedure was repeated four to eight times for each benzhydrylium salt solution.

Assuming a proportionality between the absorbances and the concentrations of the benzhydrylium ions, the equilibrium constants (K) can be expressed by the absorbances of the benzhydrylium ions before (A₀) and after (A) the addition of amines **1–3** using the following equation.

$$Ar_2CH^+ + NR_3 \xrightarrow{K} Ar_2CH-NR_3^+$$

$$K = \frac{[Ar_2CH-NR_3^+]}{[Ar_2CH^+][NR_3]} = \frac{A_0 - A}{A[NR_3]}$$

Where $[NR_3] = [NR_3]_0 - [Ar_2CH-NR_3^+]$

The temperature of the solutions during all equilibrium studies was kept constant at 20 °C using a circulating bath thermostat.

Equilibrium constant for the reaction of 1-methylimidazole (**1b**) and (lil)₂CH⁺BF₄⁻ ε [(lil)₂CH⁺BF₄⁻ at 631 nm] = 1.32 × 10⁵ M⁻¹ cm⁻¹ and d = 0.5 cm

Entry	$[\mathbf{1b}]_0 \pmod{L^{-1}}$	Α	$[(lil)_2 CH^+ BF_4^-]_{eq} (mol L^{-1})$	$K (L mol^{-1})$
0	0	0.767	$1.164 imes 10^{-5}$	
1	$3.582 imes10^{-4}$	0.701	1.064×10^{-5}	2.59×10^{2}
2	$1.424 imes 10^{-3}$	0.563	$8.536 imes10^{-6}$	2.49×10^{2}
3	$2.478 imes10^{-3}$	0.471	7.154×10^{-6}	$2.45 imes 10^2$
4	$3.520 imes 10^{-3}$	0.405	$6.150 imes10^{-6}$	2.44×10^{2}
5	$4.550 imes 10^{-3}$	0.355	$5.390 imes 10^{-6}$	2.44×10^{2}
6	$5.568 imes10^{-3}$	0.316	$4.796 imes 10^{-6}$	2.43×10^{2}
7	$6.574 imes 10^{-3}$	0.284	$4.315 imes 10^{-6}$	2.44×10^{2}
8	$7.569 imes 10^{-3}$	0.258	$3.921 imes10^{-6}$	2.44×10^{2}
0	0	0.683	$1.037 imes 10^{-5}$	
1	1.078×10^{-3}	0.536	$8.126 imes 10^{-6}$	2.49×10^{2}
2	$2.495 imes 10^{-3}$	0.419	$6.355 imes10^{-6}$	2.44×10^{2}
3	3.891×10^{-3}	0.343	$5.208 imes10^{-6}$	$2.44 imes 10^2$
4	$5.265 imes10^{-3}$	0.291	$4.411 imes 10^{-6}$	2.44×10^{2}
5	$6.618 imes 10^{-3}$	0.252	$3.830 imes10^{-6}$	2.43×10^{2}

6	7.951×10^{-3}	0.223	3.378×10^{-6}	$2.44 imes 10^2$
0	0	0.700	$1.062 imes10^{-5}$	
1	$1.479 imes 10^{-3}$	0.511	$7.754 imes10^{-6}$	2.43×10^{2}
2	$2.934 imes 10^{-3}$	0.404	$6.126 imes 10^{-6}$	2.41×10^{2}
3	$4.365 imes 10^{-3}$	0.334	$5.067 imes10^{-6}$	$2.40 imes 10^2$
4	$5.774 imes 10^{-3}$	0.284	$4.316 imes 10^{-6}$	$2.40 imes 10^2$
5	$7.161 imes 10^{-3}$	0.248	$3.756 imes10^{-6}$	$2.40 imes 10^2$
6	8.527×10^{-3}	0.220	$3.335 imes 10^{-6}$	2.39×10^2

$$K_{\rm av}(20 \ ^{\circ}{\rm C}) = 2.44 \times 10^2 \ {\rm L \ mol}^{-1}$$

Equilibrium constant for the reaction of 1-methylimidazole (**1b**) and (jul)₂CH⁺BF₄⁻ ε [(jul)₂CH⁺BF₄⁻ at 635 nm] = 1.73 × 10⁵ M⁻¹ cm⁻¹ and d = 0.5 cm

Entry	$[\mathbf{1b}]_0 \pmod{L^{-1}}$	Α	$[(jul)_2 CH^+ BF_4^-]_{eq} (mol L^{-1})$	$K (L \text{ mol}^{-1})$
0	0	0.606	$7.022 imes10^{-6}$	
1	$1.211 imes 10^{-3}$	0.465	$5.390 imes 10^{-6}$	2.40×10^{2}
2	2.399×10^{-3}	0.378	$4.373 imes 10^{-6}$	2.40×10^{2}
3	3.564×10^{-3}	0.317	$3.666 imes 10^{-6}$	2.42×10^2
4	$4.708 imes 10^{-3}$	0.274	$3.170 imes10^{-6}$	2.41×10^{2}
5	$5.831 imes 10^{-3}$	0.240	$2.774 imes10^{-6}$	2.43×10^{2}
6	$6.932 imes 10^{-3}$	0.214	$2.472 imes10^{-6}$	2.43×10^{2}
0	0	0.617	$7.150 imes 10^{-6}$	
1	$1.241 imes 10^{-3}$	0.470	$5.447 imes10^{-6}$	2.42×10^2
2	$2.459 imes 10^{-3}$	0.379	$4.390 imes 10^{-6}$	2.43×10^{2}
3	3.652×10^{-3}	0.319	$3.690 imes 10^{-6}$	2.42×10^2
4	4.823×10^{-3}	0.274	$3.176 imes10^{-6}$	2.42×10^2
5	$5.971 imes10^{-3}$	0.240	$2.782 imes10^{-6}$	2.43×10^{2}
6	7.098×10^{-3}	0.214	$2.477 imes10^{-6}$	2.43×10^{2}

 $K_{\rm av}(20 \ ^{\circ}{\rm C}) = 2.42 \times 10^2 \ {\rm L \ mol}^{-1}$

Equilibrium constant for the reaction of 1-methylimidazole (**1b**) and (ind)₂CH⁺BF₄⁻ ε [(ind)₂CH⁺BF₄⁻ at 616 nm] = 1.29 × 10⁵ M⁻¹ cm⁻¹ and d = 0.5 cm

Entry	$[\mathbf{1b}]_0 (\text{mol } L^{-1})$	Α	$[(ind)_2 CH^+ BF_4^-]_{eq} (mol L^{-1})$	$K (L mol^{-1})$
0	0	0.578	8.981×10^{-6}	
1	$1.766 imes10^{-4}$	0.299	$4.651 imes 10^{-6}$	5.39×10^{3}
2	$3.529 imes10^{-4}$	0.199	$3.096 imes 10^{-6}$	5.46×10^{3}
3	$5.289 imes10^{-4}$	0.148	$2.302 imes10^{-6}$	5.53×10^{3}
4	7.045×10^{-4}	0.119	1.848×10^{-6}	5.51×10^{3}
5	8.798×10^{-4}	0.099	$1.542 imes10^{-6}$	5.50×10^{3}
6	1.055×10^{-4}	0.085	$1.316 imes 10^{-6}$	5.52×10^{3}
0	0	0.596	$9.268 imes 10^{-6}$	
1	$1.793 imes10^{-4}$	0.301	$4.671 imes 10^{-6}$	5.62×10^{3}
2	$3.582 imes10^{-4}$	0.201	$3.130 imes 10^{-6}$	5.55×10^{3}
3	$5.368 imes10^{-4}$	0.150	$2.335 imes10^{-6}$	5.58×10^{3}
4	7.150×10^{-4}	0.121	1.875×10^{-6}	5.54×10^{3}
5	8.929×10^{-4}	0.100	$1.552 imes10^{-6}$	5.58×10^{3}

0	0	0.001	$0.226 \dots 10^{-6}$	
0	0	0.601	9.336 × 10	2
1	1.829×10^{-4}	0.300	$4.666 imes 10^{-6}$	5.60×10^{3}
2	$3.655 imes10^{-4}$	0.198	$3.071 imes 10^{-6}$	5.66×10^{3}
3	$5.477 imes10^{-4}$	0.149	$2.318 imes10^{-6}$	$5.58 imes 10^3$
4	7.295×10^{-4}	0.118	$1.831 imes10^{-6}$	$5.65 imes 10^3$
5	$9.110 imes 10^{-4}$	0.098	$1.523 imes10^{-6}$	5.64×10^{3}
6	1.092×10^{-3}	0.084	$1.307 imes 10^{-6}$	5.63×10^{3}

 $K_{\rm av}(20 \ {\rm ^{\circ}C}) = 5.56 \times 10^3 \ {\rm L \ mol}^{-1}$

Equilibrium constant for the reaction of 1-methylimidazole and $(thq)_2CH^+BF_4^ \varepsilon [(thq)_2CH^+BF_4^- at 620 \text{ nm}] = 1.01 \times 10^5 \text{ M}^{-1} \text{ cm}^{-1} \text{ and } d = 0.5 \text{ cm}$

Entry	$[\mathbf{1b}]_0 (\text{mol } L^{-1})$	Α	$[(thq)_2 CH^+ BF_4^-]_{eq} (mol L^{-1})$	K (L mol ⁻¹)
0	0	0.373	7.417×10^{-6}	
1	$1.205 imes10^{-4}$	0.185	$3.684 imes 10^{-6}$	8.66×10^{3}
2	2.409×10^{-4}	0.122	$2.421 imes10^{-6}$	8.72×10^{3}
3	$3.609 imes 10^{-4}$	0.091	1.812×10^{-6}	8.67×10^{3}
4	4.808×10^{-4}	0.073	$1.443 imes 10^{-6}$	8.68×10^{3}
5	$6.004 imes10^{-4}$	0.061	$1.203 imes10^{-6}$	8.64×10^{3}
0	0	0.366	$7.268 imes 10^{-6}$	
1	$1.242 imes10^{-4}$	0.177	$3.528 imes 10^{-6}$	$8.78 imes 10^3$
2	$2.481 imes10^{-4}$	0.115	$2.282 imes10^{-6}$	8.96×10^{3}
3	3.718×10^{-4}	0.086	$1.715 imes10^{-6}$	8.81×10^{3}
4	4.952×10^{-4}	0.068	$1.355 imes 10^{-6}$	8.87×10^{3}
5	$6.184 imes10^{-4}$	0.057	$1.141 imes10^{-6}$	8.72×10^{3}
0	0	0.349	$6.932 imes 10^{-6}$	
1	$1.194 imes10^{-4}$	0.175	$3.473 imes 10^{-6}$	$8.58 imes 10^3$
2	$2.385 imes10^{-4}$	0.115	$2.280 imes10^{-6}$	$8.70 imes 10^3$
3	$3.575 imes10^{-4}$	0.086	$1.706 imes10^{-6}$	8.67×10^{3}
4	4.762×10^{-4}	0.069	$1.373 imes 10^{-6}$	8.56×10^{3}
5	$5.946 imes10^{-4}$	0.058	1.160×10^{-6}	8.40×10^{3}

 $K_{\rm av}(20 \ ^{\circ}{\rm C}) = 8.69 \times 10^3 \ {\rm L \ mol}^{-1}$

Equilibrium constant for the reaction of 1-phenylimidazole (1c) and (ind)₂CH⁺BF₄⁻ ε [(ind)₂CH⁺BF₄⁻ at 616 nm] = 1.29 × 10⁵ M⁻¹ cm⁻¹ and d = 0.5 cm

Entry	$[1e]_{*} (mol I^{-1})$	Λ	$[(ind), CH^+BE^{-1}]$ (mol I ⁻¹)	$K(I \text{ mol}^{-1})$
Linuy		A	$[(IIIII)_2 CIT DI _4]_{eq} (IIIOI L)$	K(LIII0I)
0	0	0.660	$1.025 imes 10^{-5}$	
1	$3.105 imes 10^{-3}$	0.504	$7.831 imes 10^{-6}$	$9.07 imes 10^1$
2	$6.081 imes 10^{-3}$	0.409	$6.361 imes 10^{-6}$	$8.96 imes 10^1$
3	$8.937 imes 10^{-3}$	0.344	$5.340 imes 10^{-6}$	$8.99 imes 10^1$
4	$1.168 imes 10^{-2}$	0.296	$4.601 imes 10^{-6}$	9.00×10^{1}
5	$1.432 imes 10^{-2}$	0.261	4.058×10^{-6}	$8.95 imes 10^1$
0	0	0.617	$9.585 imes 10^{-6}$	
1	2.917×10^{-3}	0.475	$7.378 imes10^{-6}$	$9.38 imes 10^1$
2	$5.720 imes 10^{-3}$	0.390	$6.057 imes10^{-6}$	9.11×10^{1}
3	$8.417 imes 10^{-3}$	0.329	$5.113 imes 10^{-6}$	$9.12 imes 10^1$

4	1.101×10^{-2}	0.287	4.462×10^{-6}	8.97×10^1
5	$1.351 imes 10^{-2}$	0.253	$3.930 imes10^{-6}$	$8.99 imes 10^1$
0	0	0.639	$9.931 imes 10^{-6}$	
1	$1.801 imes 10^{-3}$	0.541	$8.405 imes10^{-6}$	$9.28 imes 10^1$
2	$4.134 imes 10^{-3}$	0.451	7.014×10^{-6}	$9.10 imes 10^1$
3	$6.394 imes 10^{-3}$	0.386	$6.002 imes10^{-6}$	$9.12 imes 10^1$
4	8.583×10^{-3}	0.338	$5.252 imes10^{-6}$	$9.10 imes 10^1$
5	$1.123 imes 10^{-2}$	0.293	$4.554 imes 10^{-6}$	$9.04 imes 10^1$

 $K_{\rm av}(20 \ ^{\circ}{\rm C}) = 9.08 \times 10^1 \ {\rm L \ mol}^{-1}$

Equilibrium constant for the reaction of 1-phenylimidazole (1c) and (thq)₂CH⁺BF₄⁻ ε [(thq)₂CH⁺BF₄⁻ at 620 nm] = 1.01 × 10⁵ M⁻¹ cm⁻¹ and d = 0.5 cm

Entry	$[\mathbf{1c}]_0 \pmod{L^{-1}}$	Α	$[(thq)_2 CH^+ BF_4^-]_{eq} (mol L^{-1})$	K (L mol ⁻¹)
0	0	0.541	1.076×10^{-5}	
1	$1.346 imes 10^{-3}$	0.426	8.472×10^{-6}	1.91×10^{2}
2	$2.927 imes10^{-3}$	0.344	$6.833 imes10^{-6}$	1.85×10^{2}
3	$4.470 imes10^{-3}$	0.288	$5.730 imes10^{-6}$	1.83×10^{2}
4	$6.226 imes 10^{-3}$	0.242	4.812×10^{-6}	1.82×10^{2}
5	$7.935 imes 10^{-3}$	0.209	$4.150 imes10^{-6}$	1.82×10^{2}
0	0	0.517	1.028×10^{-5}	
1	$1.604 imes 10^{-3}$	0.393	7.810×10^{-6}	$1.88 imes 10^2$
2	$3.171 imes10^{-3}$	0.320	$6.361 imes10^{-6}$	1.82×10^{2}
3	$4.701 imes10^{-3}$	0.269	$5.356 imes10^{-6}$	1.81×10^{2}
4	$6.686 imes 10^{-3}$	0.222	$4.421 imes10^{-6}$	1.81×10^{2}
5	$8.613 imes 10^{-3}$	0.189	$3.764 imes 10^{-6}$	1.81×10^{2}
0	0	0.495	$9.835 imes 10^{-6}$	
1	$1.588 imes10^{-3}$	0.378	$7.522 imes10^{-6}$	1.84×10^{2}
2	$3.139 imes 10^{-3}$	0.308	$6.127 imes10^{-6}$	1.81×10^{2}
3	$4.655 imes10^{-3}$	0.260	$5.172 imes10^{-6}$	1.80×10^{2}
4	$6.622 imes 10^{-3}$	0.215	$4.273 imes10^{-6}$	$1.80 imes 10^2$
5	8.531×10^{-3}	0.182	$3.627 imes10^{-6}$	1.81×10^2

 $K_{\rm av}(20 \ ^{\circ}{\rm C}) = 1.83 \times 10^2 \ {\rm L \ mol}^{-1}$

Equilibrium constant for the reaction of 1–phenylimidazole (1c) and $(pyr)_2CH^+BF_4^- \varepsilon$ [(pyr)₂CH⁺BF₄⁻ at 612 nm] = $1.39 \times 10^5 \text{ M}^{-1} \text{ cm}^{-1}$ and d = 0.5 cm

Entry	$[1Ph Imi]_0 (mol L^{-1})$	Α	$[(pyr)_2CH^+BF_4^-]_{eq} (mol L^{-1})$	K (L mol ⁻¹)
0	0	0.516	$7.422 imes10^{-6}$	
1	$1.213 imes10^{-3}$	0.323	$4.653 imes 10^{-6}$	4.81×10^{2}
2	$2.405 imes10^{-3}$	0.238	$3.423 imes10^{-6}$	4.71×10^{2}
3	$3.578 imes10^{-3}$	0.189	$2.716 imes10^{-6}$	4.66×10^{2}
4	$4.731 imes 10^{-3}$	0.157	$2.255 imes 10^{-6}$	4.62×10^{2}
5	$5.865 imes 10^{-3}$	0.133	1.915×10^{-6}	4.63×10^{2}
0	0	0.527	7.585×10^{-6}	
1	$1.831 imes 10^{-3}$	0.282	4.057×10^{-6}	4.63×10^{2}
2	$3.026 imes 10^{-3}$	0.216	$3.102 imes 10^{-6}$	4.61×10^{2}

3	4.201×10^{-3}	0.176	$2.527 imes10^{-6}$	4.56×10^{2}
4	$5.357 imes10^{-3}$	0.147	2.116×10^{-6}	$4.58 imes 10^2$
0	0	0.521	$7.496 imes 10^{-6}$	
1	$9.322 imes10^{-5}$	0.494	$7.108 imes10^{-6}$	$5.15 imes 10^2$
2	3.956×10^{-4}	0.425	$6.110 imes 10^{-6}$	4.91×10^{2}
3	6.857×10^{-4}	0.373	$5.373 imes10^{-6}$	4.83×10^{2}
4	$9.643 imes10^{-4}$	0.333	4.798×10^{-6}	$4.78 imes 10^2$
5	$1.232 imes10^{-3}$	0.302	$4.342 imes10^{-6}$	4.73×10^{2}
6	$1.490 imes10^{-3}$	0.276	$3.965 imes 10^{-6}$	$4.70 imes 10^2$
7	$1.737 imes 10^{-3}$	0.253	3.644×10^{-6}	4.69×10^{2}

 $K_{\rm av}(20 \ ^{\circ}{\rm C}) = 4.72 \times 10^2 \ {\rm L \ mol}^{-1}$

Equilibrium constant for the reaction of 1-phenylimidazole and $(dma)_2CH^+BF_4^ \varepsilon [(dma)_2CH^+BF_4^-]$ at 605 nm] = 1.46 × 10⁵ M⁻¹ cm⁻¹ and d = 0.5 cm

Entry	$[1c]_0 \pmod{L^{-1}}$	Α	$[(dma)_2 CH^+ BF_4^-]_{eq} (mol L^{-1})$	K (L mol ⁻¹)
0	0	0.573	7.828×10^{-6}	
1	$6.084 imes10^{-5}$	0.443	$6.046 imes 10^{-6}$	4.90×10^{3}
2	$1.212 imes10^{-4}$	0.357	$4.875 imes10^{-6}$	5.01×10^{3}
3	$2.108 imes10^{-4}$	0.276	$3.774 imes 10^{-6}$	5.05×10^{3}
4	2.992×10^{-4}	0.225	$3.079 imes 10^{-6}$	5.06×10^{3}
5	3.867×10^{-4}	0.190	2.597×10^{-6}	5.07×10^{3}
0	0	0.572	$7.811 imes 10^{-6}$	
1	$6.084 imes10^{-5}$	0.439	5.998×10^{-6}	5.03×10^{3}
2	$1.212 imes10^{-4}$	0.356	4.858×10^{-6}	5.03×10^{3}
3	$2.108 imes10^{-4}$	0.276	$3.766 imes 10^{-6}$	5.05×10^{3}
4	$2.992 imes10^{-4}$	0.223	$3.051 imes10^{-6}$	5.12×10^{3}
5	3.867×10^{-4}	0.188	2.571×10^{-6}	5.13×10^{3}
0	0	0.788	$1.077 imes 10^{-5}$	
1	3.176×10^{-5}	0.689	$9.418 imes 10^{-6}$	4.64×10^{3}
2	$9.486 imes10^{-5}$	0.541	7.385×10^{-6}	4.91×10^{3}
3	1.574×10^{-4}	0.444	$6.064 imes 10^{-6}$	4.95×10^{3}
4	$2.195 imes10^{-4}$	0.378	$5.161 imes 10^{-6}$	4.93×10^{3}
5	$2.810 imes10^{-4}$	0.326	$4.453 imes 10^{-6}$	5.00×10^{3}
6	3.419×10^{-4}	0.288	$3.937 imes 10^{-6}$	4.99×10^{3}

 $K_{\rm av}(20 \ ^{\circ}{\rm C}) = 4.99 \times 10^3 \ {\rm L \ mol}^{-1}$

Equilibrium constant for the reaction of 1-methylbenzimidazole (**2b**) and (ind)₂CH⁺BF₄⁻ ε [(ind)₂CH⁺BF₄⁻ at 616 nm] = 1.29 × 10⁵ M⁻¹ cm⁻¹ and d = 0.5 cm

Entry	$[\mathbf{2b}]_0 \pmod{L^{-1}}$	Α	$[(ind)_2 CH^+ BF_4^-]_{eq} (mol L^{-1})$	$K (L \text{ mol}^{-1})$
0	0	0.761	$1.183 imes 10^{-5}$	
1	7.482×10^{-4}	0.649	$1.009 imes 10^{-5}$	$2.25 imes 10^2$
2	$2.227 imes10^{-3}$	0.526	$8.172 imes10^{-6}$	1.94×10^{2}
3	$4.401 imes 10^{-3}$	0.411	$6.390 imes 10^{-6}$	1.84×10^{2}
4	$6.525 imes10^{-3}$	0.338	$5.257 imes10^{-6}$	1.80×10^{2}
5	8.600×10^{-3}	0.290	$4.506 imes 10^{-6}$	1.75×10^{2}

6	1.063×10^{-2}	0.253	$3.936 imes 10^{-6}$	1.73×10^{2}
0	0	0.777	$1.207 imes 10^{-5}$	
1	$1.850 imes10^{-3}$	0.559	$8.692 imes 10^{-6}$	2.03×10^{2}
2	3.664×10^{-3}	0.451	$7.004 imes10^{-6}$	1.89×10^{2}
3	$5.442 imes 10^{-3}$	0.378	$5.866 imes 10^{-6}$	$1.84 imes 10^2$
4	7.186×10^{-3}	0.326	$5.061 imes 10^{-6}$	$1.80 imes 10^2$
5	8.898×10^{-3}	0.287	$4.457 imes 10^{-6}$	$1.78 imes 10^2$
6	1.058×10^{-2}	0.257	$3.988 imes 10^{-6}$	1.76×10^{2}
0	0	0.793	$1.233 imes 10^{-5}$	
1	$1.869 imes 10^{-3}$	0.571	$8.869 imes10^{-6}$	2.02×10^2
2	$3.700 imes10^{-3}$	0.457	$7.106 imes 10^{-6}$	1.90×10^{2}
3	$5.496 imes 10^{-3}$	0.383	$5.957 imes10^{-6}$	1.84×10^{2}
4	$7.257 imes10^{-3}$	0.331	$5.146 imes 10^{-6}$	$1.80 imes 10^2$
5	8.984×10^{-3}	0.292	$4.534 imes 10^{-6}$	$1.77 imes 10^2$
6	$1.068 imes 10^{-2}$	0.261	$4.052 imes 10^{-6}$	1.75×10^{2}

 $K_{\rm av}(20 \ {\rm ^{\circ}C}) = 1.86 \times 10^2 \ {\rm L \ mol^{-1}}$

Equilibrium constant for the reaction of 1-methylbenzimidazole (**2b**) and $(thq)_2CH^+BF_4^ \varepsilon [(thq)_2CH^+BF_4^- at 620 \text{ nm}] = 1.01 \times 10^5 \text{ M}^{-1} \text{ cm}^{-1} \text{ and } d = 0.5 \text{ cm}$

Entry	$[\mathbf{2b}]_0 \pmod{L^{-1}}$	Α	$[(thq)_2 CH^+ BF_4^-]_{eq} (mol L^{-1})$	$K (L \text{ mol}^{-1})$
0	0	0.645	$1.283 imes10^{-5}$	
1	1.364×10^{-3}	0.463	$9.203 imes 10^{-6}$	2.81×10^{2}
2	2.707×10^{-3}	0.368	$7.312 imes 10^{-6}$	2.69×10^{2}
3	$4.028 imes 10^{-3}$	0.308	$6.125 imes10^{-6}$	2.60×10^{2}
4	$5.329 imes 10^{-3}$	0.265	$5.268 imes10^{-6}$	2.55×10^{2}
5	$6.610 imes 10^{-3}$	0.233	$4.631 imes 10^{-6}$	2.52×10^{2}
6	7.871×10^{-3}	0.208	$4.133 imes 10^{-6}$	2.49×10^{2}
0	0	0.584	$1.160 imes10^{-5}$	
1	$1.330 imes 10^{-3}$	0.423	$8.407 imes10^{-6}$	$2.78 imes 10^2$
2	2.640×10^{-3}	0.338	$6.721 imes10^{-6}$	2.65×10^{2}
3	3.930×10^{-3}	0.283	$5.629 imes10^{-6}$	$2.58 imes 10^2$
4	$5.200 imes 10^{-3}$	0.244	$4.857 imes10^{-6}$	2.53×10^{2}
5	$6.451 imes 10^{-3}$	0.215	$4.275 imes 10^{-6}$	2.50×10^{2}
6	$7.683 imes 10^{-3}$	0.193	$3.833 imes 10^{-6}$	2.46×10^{2}
0	0	0.606	1.205×10^{-5}	
1	$1.385 imes 10^{-3}$	0.433	$8.615 imes10^{-6}$	2.81×10^{2}
2	$2.749 imes 10^{-3}$	0.344	$6.845 imes10^{-6}$	2.67×10^{2}
3	$4.090 imes 10^{-3}$	0.286	$5.693 imes 10^{-6}$	2.61×10^{2}
4	$5.410 imes10^{-3}$	0.246	$4.896 imes 10^{-6}$	2.56×10^{2}
5	$6.709 imes 10^{-3}$	0.216	$4.296 imes 10^{-6}$	2.53×10^{2}
6	$7.988 imes10^{-3}$	0.193	$3.846 imes 10^{-6}$	2.49×10^{2}

 $K_{\rm av}(20 \ ^{\circ}{\rm C}) = 2.60 \times 10^2 \ {\rm L \ mol}^{-1}$

Equilibrium constant for the reaction of 1-methylbenzimidazole (2b) and (pyr) ₂ CH ⁺ BI	F4
ε [(pyr) ₂ CH ⁺ BF ₄ ⁻ at 612 nm] = 1.39×10^5 M ⁻¹ cm ⁻¹ and $d = 0.5$ cm	

Entry	$[\mathbf{2b}]_0 \pmod{L^{-1}}$	Α	$[(pyr)_2 CH^+ BF_4^-]_{eq} (mol L^{-1})$	K (L mol ⁻¹)
0	0	0.569	$8.185 imes10^{-6}$	
1	$3.779 imes10^{-4}$	0.407	$5.850 imes10^{-6}$	$1.05 imes 10^3$
2	$7.543 imes10^{-4}$	0.322	$4.626 imes 10^{-6}$	$1.02 imes 10^3$
3	$1.129 imes10^{-3}$	0.268	$3.850 imes 10^{-6}$	9.89×10^{2}
4	$1.503 imes10^{-3}$	0.230	$3.310 imes 10^{-6}$	9.70×10^{2}
5	$1.874 imes10^{-3}$	0.202	$2.911 imes10^{-6}$	9.54×10^{2}
6	$2.245 imes 10^{-3}$	0.180	$2.587 imes10^{-6}$	9.49×10^{2}
0	0	0.614	$8.829 imes10^{-6}$	1.06×10^{3}
1	$3.963 imes10^{-4}$	0.432	$6.213 imes 10^{-6}$	1.01×10^{3}
2	7.908×10^{-4}	0.340	$4.893 imes 10^{-6}$	9.86×10^{2}
3	$1.184 imes10^{-3}$	0.282	$4.057 imes10^{-6}$	9.70×10^{2}
4	$1.575 imes10^{-3}$	0.241	$3.471 imes 10^{-6}$	9.64×10^{2}
5	$1.965 imes10^{-3}$	0.210	$3.025 imes10^{-6}$	9.53×10^{2}
6	$2.353 imes10^{-3}$	0.187	$2.694 imes 10^{-6}$	1.06×10^{3}
0	0	0.610	$8.777 imes10^{-6}$	
1	3.760×10^{-4}	0.430	$6.186 imes10^{-6}$	1.11×10^{3}
2	7.505×10^{-4}	0.342	$4.921 imes 10^{-6}$	1.04×10^{3}
3	$1.123 imes10^{-3}$	0.284	$4.086 imes 10^{-6}$	1.01×10^{3}
4	$1.495 imes10^{-3}$	0.244	$3.514 imes 10^{-6}$	$9.92 imes 10^2$
5	$1.865 imes10^{-3}$	0.214	$3.075 imes 10^{-6}$	$9.82 imes 10^2$
6	$2.233 imes10^{-3}$	0.191	$2.747 imes10^{-6}$	9.68×10^{2}

 $K_{\rm av}(20 \ ^{\circ}{\rm C}) = 9.99 \times 10^2 \ {\rm L \ mol}^{-1}$

Equilibrium constant for the reaction of 1-methylbenzimidazole (**2b**) and $(dma)_2CH^+BF_4^- \varepsilon [(dma)_2CH^+BF_4^- at 605 nm] = 1.46 \times 10^5 M^{-1} cm^{-1} and d = 0.5 cm$

Entry	$[\mathbf{2b}]_0 \pmod{L^{-1}}$	Α	$[(dma)_2 CH^+ BF_4^-]_{eq} (mol L^{-1})$	K (L mol ⁻¹)
0	0	0.624	$8.518 imes10^{-6}$	
1	$3.604 imes 10^{-5}$	0.452	$6.175 imes10^{-6}$	$1.11 imes 10^4$
2	$7.177 imes 10^{-5}$	0.352	$4.814 imes10^{-6}$	$1.11 imes 10^4$
3	$1.072 imes10^{-4}$	0.288	$3.934 imes 10^{-6}$	$1.11 imes 10^4$
4	1.423×10^{-4}	0.243	$3.319 imes 10^{-6}$	1.11×10^{4}
5	$1.945 imes 10^{-4}$	0.196	$2.684 imes10^{-6}$	$1.11 imes 10^4$
6	$2.460 imes 10^{-4}$	0.165	$2.252 imes 10^{-6}$	1.11×10^{4}
0	0	0.584	$7.973 imes 10^{-6}$	
1	3.437×10^{-5}	0.427	$5.829 imes10^{-6}$	1.12×10^{4}
2	$6.847 imes 10^{-5}$	0.336	$4.591 imes 10^{-6}$	1.11×10^{4}
3	$1.023 imes 10^{-4}$	0.277	$3.781 imes 10^{-6}$	1.10×10^{4}
4	1.359×10^{-4}	0.234	$3.203 imes 10^{-6}$	1.10×10^{4}
5	$2.022 imes10^{-4}$	0.182	$2.481 imes10^{-6}$	1.09×10^{4}
6	$2.674 imes 10^{-4}$	0.147	$2.009 imes10^{-6}$	1.09×10^{4}
0	0	0.619	$8.454 imes10^{-6}$	
1	$1.796 imes 10^{-5}$	0.517	$7.065 imes10^{-6}$	1.17×10^{4}
2	5.366×10^{-5}	0.393	$5.366 imes 10^{-6}$	1.12×10^{4}
3	$8.905 imes 10^{-5}$	0.315	$4.305 imes10^{-6}$	$1.11 imes 10^4$

4	$1.242 imes 10^{-4}$	0.262	$3.585 imes 10^{-6}$	$1.11 imes 10^4$
5	$1.590 imes 10^{-4}$	0.225	$3.070 imes10^{-6}$	$1.11 imes 10^4$
6	$1.935 imes 10^{-4}$	0.196	$2.677 imes10^{-6}$	$1.11 imes 10^4$

 $K_{\rm av}(20 \ ^{\circ}{\rm C}) = 1.11 \times 10^4 \ {\rm L \ mol}^{-1}$

Equilibrium constant for the reaction of 1-methylbenzotriazole (**3b**) and (mfa)₂CH⁺BF₄⁻ ε [(mfa)₂CH⁺BF₄⁻ at 586 nm] = 1.59 × 10⁵ M⁻¹ cm⁻¹ and d = 0.5 cm

Entry	$[\mathbf{3b}]_0 \pmod{L^{-1}}$	Α	$[(mfa)_2 CH^+ BF_4^-]_{eq} (mol L^{-1})$	K (L mol ⁻¹)
0	0	0.715	$8.985 imes10^{-6}$	
1	2.396×10^{-3}	0.475	$5.967 imes10^{-6}$	$2.04 imes 10^2$
2	4.732×10^{-3}	0.355	$4.455 imes 10^{-6}$	$2.05 imes 10^2$
3	7.011×10^{-3}	0.279	$3.500 imes 10^{-6}$	$2.10 imes 10^2$
4	9.235×10^{-3}	0.229	$2.873 imes10^{-6}$	$2.14 imes 10^2$
5	1.141×10^{-2}	0.194	$2.442 imes10^{-6}$	2.16×10^{2}
0	0	0.748	$9.402 imes 10^{-6}$	
1	2.461×10^{-3}	0.492	$6.180 imes10^{-6}$	$2.04 imes 10^2$
2	4.859×10^{-3}	0.364	$4.575 imes10^{-6}$	$2.07 imes 10^2$
3	7.197×10^{-3}	0.288	$3.616 imes 10^{-6}$	$2.09 imes 10^2$
4	9.478×10^{-3}	0.236	$2.962 imes 10^{-6}$	2.13×10^{2}
5	1.170×10^{-2}	0.199	$2.500 imes10^{-6}$	2.16×10^{2}
0	0	0.675	$8.483 imes10^{-6}$	
1	2.263×10^{-3}	0.456	$5.734 imes 10^{-6}$	$2.04 imes 10^2$
2	4.473×10^{-3}	0.341	$4.285 imes10^{-6}$	$2.09 imes 10^2$
3	6.633×10^{-3}	0.271	$3.402 imes 10^{-6}$	$2.12 imes 10^2$
4	8.742×10^{-3}	0.223	$2.804 imes10^{-6}$	2.16×10^{2}
5	1.080×10^{-2}	0.189	$2.374 imes 10^{-6}$	$2.20 imes 10^2$

 $K_{\rm av}(20 \ ^{\circ}{\rm C}) = 2.11 \times 10^2 \ {\rm L \ mol}^{-1}$

Entry	$[\mathbf{3b}]_0 \pmod{L^{-1}}$	Α	$[(pfa)_2CH^+BF_4^-]_{eq} (mol L^{-1})$	$K (L \text{ mol}^{-1})$
0		0.607	$9.594 imes 10^{-6}$	
1	$7.730 imes 10^{-5}$	0.370	$5.851 imes10^{-6}$	8.60×10^{3}
2	$1.540 imes 10^{-4}$	0.265	$4.187 imes10^{-6}$	8.57×10^{3}
3	$2.300 imes 10^{-4}$	0.207	$3.264 imes 10^{-6}$	8.51×10^{3}
4	$3.055 imes 10^{-4}$	0.171	$2.703 imes10^{-6}$	8.34×10^{3}
5	$4.546 imes 10^{-4}$	0.125	$1.970 imes10^{-6}$	8.40×10^{3}
0		0.620	$9.788 imes10^{-6}$	
1	$7.976 imes 10^{-5}$	0.372	$5.870 imes10^{-6}$	$8.70 imes 10^3$
2	$1.589 imes10^{-4}$	0.264	$4.167 imes10^{-6}$	8.67×10^{3}
3	$2.373 imes 10^{-4}$	0.205	$3.231 imes 10^{-6}$	8.63×10^{3}
4	$3.151 imes 10^{-4}$	0.168	$2.646 imes 10^{-6}$	8.56×10^{3}
5	$4.688 imes 10^{-4}$	0.123	$1.939 imes10^{-6}$	8.51×10^{3}

Equilibrium constant for the reaction of 1-methylbenzotriazole (**3b**) and (pfa)₂CH⁺BF₄⁻ ε [(pfa)₂CH⁺BF₄⁻ at 592 nm] = 1.27 × 10⁵ M⁻¹ cm⁻¹ and d = 0.5 cm

6	$6.200 imes 10^{-4}$	0.097	$1.531 imes 10^{-6}$	$8.48 imes 10^3$
0		0.645	$1.019 imes 10^{-5}$	
1	$8.284 imes10^{-5}$	0.381	$6.014 imes10^{-6}$	$8.74 imes 10^3$
2	$1.650 imes 10^{-4}$	0.269	$4.254 imes 10^{-6}$	8.65×10^{3}
3	$2.464 imes 10^{-4}$	0.209	3.299×10^{-6}	$8.56 imes 10^3$
4	$4.071 imes10^{-4}$	0.143	$2.265 imes 10^{-6}$	$8.52 imes 10^3$
5	$5.652 imes10^{-4}$	0.110	$1.735 imes 10^{-6}$	$8.44 imes 10^3$
6	$7.206 imes 10^{-4}$	0.089	1.412×10^{-6}	8.35×10^3

$$K_{\rm av}(20 \ ^{\circ}{\rm C}) = 8.54 \times 10^2 \ {\rm L \ mol}^{-1}$$

Kinetics for the reactions of amines 1–3 with benzhydrylium ions (Ar_2CH^+) in CH_3CN and DMSO at 20 °C

The reactions of imidazoles **1**, benzimidazoles **2**, and benzotriazoles **3** with the colored benzhydrylium tetrafluoroborates were followed photometrically at the vicinity of absorption maxima of Ar_2CH^+ by UV-Vis spectrometry using stopped flow or J&M instrument as described previously.^[S1] Al experiments were performed under pseudo-first-order conditions (excess of amines **1**–**3**) at 20 °C in dry CH₃CN or in dry DMSO. First-order rate constants k_{obs} were obtained by least-square fitting of the absorbances to the mono exponential curve $A_t = A_0 \exp(-k_{obs}t) + C$. Because of $k_{obs} = k$ [amine], the second-order rate constants k (L mol⁻¹ s⁻¹) were derived from the slope of the linear plot of k_{obs} (s⁻¹) vs. [amine].

Kinetics of the reactions of imidazole (1a) with $(Ar)_2CH^+$ in CH_3CN at 20°C

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

Reactivity parameters for imidazole (1a) in CH₃CN

Ar_2CH^+	E	$k (M^{-1} s^{-1})$		
$(ind)_2 CH^+$	-8.76	1.24×10^{2}		<i>N</i> = 11.47
$(thq)_2 CH^+$	-8.22	3.52×10^{2}	4 F	<i>s</i> = 0.79
$(pyr)_2CH^+$	-7.69	1.14×10^{3}		
$(dma)_2 CH^+$	-7.02	2.74×10^{3}	5	
			2 = 0.7853x + 0.0055	
			y = 0.7835X + 9.0035	
			$\vec{\Omega}$ $\mathbf{R}^2 = 0.988$	
			0	
			-9 -8 -7	
			E>	

$[(ind)_2 CH^+]$ (mol L ⁻¹)	[1a] (mol L^{-1})	$k_{ m obs} \ ({ m s}^{-1})$	$\lambda = 620 \text{ nm}$	$k (\mathrm{M}^{-1} \mathrm{s}^{-1})$
1.58 × 10 ⁻⁵	$\begin{array}{c} 4.66 \times 10^{-3} \\ 9.31 \times 10^{-3} \\ 1.12 \times 10^{-2} \\ 1.40 \times 10^{-2} \\ 1.86 \times 10^{-2} \\ 2.33 \times 10^{-2} \end{array}$	0.621 1.25 1.53 1.90 2.53 3.18	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{}\\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	1.37 × 10 ²
$[(thq)_2CH^+]$ $(mol \ L^{-1})$	[1a] (mol L^{-1})	$k_{ m obs}$ (s ⁻¹)	$\lambda = 620 \text{ nm}$	$k (\mathbf{M}^{-1} \mathbf{s}^{-1})$
2.86 × 10 ⁻⁴	$\begin{array}{l} 4.50\times10^{-3}\\ 9.00\times10^{-3}\\ 1.35\times10^{-2}\\ 1.80\times10^{-2}\\ 2.25\times10^{-2} \end{array}$	2.00 4.13 6.24 8.44 10.6	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.78×10^{2}
$[(pyr)_2CH^+]$ (mol L ⁻¹)	[1a] (mol L^{-1})	$k_{ m obs} \ ({ m s}^{-1})$	$\lambda = 620 \text{ nm}$	$k (\mathrm{M}^{-1} \mathrm{s}^{-1})$
1.53 × 10 ⁻⁵	$\begin{array}{c} 4.66 \times 10^{-3} \\ 9.31 \times 10^{-3} \\ 1.40 \times 10^{-2} \\ 1.86 \times 10^{-2} \\ 2.33 \times 10^{-2} \end{array}$	7.17 14.6 22.1 29.5 37.1	$ \begin{array}{c} 40 \\ 32 \\ 24 \\ \hline & 16 \\ \hline & 8 \\ 0 \\ \hline & 0 \\ \hline \\ \hline \hline & 0 \\ \hline \hline & 0 \\ \hline \hline & 0 \\ \hline \hline \hline \hline & 0 \\ \hline \hline$	1.61 × 10 ³

Kinetics of the reactions of imidazole (1a) with $(Ar)_2CH^+$ in DMSO at 20°C

 $[(lil)_2 CH^+]$ k_{obs} (s⁻¹) $\lambda = 614 \text{ nm}$ [**1b**] k $(\text{mol } L^{-1})$ $(M^{-1} s^{-1})$ $(\text{mol } L^{-1})$ 1.27×10^{-5} 2.38×10^{-3} 1.55×10^{-1} 23.3 0.4 4.17×10^{-3} 1.97×10^{-1} 5.95×10^{-3} 2.40×10^{-1} 0.3 1.19×10^{-2} 3.77×10^{-1} 0.2 $k \text{ obs } / \text{ s}^{-1}$ y = 23.304x + 0.10010.1 $R^2 = 0.9999$ 0 0.005 0.015 0 0.01 $[Nu] / mol L^{-1}$ $[(ind)_2 CH^+]$ [**1b**] $k_{\rm obs}$ (s⁻¹) $\lambda = 614 \text{ nm}$ k $(\text{mol } L^{-1})$ $(M^{-1} s^{-1})$ $(mol L^{-1})$ 4.94×10^{-6} 5.95×10^{-4} 1.83×10^{-1} 1.88×10^{2} 3 1.19×10^{-3} 2.67×10^{-1} 2.38×10^{-3} 4.83×10^{-1} 2 4.17×10^{-3} 7.95×10^{-1} $k \, {\rm obs} \, / \, {\rm s}^{-1}$ 5.95×10^{-3} 1.05 1 y = 188.42x + 0.0274 1.19×10^{-2} 2.32 $R^2 = 0.9953$ 0 0.005 0.015 0 0.01 $[Nu] / mol L^{-1}$ $[(thq)_2CH^+]$ [**1**b] k $\lambda = 614 \text{ nm}$ $k_{\rm obs}$ (s^{-1}) $(M^{-1} s^{-1})$ $(mol L^{-1})$ $(mol L^{-1})$ 2.00×10^{-5} 5.95×10^{-4} 4.09×10^{-1} 4.81×10^{2} 7 6.26×10^{-1} 1.19×10^{-3} 6 2.38×10^{-3} 1.19 5 4.17×10^{-3} 2.01 4 5.95×10^{-3} 2.76 3 1.19×10^{-2} 5.84 $k \text{ obs } / \text{ s}^{-1}$ 2 y = 480.88x + 0.04051 $R^2 = 0.9983$ 0

0.005

 $[Nu] / mol L^{-1}$ -

0

0.01

0.015

Kinetics of the reactions of 1-methylimidazole (10) with $(Ar)_2CH$ in CH_3CN at 20 ⁻¹	Kinetics of the reactions of	1-methylimidazole (1b) with (Ar) ₂ CH	⁺ in CH ₃ CN at 20°C
---	------------------------------	---------------------	-------------------------------	--

$[(pyr)_2CH^+]$ $(mol L^{-1})$	[1b] (mol L ⁻¹)	$k_{\rm obs}$ (s ⁻¹)	$\lambda = 614 \text{ nm}$	$k (M^{-1} s^{-1})$
8.15 × 10 ⁻⁶	$\begin{array}{c} 5.95 \times 10^{-4} \\ 1.19 \times 10^{-3} \\ 2.38 \times 10^{-3} \\ 4.17 \times 10^{-3} \\ 5.95 \times 10^{-3} \\ 1.19 \times 10^{-2} \end{array}$	1.10 1.71 3.46 5.83 7.92 17.4	$ \begin{array}{c} 20 \\ 16 \\ 12 \\ 8 \\ 2 \\ 0 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	1.44 × 10 ³

Reactivity parameters for 1-methylimidazole (1b) in CH₃CN

Ar_2CH^+	E	$k (M^{-1} s^{-1})$	
$(lil)_2 CH^+$	-10.04	2.33×10^{1}	<i>N</i> = 11.90
$(ind)_2 CH^+$	-8.76	1.88×10^{2}	$4 \int s = 0.73$
$(thq)_2 CH^+$	-8.22	4.81×10^{2}	3
$(pyr)_2CH^+$	-7.69	1.44×10^{3}	
$(dma)_2 CH^+$	-7.02	3.48×10^{3}	
			$\begin{array}{c c} & y = 0.7336x + 8.7274 \\ & R^2 = 0.9973 \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$

 4.11×10^{-3}

 5.14×10^{-3}

3.09

3.84

$[(thq)_2CH^+]$ (mol L ⁻¹)	[1c] (mol L ⁻¹)	$k_{ m obs} \ ({ m s}^{-1})$	$\lambda = 620 \text{ nm}$	k ($\mathbf{M}^{-1} \mathbf{s}^{-1}$)
2.75 × 10 ⁻⁴	$\begin{array}{c} 1.25\times10^{-2}\\ 1.88\times10^{-2}\\ 2.19\times10^{-2}\\ 2.51\times10^{-2}\\ 3.13\times10^{-2}\\ 3.76\times10^{-2} \end{array}$	1.84 2.43 2.73 3.04 3.61 4.21	$\int_{-\frac{1}{2}}^{5} \frac{4}{3} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{2}{2} \int_{0}^{\frac{1}{2}} \frac{y = 9.437E + 01x + 6.590E - 01}{R^{2} = 1.000E + 00} \\ 0 0.01 0.02 0.03 0.04 \\ [Nu] / mol L-1 \longrightarrow$	94.4
$[(pyr)_2CH^+]$ (mol L ⁻¹)	[1c] (mol L^{-1})	$k_{\rm obs}$ (s ⁻¹)	$\lambda = 608 \text{ nm}$	$k (M^{-1} s^{-1})$
1.68 × 10 ⁻⁵	$\begin{array}{c} 3.09 \times 10^{-3} \\ 5.14 \times 10^{-3} \\ 8.23 \times 10^{-3} \\ 1.13 \times 10^{-2} \\ 1.44 \times 10^{-2} \\ 1.85 \times 10^{-2} \end{array}$	1.38 1.93 2.76 3.56 4.38 5.45	$ \begin{array}{c} $	2.64 × 10 ²
$[(dma)_2CH^+]$ $(mol L^{-1})$	[1c] (mol L ⁻¹)	$k_{\rm obs}$ (s ⁻¹)	$\lambda = 608 \text{ nm}$	k (M ⁻¹ s ⁻¹)
1.76×10^{-5}	5.14×10^{-4} 1.03×10^{-3} 2.06×10^{-3} 3.09×10^{-3}	0.465 0.848 1.61 2.36	$\begin{bmatrix} 5 \\ 4 \\ 3 \end{bmatrix}$	7.29×10^{2}

 $\frac{k_{obs}}{s} \frac{1}{s^{-1}}$

0

0

= 7.288E + 02x + 9.920E - 02

 $R^2 = 1.000E+00$

0.004

.

0.006

y

0.002

 $[Nu] / mol L^{-1}$

Kinetics of the reactions of 1-phenylimidazole (1c) with $(Ar)_2CH^+$ in CH_3CN at 20°C

				$k (M^{-1} s^{-1})$	E	Ar_2CH^+
<i>N</i> = 11.31				9.44×10^{1}	-8.22	$(thq)_2CH^+$
<i>s</i> = 0.67	-		▲ 5 _Г	2.64×10^{2}	-7.69	$(pyr)_2CH^+$
		••	4 -	7.29×10^{2}	-7.02	$(dma)_2 CH^+$
				6.75×10^{3}	-5.89	$(mpa)_2 CH^+$
	t + 7.5235	y = 0.6655	× 2 50 1	5.21×10^{3}	-5.53	$(mor)_2 CH^+$
	.9868	$\mathbf{R}^2 = 0$		8.14×10^{3}	-3.85	$(mfa)_2 CH^+$
	5 2	7	0			
	-3 -3	- /	-9			
	->	E				

Reactivity	narameters	for 1.	nhenvlin	alozebin	(1c) in	CH.	CN
Reactivity	parameters	101 1-	рпенуши	Inuazoie	(10) Ш	UII 3	

$[(lil)_2CH^+]$ $(mol L^{-1})$	[1d] (mol L ⁻¹)	$k_{\rm obs}$ (s ⁻¹)	$\lambda = 633 \text{ nm}$	$k (M^{-1} s^{-1})$
2.29 × 10 ⁻⁶	$\begin{array}{l} 6.18 \times 10^{-4} \\ 1.24 \times 10^{-3} \\ 2.47 \times 10^{-3} \\ 4.33 \times 10^{-3} \\ 6.18 \times 10^{-3} \\ 1.24 \times 10^{-2} \end{array}$	$\begin{array}{c} 1.32 \times 10^{-2} \\ 2.39 \times 10^{-2} \\ 4.74 \times 10^{-2} \\ 8.27 \times 10^{-2} \\ 1.17 \times 10^{-1} \\ 2.43 \times 10^{-1} \end{array}$	$\begin{array}{c c} & 0.3 \\ & 0.2 \\ \hline & & 0.1 \\ \hline & & & 0 \end{array} \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	19.5

Kinetics of the reactions of 2-methylimidazole (1d) with $(Ar)_2CH^+$ in CH_3CN at 20°C

$[(ind)_2 CH^+]$ $(mol L^{-1})$	[1d] (mol L ⁻¹)	$k_{ m obs} \ ({ m s}^{-1})$	$\lambda = 619 \text{ nm}$	$k (\mathbf{M}^{-1} \mathbf{s}^{-1})$
7.74 × 10 ⁻⁶	$\begin{array}{c} 6.18 \times 10^{-4} \\ 1.24 \times 10^{-3} \\ 2.47 \times 10^{-3} \\ 4.33 \times 10^{-3} \\ 6.18 \times 10^{-3} \\ 1.24 \times 10^{-2} \end{array}$	$\begin{array}{c} 1.04 \times 10^{-1} \\ 1.93 \times 10^{-1} \\ 3.88 \times 10^{-1} \\ 7.13 \times 10^{-1} \\ 1.03 \\ 2.12 \end{array}$	$\begin{array}{c} 2.5 \\ 2 \\ 1.5 \\ 3 \\ 3 \\ 3 \\ 5 \\ 0 \\ 5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	1.72×10^{2}

Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2010

			$k (M^{-1} s^{-1})$	E	Ar_2CH^{-}
<i>N</i> = 11.74			1.95×10^{1}	-10.04	$(lil)_2 CH^+$
<i>s</i> = 0.76	_	4 Г	$5.27 imes 10^1$	-9.45	(jul) ₂ CH ⁺
	•	1 2	1.72×10^{2}	-8.76	$(ind)_2 CH^+$
	•	3 -	4.73×10^{2}	-8.22	$(thq)_2 CH^+$
	A CONTRACT OF A CONTRACT.		1.47×10^{3}	-7.69	$(pyr)_2CH^+$
		k	3.29×10^{3}	-7.02	$(dma)_2CH^+$
5	y = 0.7591x + 8.9095	<u>60</u> 1 –			
	$R^2 = 0.9961$	0			
	-10 -9 -8 -7	-11			
	$E \longrightarrow$				

Reactivity parameters for 2-methylimidazole (1d) in CH₃CN

$[(lil)_2 CH^+]$ (mol L ⁻¹)	[1e] (mol L^{-1})	$k_{ m obs} \ ({ m s}^{-1})$	$\lambda = 614 \text{ nm}$	$k (\mathrm{M}^{-1} \mathrm{~s}^{-1})$
1.27 × 10 ⁻⁵	$\begin{array}{c} 8.90 \times 10^{-4} \\ 1.78 \times 10^{-3} \\ 3.56 \times 10^{-3} \\ 6.25 \times 10^{-3} \\ 8.90 \times 10^{-3} \\ 1.78 \times 10^{-2} \end{array}$	$\begin{array}{c} 2.58 \times 10^{-2} \\ 4.21 \times 10^{-2} \\ 8.33 \times 10^{-2} \\ 1.48 \times 10^{-1} \\ 2.14 \times 10^{-1} \\ 4.24 \times 10^{-1} \end{array}$	$ \begin{array}{c} 0.5 \\ 0.4 \\ 0.3 \\ \hline \\ $	23.7
$[(jul)_2CH^+]$ $(mol L^{-1})$	[1e] (mol L^{-1})	$k_{ m obs} \ ({ m s}^{-1})$	$\lambda = 614 \text{ nm}$	$k (\mathrm{M}^{-1} \mathrm{~s}^{-1})$
1.19 × 10 ⁻⁵	$\begin{array}{c} 8.90 \times 10^{-4} \\ 1.78 \times 10^{-3} \\ 3.56 \times 10^{-3} \\ 6.25 \times 10^{-3} \\ 8.90 \times 10^{-3} \\ 1.78 \times 10^{-2} \end{array}$	$\begin{array}{c} 6.18 \times 10^{-2} \\ 1.10 \times 10^{-1} \\ 2.20 \times 10^{-1} \\ 3.95 \times 10^{-1} \\ 5.69 \times 10^{-1} \\ 1.14 \end{array}$	$ \begin{array}{c} 1.2 \\ 1 \\ 0.8 \\ 0.6 \\ \hline & 0.4 \\ \hline & 0.2 \\ \hline & 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	64.1
$[(ind)_2CH^+]$ $(mol L^{-1})$	[1e] (mol L-1)	$k_{ m obs} \ ({ m s}^{-1})$	$\lambda = 614 \text{ nm}$	$k (\mathrm{M}^{-1} \mathrm{s}^{-1})$
6.20×10^{-6}	$\begin{array}{c} 8.90 \times 10^{-4} \\ 1.78 \times 10^{-3} \\ 3.56 \times 10^{-3} \\ 6.25 \times 10^{-3} \\ 8.90 \times 10^{-3} \\ 1.78 \times 10^{-2} \end{array}$	1.66×10^{-1} 3.17×10^{-1} 6.44×10^{-1} 1.17 1.68 3.47	$\begin{array}{c} 4 \\ 3 \\ 2 \\ 3 \\ 3 \\ 2 \\ 3 \\ 3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 3 \\ 1 \\ 1 \\ 3 \\ 2 \\ 1 \\ 1 \\ 3 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	1.96×10^2

Kinetics of the reactions of 4-methylimidazole (1e) with $(Ar)_2CH^+$ in CH_3CN at 20°C

$[(thq)_2 \overline{CH^+}]$ (mol L ⁻¹)	[1e] (mol L^{-1})	k_{obs} (s ⁻¹)	$\lambda = 614 \text{ nm}$	$\frac{k}{(\mathrm{M}^{-1}~\mathrm{s}^{-1})}$
2.00 × 10 ⁻⁵	$\begin{array}{c} 8.90 \times 10^{-4} \\ 1.78 \times 10^{-3} \\ 3.56 \times 10^{-3} \\ 6.25 \times 10^{-3} \\ 8.90 \times 10^{-3} \\ 1.78 \times 10^{-2} \end{array}$	$\begin{array}{c} 4.69 \times 10^{-1} \\ 8.90 \times 10^{-1} \\ 1.78 \\ 3.23 \\ 4.54 \\ 9.30 \end{array}$	$ \begin{array}{c} 10 \\ 8 \\ 6 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	5.23 × 10 ²
$[(pyr)_2CH^+]$ $(mol L^{-1})$	[1e] (mol L^{-1})	$k_{ m obs}$ (s ⁻¹)	$\lambda = 614 \text{ nm}$	k (M ⁻¹ s ⁻¹)
8.15 × 10 ⁻⁵	$\begin{array}{l} 8.90 \times 10^{-4} \\ 1.78 \times 10^{-3} \\ 3.56 \times 10^{-3} \\ 6.25 \times 10^{-3} \\ 8.90 \times 10^{-3} \\ 1.78 \times 10^{-2} \end{array}$	1.34 2.52 5.33 9.21 14.2 30.9	$\begin{array}{c} 35\\ 28\\ 21\\ 14\\ 7\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	1.76 × 10 ³
$[(dma)_2CH^+]$ $(mol L^{-1})$	[1e] (mol L-1)	$k_{ m obs}$ (s ⁻¹)	$\lambda = 614 \text{ nm}$	k (M ⁻¹ s ⁻¹)
1.03×10^{-5}	$\begin{array}{l} 8.90 \times 10^{-4} \\ 1.78 \times 10^{-3} \\ 3.56 \times 10^{-3} \\ 6.25 \times 10^{-3} \\ 8.90 \times 10^{-3} \\ 1.78 \times 10^{-2} \end{array}$	$\begin{array}{c} 3.65 \\ 7.15 \\ 1.55 \times 10^1 \\ 2.78 \times 10^1 \\ 4.01 \times 10^1 \\ 8.10 \times 10^1 \end{array}$	$\begin{bmatrix} 100 \\ 80 \\ 60 \\ 40 \\ 20 \\ 0 \end{bmatrix} = \begin{bmatrix} y = 4591.8x - 0.7845 \\ 0 \end{bmatrix} = \begin{bmatrix} xy = 4591.8x - 0.7845 \\ 0$	4.59×10^{3}

Reactivity pai	ameters for	4-methylimida	zole (1e) in CE	I3CN	
Ar_2CH^+	E	$k (M^{-1} s^{-1})$			
$(lil)_2 CH^+$	-10.04	2.37×10^{1}	^{4.00}	۹	<i>N</i> = 11.79
(jul) ₂ CH ⁺	-9.45	6.41×10^{1}	3.00	•	<i>s</i> = 0.77
$(ind)_2 CH^+$	-8.76	1.96×10^{2}	5.00	•	
$(thq)_2 CH^+$	-8.22	5.23×10^{2}	2.00		
$(pyr)_2CH^+$	-7.69	1.76×10^{3}	k	• $y = 0.7719x + 9.1008$	
$(dma)_2 CH^+$	-7.02	4.59×10^{3}	မိတ္ 1.00 –	$R^2 = 0.997$	
			0.00		
			0.00	i	
			-11	-10 -9 -8 -7	
				$E \longrightarrow$	

 $[(jul)_2CH^+]$ k_{obs} (s⁻¹) $\lambda = 635 \text{ nm}$ [**1f**] k $(\text{mol } L^{-1})$ $(M^{-1} s^{-1})$ $(mol L^{-1})$ 1.71×10^{-5} 3.14×10^{-3} 49.6 0.150 1 6.28×10^{-3} 0.306 9.42×10^{-3} 0.457 0.8 1.26×10^{-2} 0.618 0.6 $k \operatorname{obs} / \operatorname{s}^{-1}$ 1.57×10^{-2} 0.774 0.4 y = 49.586x - 0.00660.2 $R^2 = 0.9999$ 0 0.005 0.01 0.015 0.02 0 $[Nu] / mol L^{-1}$ $[(ind)_2 CH^+]$ k_{obs} (s⁻¹) [**1f**] $\lambda = 612 \text{ nm}$ k $(M^{-1} s^{-1})$ $(\text{mol } L^{-1})$ $(mol L^{-1})$ 1.68×10^{-5} 2.12×10^{-3} 2.44×10^{2} 0.559 3 4.23×10^{-3} 1.09 6.35×10^{-3} 1.59 2 8.46×10^{-3} 2.12 $k \text{ obs}/\text{s}^{-1}$ 1.06×10^{-2} 2.63 1 y = 244.28x + 0.046 $R^2 = 1$ 0 0.004 0 0.008 0.012 $[Nu] / mol L^{-1}$ $[(thq)_2CH^+]$ [**1f**] k $k_{\rm obs}$ $\lambda = 620 \text{ nm}$ (s^{-1}) $(M^{-1} s^{-1})$ $(\text{mol } L^{-1})$ $(\text{mol } L^{-1})$ 2.50×10^{-4} 3.14×10^{-3} 1.49 4.92×10^{2} 6 6.28×10^{-3} 3.03 5 7.85×10^{-3} 3.76 4 9.42×10^{-3} 4.59 3 1.10×10^{-2} $k \text{ obs } / \text{ s}^{-1}$ 5.34 2 y = 491.71x - 0.0633

1

0 0

0.003

 $[Nu] / mol L^{-1}$

0.006

Kinetics of the reactions of 2,4-dimethylimidazole (1f) with (Ar)₂CH⁺ in CH₃CN at 20°C

 $R^2 = 0.9998$

0.009

0.012

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

Reactivity parameters for 2.4-dimethylimidazole (11) in CE

			$k (M^{-1} s^{-1})$	E	Ar_2CH^+
<i>N</i> = 11.51			$4.96 imes 10^1$	-9.45	(jul) ₂ CH ⁺
<i>s</i> = 0.84	5	↓ ⁵ [2.44×10^{2}	-8.76	$(ind)_2 CH^+$
	4	4 -	4.92×10^{2}	-8.22	$(thq)_2 CH^+$
	3	3 -	2.06×10^{3}	-7.69	$(pyr)_2CH^+$
	2 - 0.8434x + 9.7049	<u>∼</u> 2 -	5.41×10^{3}	-7.02	$(dma)_2 CH^+$
	y = 0.0434x + 9.7049				
	R = 0.9902				
	0	0			
	-10 -9 -8 -7 -6	-10			
	E>				

 $[Nu] / mol L^{-1} \longrightarrow$

 $[(jul)_2CH^+]$ $k_{\rm obs}$ (s⁻¹) [**1**g] $\lambda = 635 \text{ nm}$ k $(M^{-1} s^{-1})$ $(\text{mol } L^{-1})$ $(\text{mol } L^{-1})$ 1.71×10^{-5} 3.02×10^{-3} 36.9 0.102 0.6 6.04×10^{-3} 0.212 0.5 9.05×10^{-3} 0.337 0.4 1.21×10^{-2} 0.439 k_{obs}/s^{-1} 0.3 y = 36.928x - 0.00730.2 1.51×10^{-2} 0.546 0.1 $R^2 = 0.9989$ 0.0 0.005 0.01 0.015 0 0.02 $[Nu] / mol L^{-1}$ $[(ind)_2 CH^+]$ [**1**g] $k_{\rm obs}$ (s⁻¹) k $\lambda = 610 \text{ nm}$ $(M^{-1} s^{-1})$ $(\text{mol } L^{-1})$ $(\text{mol } L^{-1})$ 1.48×10^{-5} 2.44×10^{-3} 1.20×10^{2} 0.299 1.2 3.91×10^{-3} 0.482 5.86×10^{-3} 0.9 0.724 7.82×10^{-3} 0.953 $k \text{ obs } / \text{ s}^{-1}$ 0.6 9.77×10^{-3} 1.18 y = 119.93x + 0.01250.3 $R^2 = 0.9996$ 0.0 0.0025 0.005 0.0075 0.01 0 $[Nu] / mol L^{-1} \longrightarrow$ $[(pyr)_2CH^+]$ [**1**g] $k_{\rm obs}$ (s⁻¹) k $\lambda = 610 \text{ nm}$ $(M^{-1} s^{-1})$ $(\text{mol } L^{-1})$ $(mol L^{-1})$ 1.68×10^{-5} 9.77×10^{-4} 1.03×10^{3} 0.990 6 1.95×10^{-3} 2.00 5 2.93×10^{-3} 3.04 4 3.91×10^{-3} 4.03 3 2 $k \text{ obs}/\text{s}^{-1}$ 4.89×10^{-3} 5.01 y = 1031.5x - 0.00821 $R^2 = 0.9999$ 0 $0.001 \ 0.002 \ 0.003 \ 0.004 \ 0.005$ 0

Kinetics of the Reactions of 1-trimethylsilylimidazole (1g) with (Ar)₂CH⁺ in CH₃CN at 20°C

 $[Nu] / mol L^{-1} \longrightarrow$

Reactivity parameters for 1-trimethylsilylimidazole (1g) in CH₃CN

<u> </u>		<u> </u>		
Ar_2CH^+	E	$k (M^{-1} s^{-1})$		
(jul) ₂ CH ⁺	-9.45	3.69×10^{1}		<i>N</i> = 11.43
$(ind)_2 CH^+$	-8.76	1.20×10^{2}	⁵ [<i>s</i> = 0.79
$(pyr)_2CH^+$	-7.69	1.02×10^{2}	4	
$(dma)_2 CH^+$	-7.02	2.74×10^{3}	3	
(mpa) ₂ CH ⁺	-5.89	2.34×10^{4}	$ \begin{array}{c} y = 0.7876x + 9.0061 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	
			-10 -9 -8 -7 -6 -5	
			$E \longrightarrow$	

$[(jul)_2CH^+]$ (mol L ⁻¹)	[2a] (mol L^{-1})	$k_{\rm obs}$ (s ⁻¹)	$\lambda = 635 \text{ nm}$	k (M ⁻¹ s ⁻¹)
$\begin{array}{c} 1.84 \times 10^{-5} \\ 1.83 \times 10^{-5} \\ 1.83 \times 10^{-5} \\ 1.83 \times 10^{-5} \\ 1.84 \times 10^{-5} \end{array}$	7.47×10^{-4} 1.49×10^{-3} 2.23×10^{-3} 2.97×10^{-3} 3.73×10^{-3}	$\begin{array}{c} 6.04\times 10^{-3}\\ 1.08\times 10^{-2}\\ 1.60\times 10^{-2}\\ 2.12\times 10^{-2}\\ 2.68\times 10^{-2} \end{array}$	$ \begin{array}{c} 0.03 \\ 0.02 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	6.97
$[(ind)_2CH^+]$ $(mol L^{-1})$	[2a] (mol L^{-1})	k_{obs} (s ⁻¹)	$\lambda = 620 \text{ nm}$	k (M ⁻¹ s ⁻¹)
1.96×10^{-5} 1.95×10^{-5} 1.95×10^{-5} 1.94×10^{-5}	$\begin{array}{c} 2.57 \times 10^{-4} \\ 5.11 \times 10^{-4} \\ 1.02 \times 10^{-3} \\ 1.53 \times 10^{-3} \end{array}$	5.66×10^{-3} 1.01×10^{-2} 1.99×10^{-2} 3.05×10^{-2}	$ \begin{array}{c} 0.04 \\ 0.03 \\ 0.02 \\ \hline y = 19.593x + 0.0003 \\ \hline R^2 = 0.9991 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	19.6
$[(thq)_2CH^+]$ $(mol L^{-1})$	[2a] (mol L^{-1})	$k_{ m obs} \ ({ m s}^{-1})$	$\lambda = 610 \text{ nm}$	$k (M^{-1} s^{-1})$
4.74×10^{-4}	$3.15 \times 10^{-3} \\ 5.25 \times 10^{-3} \\ 7.35 \times 10^{-3} \\ 9.45 \times 10^{-3} \\ 1.15 \times 10^{-2} $	0.194 0.331 0.469 0.606 0.741	$\begin{array}{c c} 0.8 \\ 0.6 \\ 0.4 \\ 0.2$	65.5

0

0

0.005

0.01

 $[Nu] / mol L^{-1} \longrightarrow$

1

0.015

Kinetics of the reactions of benzimidazo	le (2a) with $(Ar)_2CH^+$ in DMSO at 20°C
--	--

Reactivity parameters for benzimidazole (2a) in DMSO

Ar_2CH^+	Ε	$k (M^{-1} s^{-1})$		
(jul) ₂ CH ⁺	-9.45	6.97		<i>N</i> = 10.50
$(ind)_2 CH^+$	-8.76	1.96×10^{1}		<i>s</i> = 0.79
$(thq)_2 CH^+$	-8.22	$6.55 imes 10^1$		
$(pyr)_2CH^+$	-7.69	2.19×10^{2}		
$(dma)_2 CH^+$	-7.02	4.65×10^{2}		
			x = 0.7894x + 8.2875	
			$R^2 = 0.9872$	
			0	
			-10 -9 -8 -7 -6	
			$E \longrightarrow$	

Kinetics of the reactions of 1-methylbenzimidazole (2b) with (Ar)₂CH⁺ in CH₃CN at 20°C

Reactivity parameters for N-methylbenzimidazole (2b) in CH₃CN

 k_{obs} (s⁻¹) $[(jul)_2CH^+]$ [2c] $\lambda = 635 \text{ nm}$ k $(M^{-1} s^{-1})$ $(\text{mol } L^{-1})$ $(\text{mol } L^{-1})$ 1.85×10^{-5} 6.23×10^{-4} 3.80×10^{-3} 2.89 0.012 1.82×10^{-5} 5.33×10^{-3} 1.23×10^{-3} 1.82×10^{-5} 1.84×10^{-3} 6.94×10^{-3} 0.008 1.80×10^{-5} 2.43×10^{-3} 8.86×10^{-3} $k \text{ obs } / \text{ s}^{-1}$ 1.80×10^{-5} 3.04×10^{-3} 1.08×10^{-2} 0.004 y = 2.892x + 0.002 $R^2 = 0.997$ 0 0.001 0.002 0.003 0.004 0 $[Nu] / mol L^{-1}$ -

Reactivity parameters for 2-methylbenzimidazole (2c) in DMSO

<u> </u>				
Ar_2CH^+	Ε	$k (M^{-1} s^{-1})$		
(jul) ₂ CH ⁺	-9.45	2.89	3 –	<i>N</i> = 10.02
$(ind)_2 CH^+$	-8.76	1.08×10^{1}		<i>s</i> = 0.85
$(thq)_2 CH^+$	-8.22	3.38×10^{1}		
$(pyr)_2CH^+$	-7.69	1.39×10^{2}		
$(dma)_2 CH^+$	-7.02	2.75×10^{2}		
			$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	

 $[(jul)_2CH^+]$ k_{obs} (s⁻¹) [**2d**] $\lambda = 645 \text{ nm}$ k $(\text{mol } L^{-1})$ $(M^{-1} s^{-1})$ $(\text{mol } L^{-1})$ 1.51×10^{-5} 3.35×10^{-4} 4.02×10^{-3} 9.75 0.02 1.46×10^{-5} 6.92×10^{-3} 6.48×10^{-4} 1.51×10^{-5} 1.01×10^{-3} 1.03×10^{-2} 0.015 1.37×10^{-2} 1.50×10^{-5} 1.34×10^{-3} obs / S 0.01 1.50×10^{-5} 1.67×10^{-3} 1.70×10^{-2} y = 9.749x + 0.0010.005 $R^2 = 1.000$ 0 0.0005 0.001 0.0015 0.002 0 $[Nu] / mol L^{-1}$ $[(ind)_2 CH^+]$ k_{obs} (s⁻¹) [**2d**] $\lambda = 620 \text{ nm}$ k $(M^{-1} s^{-1})$ $(\text{mol } L^{-1})$ $(mol L^{-1})$ 1.12×10^{-5} 3.25×10^{-4} 8.78×10^{-3} 27.3 0.03 1.12×10^{-5} 1.32×10^{-2} 4.89×10^{-4}

Kinetics of the reactions of 5-methylbenzimidazole (2d) with $(Ar)_2CH^+$ in DMSO at 20°C

Reactivity parameters for 5-methylbenzimidazole (2d) in DMSO

Ar_2CH^+	Ε	$k (M^{-1} s^{-1})$	
(jul) ₂ CH ⁺	-9.45	9.75	<i>N</i> = 10.69
$(ind)_2 CH^+$	-8.76	$2.73 imes 10^1$	3.5 s = 0.79
$(thq)_2CH^+$	-8.22	9.13×10^{1}	
$(pyr)_2CH^+$	-7.69	3.19×10^{2}	2.5
$(dma)_2CH^+$	-7.02	6.37×10^{2}	
			x = 0.7882x + 8.4242
			$P^2 = 0.0842$
			0.5
			0.5
			-10 -9 -8 -7 -6
			$E \longrightarrow$

$[(jul)_2CH^+]$ $(mol \ L^{-1})$	[2e] (mol L^{-1})	$k_{ m obs} \ ({ m s}^{-1})$	$\lambda = 645 \text{ nm}$	$k (M^{-1} s^{-1})$
$\begin{array}{c} 1.90\times 10^{-5}\\ 1.89\times 10^{-5}\\ 1.88\times 10^{-5}\\ 1.89\times 10^{-5}\\ 1.82\times 10^{-5}\\ \end{array}$	$\begin{array}{l} 6.78 \times 10^{-4} \\ 1.35 \times 10^{-3} \\ 2.02 \times 10^{-3} \\ 2.70 \times 10^{-3} \\ 3.25 \times 10^{-3} \end{array}$	$\begin{array}{l} 4.38 \times 10^{-3} \\ 7.04 \times 10^{-3} \\ 1.00 \times 10^{-2} \\ 1.29 \times 10^{-2} \\ 1.62 \times 10^{-2} \end{array}$	$\begin{array}{c} 0.02 \\ 0.015 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	4.53
	[0]]	1	4	1

Kinetics of the reactions of 2,5-dimethylbenzimidazole (2e) with (Ar)₂CH⁺ in DMSO at 20°C

$[(thq)_2CH^+]$ $(mol L^{-1})$	[2e] (mol L ⁻¹)	$k_{\rm obs}$ (s ⁻¹)	$\lambda = 618 \text{ nm}$	$k (\mathbf{M}^{-1} \mathbf{s}^{-1})$
3.62×10^{-5}	$\begin{array}{l} 3.55\times10^{-3}\\ 6.21\times10^{-3}\\ 8.88\times10^{-3}\\ 1.15\times10^{-2}\\ 1.42\times10^{-2} \end{array}$	0.166 0.292 0.429 0.542 0.672	$ \begin{array}{c} 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	47.5

Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2010

Reactivity parameters for 2,5-dimethylbenzimidazole (2e) in DMSO

$[(lil)_2CH^+]$ (mol L ⁻¹)	[2f] (mol L^{-1})	$k_{ m obs}$ (s ⁻¹)	$\lambda = 640 \text{ nm}$	$k (M^{-1} s^{-1})$
$\begin{array}{l} 1.44 \times 10^{-5} \\ 1.44 \times 10^{-5} \\ 1.43 \times 10^{-5} \\ 1.42 \times 10^{-5} \\ 1.42 \times 10^{-5} \end{array}$	$\begin{array}{l} 6.06\times10^{-4}\\ 1.21\times10^{-3}\\ 1.80\times10^{-3}\\ 2.39\times10^{-3}\\ 2.98\times10^{-3} \end{array}$	$\begin{array}{l} 3.27\times10^{-3}\\ 6.65\times10^{-3}\\ 1.01\times10^{-2}\\ 1.36\times10^{-2}\\ 1.72\times10^{-2} \end{array}$	$\begin{array}{c} 0.02 \\ 0.015 \\ 0.01 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	5.87

Kinetics of the reactions of 5,6-dimethylbenzimidazole (2f) with $(Ar)_2CH^+$ in DMSO at 20°C

$[(ind)_2 CH^+]$ $(mol L^{-1})$	$[\mathbf{2f}] \pmod{L^{-1}}$	$k_{ m obs}$ (s ⁻¹)	$\lambda = 620 \text{ nm}$	$k (\mathbf{M}^{-1} \mathbf{s}^{-1})$
$\begin{array}{l} 1.46 \times 10^{-5} \\ 1.40 \times 10^{-5} \\ 1.47 \times 10^{-5} \\ 1.47 \times 10^{-5} \\ 1.49 \times 10^{-5} \end{array}$	$\begin{array}{c} 1.53 \times 10^{-4} \\ 2.94 \times 10^{-4} \\ 4.63 \times 10^{-4} \\ 6.14 \times 10^{-4} \\ 7.79 \times 10^{-4} \end{array}$	5.68×10^{-3} 1.07×10^{-2} 1.67×10^{-2} 2.24×10^{-2} 2.85×10^{-2}	$ \begin{array}{c} 0.03 \\ 0.02 \\ \hline \\ $	36.5

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

Reactivity parameters for 5,6-dimethylbenzimidazole (2f) in DMSO

Ar_2CH^+	Ε	$k (M^{-1} s^{-1})$		
$(lil)_2 CH^+$	-10.04	5.87		<i>N</i> = 11.08
(jul) ₂ CH ⁺	-9.45	1.46×10^{1}	4 F	<i>s</i> = 0.71
$(ind)_2 CH^+$	-8.76	3.65×10^{1}	3 -	
$(thq)_2 CH^+$	-8.22	1.18×10^{2}		
$(dma)_2 CH^+$	-7.02	8.01×10^{2}	x = 0.7120x + 7.8055	
			y = 0.7123x + 7.8333	
			R = 0.9962	
			-11 -10 -9 -8 -7 -6	
			E>	
			2	

$[(lil)_2 CH^+]$ $(mol L^{-1})$	[2g] (mol L ⁻¹)	$k_{ m obs}$ (s ⁻¹)	$\lambda = 640 \text{ nm}$	$k (\mathrm{M}^{-1} \mathrm{~s}^{-1})$
1.67×10^{-5} 1.68×10^{-5} 1.66×10^{-5} 1.67×10^{-5}	3.35×10^{-4} 6.75×10^{-4} 9.97×10^{-4} 1.34×10^{-3}	$\begin{array}{c} 1.87 \times 10^{-3} \\ 3.15 \times 10^{-3} \\ 4.85 \times 10^{-3} \\ 6.44 \times 10^{-3} \end{array}$	$ \begin{array}{c} 0.0075 \\ 0.005 \\ 0 \\ 0 \\ 0 \\ $	4.62
$[(jul)_2CH^+]$ (mol L ⁻¹)	[2g] (mol L^{-1})	$k_{ m obs}$ (s ⁻¹)	$\lambda = 645 \text{ nm}$	$k (\mathrm{M}^{-1} \mathrm{s}^{-1})$
1.51×10^{-5}	1.60×10^{-4}	2.68×10^{-3}		12.2

Kinetics of the reactions of 5-methoxybenzimidazole (2g) with $(Ar)_2CH^+$ in DMSO at 20°C

$(\text{mol } L^{-1})$	[2g] (mol L ⁻¹)	(s^{-1})	$\lambda = 643 \text{ mm}$	$(M^{-1} s^{-1})$
$\begin{array}{c} 1.51 \times 10^{-5} \\ 1.51 \times 10^{-5} \\ 1.51 \times 10^{-5} \\ 1.50 \times 10^{-5} \\ 1.50 \times 10^{-5} \end{array}$	$\begin{array}{c} 1.69 \times 10^{-4} \\ 3.36 \times 10^{-4} \\ 5.04 \times 10^{-4} \\ 6.70 \times 10^{-4} \\ 8.36 \times 10^{-4} \end{array}$	$\begin{array}{c} 2.68 \times 10^{-3} \\ 4.22 \times 10^{-3} \\ 6.33 \times 10^{-3} \\ 8.56 \times 10^{-3} \\ 1.07 \times 10^{-2} \end{array}$	$\begin{array}{c} 0.012 \\ 0.008 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	12.2

Reactivity parameters for 5-methoxybenzimidazole (2g) in DMSO

Ar_2CH^+	E	$k (M^{-1} s^{-1})$		
$(lil)_2 CH^+$	-10.04	4.62		N = 11.0
(jul)₂CH ⁺	-9.45	12.21	$\begin{array}{c} 1.3 \\ 1.0 \\ \hline \\ 0.8 \\ 0.5 \\ -10.5 \\ E \end{array} \begin{array}{c} y = 0.715x + 7.848 \\ \hline \\ R^2 = 1.000 \\ -9.5 \\ -9 \\ E \end{array}$	<i>s</i> = 0.71

Kinetics of the reactions of benzotriazole (3a) with (Ar)₂CH⁺ in CH₃CN at 20°C

Reactivity parameters for benzotriazole (3a) in CH₃CN

Ar_2CH^+	E	$k (M^{-1} s^{-1})$	
$(mor)_2 CH^+$	-5.53	4.50×10^{1}	N = 7.69
$(mfa)_2 CH^+$	-3.85	8.64×10^{2}	s = 0.76
			3
			y = 0.7639x + 5.8774
			$\stackrel{\circ}{=}$ 1 $R^2 = 1$
			0
			-6 -5 -4 -3
			$E \longrightarrow$

Kinetics of the reactions of 1-methylbenzotriazole (3b) with (Ar)₂CH⁺ in CH₃CN at 20°C

Reactivity parameters for 1-methylbenzotriazole (3b) in CH₃CN

As only one rate constant is available for 1-methylbenzotriazole (**3b**), its *N* parameter was calculated assuming s = 0.76 as for benzotriazole (**3a**). Thus, log $(9.46 \times 10^2) = 0.76(N - 3.85)$ and N = 7.77.

Kinetics for the reactions of imidazoles 1 with benzhydrylium ions in H_2O at 20 $^\circ C$

When an amine is dissolved in water, the concentration of hydroxide ion increases by protolysis. For that reason, competing reactions of the carbocations with hydroxide and water have to be considered because the observed pseudo-first-order rate constant reflects the sum of the reactions of the electrophile with free amine $\mathbf{1}$ ($k_{1\Psi,N}$), with OH⁻ ($k_{1\Psi,OH}$), with water (k_w) and the back reaction (k_{\leftarrow}). Rearrangement of eq 1 yields eq 2 where $k_{1\Psi}$ is defined as the overall rate constant minus the contribution of hydroxide.

$$k_{\text{obs}} = k_{1\Psi,\text{N}} + k_{1\Psi,\text{OH}} + k_{\text{w}} + k_{\leftarrow} = k \left[\mathbf{1}\right]_{effective} + k_{\text{OH}} \left[\text{OH}^{-}\right] + k_{\text{w}} + k_{\leftarrow} \tag{1}$$

$$k_{\text{obs}} - k_{\text{OH}}[\text{OH}^{-}] = k [\mathbf{1}]_{effective} + k_{\text{w}} + k_{\leftarrow} = k_{1\Psi}$$

$$\tag{2}$$

Concentrations of free amines [amine]_{effective} and of hydroxide ions [OH[–]] were calculated from the known p K_B of the amines^[S3] as shown below (eq A to F). Combining calculated [OH[–]] with published k_{OH} values yielded $k_{1\Psi,OH}$.^[S4] Thus, second-order rate constants k for the reactions of imidazoles with benzhydrylium ions in water could be derived from the slopes of the $k_{1\Psi}$ (= $k_{obs} - k_{OH}$ [OH[–]]) vs. [1]_{effective} plots.

$$R_3N + H_2O \longrightarrow R_3NH^+ + OH^-$$
 (A)

$$K_B = \frac{[\text{ammonium}] [\text{OH}^-]}{[\text{amine}]_{effective}}$$
(B)

$$[amine]_0 = [amine]_{effective} + [ammonium] = [amine]_{effective} + [OH^-]$$
(C)

Combination of equation B and C yields
$$K_B = \frac{[OH^-]^2}{[amine]_0 - [OH^-]}$$
 (D)

Solving of the quadratic equation (D) leads to one logic solution for [OH⁻] with the "+" in the numerator (eq F).

$$[OH^{-}] = -\frac{K_{B}}{2} + \sqrt{\left(\frac{K_{B}}{2}\right)^{2} + K_{B}[amine]_{0}}$$
(F)

However, pK_{aH} of imidazoles **1** in H₂O are close to 7 and, therefore, one will not expect formation of considerable amounts of hydroxide ions and protonated imidazoles during kinetic experiments. As shown below, the second-order rate constants for the reactions of 2-methylimidazole (**1d**) with (ind)₂CH⁺ were determined with and without considering the contribution of hydroxide ions. Both methods yielded identical second-order rate constants. The reactions of benzhydrylium ions with water are very slow compared to the corresponding reactions with imidazoles and, thus, do not affect our kinetic evaluations. Hence the secondorder rate constants for the reactions of **1a-b,d** with benzhydrylium ions in water were determined without considering the contribution from hydroxide ions and water following the procedure as described for acetonitrile and DMSO solvents. Imidazoles **1** are usually used in high excess to achieve pseudo-first-order conditions and k_{obs} were obtained by fitting the decays of the benzhydrylium absorbances to mono-exponential functions as discussed before.

Determination of second-order rate constants for the reaction of 2-methylimidazole (1d) with $(ind)_2CH^+BF_4^-$ in H₂O without considering contribution from OH⁻ (at 20 °C, cosolvent: 0.2 vol-% CH₃CN):

$[(ind)_2 CH^+]_0$	$[1d]_0$	$k_{ m obs}$	$\lambda = 614 \text{ nm}$	k
$(mol L^{-1})$	$(mol L^{-1})$	(s^{-1})		$(M^{-1} s^{-1})$
$\begin{array}{c} 1.90 \times 10^{-5} \\ 1.91 \times 10^{-5} \\ 1.92 \times 10^{-5} \\ 1.93 \times 10^{-5} \\ 1.94 \times 10^{-5} \end{array}$	$\begin{array}{c} 2.63 \times 10^{-3} \\ 1.85 \times 10^{-3} \\ 1.33 \times 10^{-3} \\ 8.01 \times 10^{-4} \\ 2.69 \times 10^{-4} \end{array}$	$\begin{array}{c} 6.41 \times 10^{-3} \\ 5.16 \times 10^{-3} \\ 3.93 \times 10^{-3} \\ 3.15 \times 10^{-3} \\ 1.84 \times 10^{-3} \end{array}$	$ \begin{array}{c} 0.008 \\ 0.006 \\ \hline 0.004 \\ \hline y = 1.9238x + 0.0015 \\ R^2 = 0.9936 \\ \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	1.92

No.	$[(ind)_2 CH^+]_0$	[Nu] ₀	[Nu] _{eff}	[OH ⁻]	$[Nu]_{eff}/[El]_0$	$k_{ m obs}$	$k_{1\Psi, OH}$	$k_{1\Psi}$
	$(\text{mol } L^{-1})$	$(mol L^{-1})$	$(mol L^{-1})$	$(mol L^{-1})$		(s^{-1})	(s^{-1})	(s^{-1})
ccy70.1	1.90×10^{-5}	2.63×10^{-3}	2.62×10^{-3}	8.50×10^{-6}	138	6.41×10^{-3}	9.18×10^{-5}	6.32×10^{-3}
ccy70.2	1.91×10^{-5}	1.85×10^{-3}	1.84×10^{-3}	7.12×10^{-6}	96	5.16×10^{-3}	7.69×10^{-5}	5.08×10^{-3}
ccy70.3	1.92×10^{-5}	1.33×10^{-3}	1.32×10^{-3}	6.04×10^{-6}	69	3.93×10^{-3}	6.52×10^{-5}	3.86×10^{-3}
ccy70.4	1.93×10^{-5}	8.01×10^{-4}	7.96×10^{-4}	4.68×10^{-6}	41	3.15×10^{-3}	5.06×10^{-5}	3.10×10^{-3}
ccy70.5	1.94×10^{-5}	2.69×10^{-4}	2.66×10^{-4}	2.71×10^{-6}	14	1.84×10^{-3}	2.92×10^{-5}	1.81×10^{-3}

Determination of second-order rate constants for the reaction of 2-methylimidazole (**1d**) with $(ind)_2 CH^+ BF_4^-$ in H₂O considering the contribution from OH⁻ (at 20 °C, cosolvent: 0.2 vol-% CH₃CN, stopped-flow, detection at 614 nm):

 $k = 1.90 \text{ M}^{-1}\text{s}^{-1}$

 $k_{\rm OH} = 10.8 \text{ M}^{-1} \text{s}^{-1}$ p $K_{\rm B} = 7.56$

CH ₃ CN)				
$[(lil)_2 CH^+]_0$	$[1a]_0$	$k_{ m obs}$	$\lambda = 630 \text{ nm}$	k
$(mol L^{-1})$	$(mol L^{-1})$	(s^{-1})		$(M^{-1} s^{-1})$
$\begin{array}{c} 1.91 \times 10^{-5} \\ 1.93 \times 10^{-5} \\ 1.99 \times 10^{-5} \\ 1.96 \times 10^{-5} \\ 1.96 \times 10^{-5} \end{array}$	$\begin{array}{c} 7.14 \times 10^{-3} \\ 4.81 \times 10^{-3} \\ 3.31 \times 10^{-3} \\ 1.63 \times 10^{-3} \\ 8.12 \times 10^{-4} \end{array}$	$\begin{array}{c} 4.46 \times 10^{-3} \\ 3.17 \times 10^{-3} \\ 2.34 \times 10^{-3} \\ 1.21 \times 10^{-3} \\ 5.75 \times 10^{-4} \end{array}$	$\begin{pmatrix} 0.005 \\ 0.004 \\ 0.003 \\ \hline 0.002 \\ \hline 0.001 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	6.10 × 10 ⁻¹

Reaction of imidazole (1a) with $(lil)_2CH^+BF_4$ in H₂O (at 20 °C, cosolvent: 0.4 vol-% CH₃CN)

Reaction of imidazole (1a) with $(jul)_2CH^+BF_4^-$ in H₂O (at 20 °C, cosolvent: 0.2 vol-% CH₃CN)

$[(jul)_2 CH^+]_0$	[1a] ₀	$k_{ m obs}$	$\lambda = 634 \text{ nm}$	k
$(mol L^{-1})$	$(mol L^{-1})$	(s^{-1})		$(M^{-1} s^{-1})$
$\begin{array}{c} 2.58 \times 10^{-5} \\ 2.60 \times 10^{-5} \\ 2.63 \times 10^{-5} \\ 2.66 \times 10^{-5} \\ 2.66 \times 10^{-5} \end{array}$	$5.67 \times 10^{-3} 4.56 \times 10^{-3} 2.88 \times 10^{-3} 1.75 \times 10^{-3} 1.16 \times 10^{-3}$	$7.21 \times 10^{-3} 5.87 \times 10^{-3} 3.82 \times 10^{-3} 2.40 \times 10^{-3} 1.68 \times 10^{-3}$	$ \begin{array}{c} 0.008 \\ 0.006 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	1.23

Reaction of imidazole (**1a**) with $(pyr)_2CH^+BF_4^-$ in H₂O (at 20 °C, cosolvent: 0.2 vol-% CH₃CN)

0113013)				
$[(pyr)_2CH^+]_0$	[1a] ₀	$k_{ m obs}$	$\lambda = 610 \text{ nm}$	k
$(mol L^{-1})$	$(mol L^{-1})$	(s^{-1})		$(M^{-1} s^{-1})$
$2.66 \times 10^{-5} 2.66 \times 10^{-5} 2.66 \times 10^{-5} 2.66 \times 10^{-5} 2.66 \times 10^{-5} $	$5.24 \times 10^{-3} \\ 2.62 \times 10^{-3} \\ 1.83 \times 10^{-3} \\ 1.05 \times 10^{-3}$	$7.72 \times 10^{-2} 4.52 \times 10^{-2} 3.56 \times 10^{-2} 2.58 \times 10^{-2}$	$\begin{array}{c} 0.08\\ 0.06\\ \frac{1}{8}\\ 0.02\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	1.22×10^{1}

0113011)				
$[(dma)_2CH^+]_0$	[Nu] ₀	$k_{ m obs}$	$\lambda = 610 \text{ nm}$	k
$(mol L^{-1})$	$(mol L^{-1})$	(s^{-1})		$(M^{-1} s^{-1})$
$\begin{array}{c} 1.05 \times 10^{-4} \\ 1.05 \times 10^{-4} \end{array}$	5.24×10^{-3} 2.62×10^{-3} 1.83×10^{-3} 1.05×10^{-3} 5.24×10^{-4}	$\begin{array}{c} 0.191 \\ 0.108 \\ 8.19 \times 10^{-2} \\ 5.60 \times 10^{-2} \\ 3.90 \times 10^{-2} \end{array}$	$\begin{array}{c} 0.2 \\ 0.15 \\ 0.05 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	3.22×10^{1}

Reaction of imidazole (1a) with $(dma)_2CH^+BF_4^-$ in H₂O (at 20 °C, cosolvent: 0.5 vol-% CH₃CN)

Reactivity	parameters	for	imidazole	(1a)	in	H_2O
				· ·		_

% CH ₃ CN)				
$[(lil)_2 CH^+]_0$	[1b] ₀	$k_{ m obs}$	$\lambda = 630 \text{ nm}$	k
$(mol L^{-1})$	$(mol L^{-1})$	(s^{-1})		$(M^{-1} s^{-1})$
1.84×10^{-5}	1.29×10^{-2}	1.36×10^{-2}	0.016 -	9.44×10^{-1}
3.33×10^{-5}	1.36×10^{-2}	1.21×10^{-2}		
3.51×10^{-5}	1.08×10^{-2}	9.35×10^{-3}	0.012 -	
3.55×10^{-5}	7.26×10^{-3}	6.09×10^{-3}	Σ 0.008 -	
3.61×10^{-5}	5.18×10^{-3}	4.15×10^{-3}	S CLOCO	
1.97×10^{-5}	2.77×10^{-3}	3.01×10^{-3}	y = 0.9436x - 0.0002	
3.63×10^{-5}	2.97×10^{-3}	2.65×10^{-3}	R ² = 0.9702	
3.68×10^{-5}	1.51×10^{-3}	1.54×10^{-3}	0 0.005 0.01 0.015	
			[Nu] / mol L ⁻¹	

Reaction of 1-methylimidazole (**1b**) with $(lil)_2CH^+BF_4^-$ in H₂O (at 20 °C, cosolvent: 0.4 vol-% CH₃CN)

Reaction of 1-methylimidazole (**1b**) with (ind)₂CH⁺BF₄ in H₂O (at 20 °C, cosolvent: 0.2 vol-% CH₃CN)

Reaction of 1-methylimidazole (**1b**) with $(thq)_2CH^+BF_4$ in H₂O (at 20 °C, cosolvent: 1.0 vol-% CH₃CN)

$[(thq)_2CH^+]_0$	[1b] ₀	$k_{ m obs}$	$\lambda = 620 \text{ nm}$	k
$(mol L^{-1})$	$(mol L^{-1})$	(s^{-1})		$(M^{-1} s^{-1})$
$\begin{array}{c} 3.70 \times 10^{-5} \\ 3.70 \times 10^{-5} \end{array}$	5.10×10^{-3} 2.56×10^{-3} 1.79×10^{-3} 1.02×10^{-3} 5.12×10^{-4}	$\begin{array}{c} 4.81 \times 10^{-2} \\ 2.74 \times 10^{-2} \\ 2.20 \times 10^{-2} \\ 1.52 \times 10^{-2} \\ 1.13 \times 10^{-2} \end{array}$	$ \begin{array}{c} 0.06 \\ 0.04 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	8.01

70 CH3CN)				
$[(pyr)_2CH^+]_0$	[1b] ₀	$k_{ m obs}$	$\lambda = 620 \text{ nm}$	k
$(mol L^{-1})$	$(mol L^{-1})$	(s^{-1})		$(M^{-1} s^{-1})$
$\begin{array}{c} 1.79 \times 10^{-5} \\ 1.79 \times 10^{-5} \end{array}$	5.05×10^{-3} 3.54×10^{-3} 2.02×10^{-3} 1.01×10^{-3} 5.05×10^{-4}	$\begin{array}{c} 8.78 \times 10^{-2} \\ 6.73 \times 10^{-2} \\ 4.21 \times 10^{-2} \\ 2.39 \times 10^{-2} \\ 1.38 \times 10^{-2} \end{array}$	$\begin{array}{c} 0.1 \\ 0.08 \\ 0.06 \\ \frac{1}{90} \\ 0.02 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	1.63×10^{1}

Reaction of 1-methylimidazole (**1b**) with $(pyr)_2CH^+BF_4^-$ in H₂O (at 20 °C, cosolvent: 0.5 vol-% CH₃CN)

Reaction of 1-methylimidazole (1b) with (dn	$ha)_2 CH^+ BF_4$ in $H_2 O$ (at 20 °C, cosolvent: 0.5
vol-% CH ₃ CN)	

$[(dma)_2CH^+]_0$	[1b] ₀	$k_{ m obs}$	$\lambda = 610 \text{ nm}$	k
$(mol L^{-1})$	$(mol L^{-1})$	(s^{-1})		$(M^{-1} s^{-1})$
$\begin{array}{c} 6.70 \times 10^{-5} \\ 6.70 \times 10^{-5} \end{array}$	5.13×10^{-3} 2.57×10^{-3} 1.80×10^{-3} 1.03×10^{-3} 5.13×10^{-4}	$\begin{array}{c} 2.61 \times 10^{-1} \\ 1.45 \times 10^{-1} \\ 1.11 \times 10^{-1} \\ 7.65 \times 10^{-2} \\ 5.20 \times 10^{-2} \end{array}$	$\begin{array}{c} 0.3 \\ 0.25 \\ 0.2 \\ 0.15 \\ 0 \\ 0.05 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	4.51 × 10 ¹

Reactivity parameters for N-me	ethylimidazole	(1b)) in H ₂ C
---------------------------------------	----------------	------	-----------------------

/0 CII3CIV)				
$[(lil)_2 CH^+]_0$	$[1d]_0$	$k_{ m obs}$	$\lambda = 630 \text{ nm}$	k
$(mol L^{-1})$	$(mol L^{-1})$	(s^{-1})		$(M^{-1} s^{-1})$
$\begin{array}{c} 2.29 \times 10^{-5} \\ 2.31 \times 10^{-5} \\ 2.32 \times 10^{-5} \\ 2.31 \times 10^{-5} \\ 2.33 \times 10^{-5} \\ 1.76 \times 10^{-5} \end{array}$	$\begin{array}{c} 3.03 \times 10^{-3} \\ 2.14 \times 10^{-3} \\ 1.54 \times 10^{-3} \\ 9.20 \times 10^{-4} \\ 3.09 \times 10^{-4} \\ 2.48 \times 10^{-4} \end{array}$	$\begin{array}{c} 1.82 \times 10^{-3} \\ 1.38 \times 10^{-3} \\ 1.21 \times 10^{-3} \\ 7.69 \times 10^{-4} \\ 3.75 \times 10^{-4} \\ 3.29 \times 10^{-4} \end{array}$	$\begin{array}{c} 0.002 \\ 0.0015 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	5.38 × 10 ⁻¹

Reaction of 2-methylimidazole (1d) with $(lil)_2CH^+BF_4$ in H₂O (at 20 °C, cosolvent: 0.4 vol-% CH₃CN)

Reaction of 2-methylimidazole (1d) with (ind)₂CH⁺BF₄⁻ in H₂O (at 20 °C, cosolvent: 0.2 vol-% CH₃CN)

$[(ind)_2 CH^+]_0$	$[1d]_0$	$k_{ m obs}$	$\lambda = 614 \text{ nm}$	k
$(mol L^{-1})$	$(mol L^{-1})$	(s^{-1})		$(M^{-1} s^{-1})$
$\begin{array}{c} 1.90 \times 10^{-5} \\ 1.91 \times 10^{-5} \\ 1.92 \times 10^{-5} \\ 1.93 \times 10^{-5} \\ 1.94 \times 10^{-5} \end{array}$	$\begin{array}{c} 2.63 \times 10^{-3} \\ 1.85 \times 10^{-3} \\ 1.33 \times 10^{-3} \\ 8.01 \times 10^{-4} \\ 2.69 \times 10^{-4} \end{array}$	$\begin{array}{c} 6.41 \times 10^{-3} \\ 5.16 \times 10^{-3} \\ 3.93 \times 10^{-3} \\ 3.15 \times 10^{-3} \\ 1.84 \times 10^{-3} \end{array}$	$ \begin{array}{c} 0.008 \\ 0.006 \\ \hline 0.004 \\ \hline 0 \\ \hline $	1.92

Reaction of 2-methylimidazole (1d) with $(thq)_2CH^+BF_4^-$ in H₂O (at 20 °C, cosolvent: 0.4 vol-% CH₃CN)

$\frac{((thq)_2 CH^+)_0}{[(thq)_2 CH^+]_0}$	[1d] ₀	k _{obs}	$\lambda = 618 \text{ nm}$	k
$(mol L^{-1})$	$(mol L^{-1})$	(s^{-1})		$(M^{-1} s^{-1})$
$\begin{array}{c} 3.05 \times 10^{-5} \\ 3.08 \times 10^{-5} \\ 3.09 \times 10^{-5} \\ 3.10 \times 10^{-5} \end{array}$	$\begin{array}{c} 3.02 \times 10^{-3} \\ 2.44 \times 10^{-3} \\ 2.45 \times 10^{-3} \\ 1.23 \times 10^{-3} \end{array}$	$\begin{array}{c} 1.53 \times 10^{-2} \\ 1.17 \times 10^{-2} \\ 1.21 \times 10^{-2} \\ 6.84 \times 10^{-3} \end{array}$	$\begin{array}{c} 0.016 \\ 0.012 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	4.66

0113011)				
$[(pyr)_2CH^+]_0$	$[Nu]_0$	$k_{ m obs}$	$\lambda = 610 \text{ nm}$	k
$(mol L^{-1})$	$(mol L^{-1})$	(s^{-1})		$(M^{-1} s^{-1})$
2.66×10^{-5} 2.66×10^{-5} 2.66×10^{-5} 2.66×10^{-5}	6.28×10^{-3} 3.14×10^{-3} 2.20×10^{-3} 1.26×10^{-3}	$\begin{array}{c} 6.97 \times 10^{-2} \\ 4.27 \times 10^{-2} \\ 3.42 \times 10^{-2} \\ 2.59 \times 10^{-2} \end{array}$	$\begin{array}{c} 0.08 \\ 0.06 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	8.72

Reaction of 2-methylimidazole with $(pyr)_2CH^+BF_4^-$ in H₂O (at 20 °C, cosolvent: 0.2 vol-% CH₃CN)

Reaction of 2-methylimidazole with $(dma)_2CH^+BF_4^-$ (at 20 °C, cosolvent: 0.5 vol-% CH₃CN, stopped-flow, detection at 610 nm)

$[(dma)_2 CH^+]_0$ (mol L ⁻¹)	$[Nu]_0$ (mol L ⁻¹)	$k_{\rm obs}$ (s ⁻¹)	$\lambda = 610 \text{ nm}$	$\frac{k}{(M^{-1} s^{-1})}$
$\begin{array}{c} 1.05 \times 10^{-4} \\ 1.05 \times 10^{-4} \end{array}$	$\begin{array}{c} 6.28 \times 10^{-3} \\ 3.14 \times 10^{-3} \\ 2.20 \times 10^{-3} \\ 1.26 \times 10^{-3} \\ 6.28 \times 10^{-4} \end{array}$	$\begin{array}{c} 1.62 \times 10^{-1} \\ 9.31 \times 10^{-2} \\ 7.20 \times 10^{-2} \\ 5.12 \times 10^{-2} \\ 3.71 \times 10^{-2} \end{array}$	$ \begin{array}{c} 0.18 \\ 0.15 \\ 0.12 \\ 0.09 \\ \overset{6}{8} \\ 0.03 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	2.21 × 10 ¹

Reactivity	narameters	for	2-meth	vlimid	azole	(1d)	in	H2O
Reactivity	parameters	IUL	2 -mcm	ymmu	aLUIC	$(\mathbf{I}\mathbf{u})$	111 .	1120

References

[S1] a) H. Mayr, T. Bug, M. F. Gotta, N. Hering, B. Irrgang, B. Janker, B. Kempf, R. Loos, A. R. Ofial, G. Remennikov and H. Schimmel, *J. Am. Chem. Soc.*, 2001, **123**, 9500-9512.

[S2] Partial decomposition of the products was observed during column chromatography with neutral alumina having higher activity grade. Neutral alumina with lower activity grade is much better for this purpose.

[S3] For 1a: a) V. P. Vasil'ev, N. K. Grechina and G. A. Zaitseva, *Zh. Obshch. Khim.*, 1983, 53, 199-203; For 1b: b) M. L. Bender and B. W. Turnquest, *J. Am. Chem. Soc.*, 1957, 79, 1656-1662; c) For 1d: K. I. Skorey, V. Somayaji and R. S. Brown, *J. Am. Chem. Soc.*, 1989, 111, 1445-1452.

[S4] For reactions with OH^- and H_2O see: S. Minegishi and H. Mayr, J. Am. Chem. Soc., 2003, **125**, 286-295.