Enantioselective Assembly of the Benzo[d]xanthene Tetracyclic Core of AntiInfluenza Active Natural Products

Duc Tran Ngoc, Martin Albicker, Lorenz Schneider, Nicolai Cramer*
Laboratory of Organic Chemistry, Swiss Federal Institute of Technology (ETH) Zurich, HCI H 304, Wolfgang-Pauli-Str. 10, CH-8093 Zurich, Switzerland
E-Mail: Nicolai.cramer@org.chem.ethz.ch

Supplementary Information

Table of Content: General Methods
Experimental Section

page 1
page 2
Spectra page 9

General Methods:

All reactions were carried out under an atmosphere of nitrogen or argon in oven-dried glassware with magnetic stirring, unless otherwise indicated. All other reagents were used as obtained unless otherwise noted. Tetrahydrofuran (THF) was purchased from JT Baker and purified by a Cycle-Tainer Solvent Delivery System. Flash Chromatography was performed with Fluka silica gel 60 ($0.040-0.063 \mu \mathrm{~m}$ grade). Analytical thin-layer chromatography was performed with commercial glass plates coated with 0.25 mm silica gel (E . Merck, Kieselgel 60 F254). Compounds were visualized by UV-light at 254 nm and by dipping the plates in an ethanolic vanillin/sulfuric acid solution or an aqueous potassium permanganate solution followed by heating. Melting points were obtained on a Büchi 510 apparatus in open capillary tubes and are uncorrected. Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}-\mathrm{NMR}$) data were acquired on a Varian VXR 300 (300 MHz) or on a Bruker AV400 (400 MHz) spectrometer. Chemical shifts are reported in delta (δ) units, in parts per million (ppm) downfield from tetramethylsilane. Splitting patterns are designated as s, singlet; d, doublet; t, triplet; q, quartet; sept, septet; m, multiplet, br, broad. Proton decoupled Carbon-13 nuclear magnetic resonance (${ }^{13} \mathrm{C}-\mathrm{NMR}$) data were acquired at 75 MHz on a Varian VXR 300 or at 100 MHz on a Bruker AV400 spectrometer. Chemical shifts are reported in ppm relative to the center line of a triplet at 77.0 ppm for chloroform-d. Infrared (IR) data were recorded on a Perkin Elmer, Spectrum 100, FT-IR Spectrometer. Absorbance frequencies are reported in reciprocal centimeters $\left(\mathrm{cm}^{-1}\right)$. High resolution mass spectra were performed by the MS-service at the Laboratory of Organic Chemistry, ETH Zurich, and are given in m / z. Optical rotations were measured on a Jasco P-1000 polarimeter using a 10 cm cell with a Na 589 nm filter. The specific solvents and concentrations (in $\mathrm{g} / 100 \mathrm{~mL}$) are indicated.

Experimental Section

General procedure for the conjugate addition trapping sequence:

To a stirred suspension of copper thiophene carboxylate ($3.80 \mathrm{mg}, 20.0 \mu \mathrm{~mol}$) in 2 mL of $\mathrm{Et}_{2} \mathrm{O}$ was added (S,R,R)-(+)-(3,5-Dioxa-4-phosphacyclohepta[2,1-a:3,4-a']di-naphthalen-4-yl)bis(1-phenylethyl)amine ($21.6 \mathrm{mg}, 40.0 \mu \mathrm{~mol}$) and stirred for 15 min at $23^{\circ} \mathrm{C}$. The mixture was cooled to $-30^{\circ} \mathrm{C}$ and 2-methylcyclohex-2-enone $(110 \mathrm{mg}, 1.00$ mmol) was added. Subsequently, trimethylaluminum (2 M in heptane, $600 \mu \mathrm{~L}, 1.20$ mmol) was added slowly and the reaction mixture between $-30^{\circ} \mathrm{C}$ and $-25^{\circ} \mathrm{C}$. When no more 2-methylcyclohex-2-enone was detectable by TLC (2-3 h), most of the solvents were removed in vacuo at $0^{\circ} \mathrm{C}$ and HMPA (2.00 mL) was added, followed by methyllithium (1.6 M in $\mathrm{Et}_{2} \mathrm{O}, 750 \mu \mathrm{~L}, 1.20 \mathrm{mmol}$). After 15 min , the benzyl or propargyl iodide (2.0 equiv.) was added and the reaction mixture was slowly warmed to $23^{\circ} \mathrm{C}$ and stirred for $1-3 \mathrm{~h}$. The reaction was quenched with a sat. solution of Rochelle's salt and extracted with ethyl acetate. The aq. phase was extracted again with EtOAc. The combined organic layers were washed with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and brine, dried over MgSO_{4} and concentrated. The residue was purified by chromatography on silica gel using the indicated solvent to give ketone 4.
The ee was determined on an aliquot before the solvent was removed. The aliquot was hydrolyzed and briefly purified by a pipette column to give a mixture of cis--(2S,3S) and trans-(2R,3S)-2,3-dimethylcyclohexanone. The enantiopurity of the invariable 3Sstereocenter was between 94:6-95:5 er by chiral GC, Lipodex E, isotherm $70^{\circ} \mathrm{C}$ as reported by Alexakis ${ }^{[1]}$. The dr was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of the unpurified product and ranges from 6.2:1 to 9.8:1.

(2R,3S)-2-(2-methoxybenzyl)-2,3-dimethylcyclohexanone (4a), 67 \% yield: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.20-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.08$ (dd, $\mathrm{J}=$ $7.5,1.7,1 \mathrm{H}), 6.89-6.77(\mathrm{~m}, 2 \mathrm{H}), 3.73$ (s, 3H), 3.22 (d, J = 13.6, 1H), 2.93 (d, J = 13.6, 1H), 2.76 (ddd, $J=14.5,10.1,6.8,1 H$), 2.32 (dtd, $J=14.4$, $5.5,0.6,1 \mathrm{H}$), 2.13 (ddd, $J=18.3,9.2,4.5,1 \mathrm{H}), 2.04-1.73(\mathrm{~m}, 3 \mathrm{H}), 1.58-$ 1.44 (m, 1H), 0.91 (d, J = 7.0, 3H), 0.88 (s, 3H) ppm; 13C-NMR (101 $\mathrm{MHz}, \mathrm{CDCl} 3) ~ \delta 216.1,157.8,132.2,127.5,126.9,120.1,110.3,54.8,53.5,40.1,38.3$, 37.3, 28.5, 22.8, 18.7, 16.3 ppm; IR (ATR): $\tilde{v}=2936,2874,1701,1600,1494,1462$, 1382, 1290, 1244, 1176, 1053, 1030, 947, 754, $662 \mathrm{~cm}^{-1}$; HRMS (EI): calc'd. for $\left[\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{2}\right]^{+}: 246.1620$, found: 246.1615; $[\alpha]_{\mathrm{D}}{ }^{20}=-51.6$ (c = 1.32, CHCl_{3}); $\boldsymbol{R}_{\mathrm{f}}: 0.46$ (Pentane/EtOAc: 90:10); m.p.: 36.1-38.3 ${ }^{\circ} \mathrm{C}$.

(2R,3S)-2-(2-(methoxymethoxy)benzyl)-2,3-dimethylcyclohexanone (4b), 80 \% yield: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.19-7.03$ (m, 3H), $6.94-6.84(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~d}, \mathrm{~J}=6.8,1 \mathrm{H}), 5.10(\mathrm{~d}, \mathrm{~J}=6.9,1 \mathrm{H}), 3.47(\mathrm{~s}$, $3 \mathrm{H}), 3.22(\mathrm{~d}, \mathrm{~J}=13.6,1 \mathrm{H}), 2.98(\mathrm{~d}, \mathrm{~J}=13.6,1 \mathrm{H}), 2.83-2.70(\mathrm{~m}, 1 \mathrm{H})$, $2.35(\mathrm{dt}, \mathrm{J}=14.4,5.4,1 \mathrm{H}), 2.21-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.97-$ $1.75(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.46(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~d}, \mathrm{~J}=7.0,3 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$,

[^0]${ }^{13}$ C-NMR (101 MHz, CDCl_{3}) δ 216.2, 155.9, 132.2, 127.6, 127.3, 121.3, 113.8, 94.6, 56.1, 53.6, 40.0, 38.3, 37.0, 28.6, 22.8, 18.7, 16.3. IR (ATR): $\tilde{v}=2936,2876,1702$, 1601, 1492, 1456, 1383, 1312, 1235, 1186, 1154, 1115, 1078, 1002, 922, $756 \mathrm{~cm}^{-1}$; HRMS (EI): calc'd. for $\left[\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3}\right]^{+}: 276.1720$, found: $276.1723[\mathrm{a}]_{\mathrm{D}}{ }^{20}=-45.9$ ($\mathrm{c}=1.50$, CHCl_{3}); $\boldsymbol{R}_{\mathrm{f}}: 0.21$ (Pentane/EtOAc, 10:1)

(2R,3S)-2-(2,5-(dimethoxymethoxy)benzyl)-2,3-dimethylcyclohexanone (4c), 78% yield: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 6.98-6.88 (m, 1H), 6.80-6.70 (m, 2H), 5.01-4.97 (m, 4H), 3.38 ($\mathrm{d}, \mathrm{J}=3.1,6 \mathrm{H}$), $3.09(\mathrm{~d}, \mathrm{~J}=13.7,1 \mathrm{H}), 2.88(\mathrm{~d}, \mathrm{~J}=13.7,1 \mathrm{H})$, 2.71-2.57 (m, 1H), 2.27 (dt, J = 14.3, 5.7, 1H), 2.08-1.97 (m, $1 \mathrm{H}), 1.97-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.67(\mathrm{~m}, 1 \mathrm{H})$, 1.53-1.39 (m, 1H), 0.90-0.83 (m, 6H) ppm; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 215.9,151.5$, 151.2, 128.7, 120.7, 115.2, 114.9, 95.2, 56.0, 55.8, 53.5, 39.8, 38.3, 36.8, 28.6, 22.9, 18.8, $16.2 \mathrm{ppm} ;$; IR (ATR): $\tilde{v}=2935,2825,1702,1608,15887,1498,1460,1401$, 1383, 1316, 1262, 1222, 1191, 1151, 177, 1008, 941, 923, 874, 815, $750 \mathrm{~cm}^{-1}$; HRMS (EI): calc'd. for $\left[\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Na}\right]^{+}$: 359.1829, found: 359.1824; $[\alpha]_{\mathrm{D}}{ }^{20}=+2.3$ (c = 1.10, CHCl_{3}); $\boldsymbol{R}_{\mathbf{f}}: 0.29$ (Pentane/EtOAc, 6:1).

(2R,3S)-2-(2,6-(dimethoxy)benzyl)-2,3-dimethylcyclohexanone (4d), 63 \% yield: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.11(\mathrm{t}, \mathrm{J}=8.3,1 \mathrm{H}), 6.48(\mathrm{~d}$, $\mathrm{J}=8.3,2 \mathrm{H}$), $3.71(\mathrm{~s}, 6 \mathrm{H}), 3.30(\mathrm{~d}, \mathrm{~J}=13.6,1 \mathrm{H}), 3.18-3.06(\mathrm{~m}, 1 \mathrm{H}), 3.03$ (d, J = 13.3, 1H), 2.42-2.06 (m, 3H), 1.98-1.82 (m, 2H), 1.52-1.42 (m, 1H), 0.89 (d, J = 7.1, 3H), 0.75 (s, 3H) ppm; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ б 215.9, 158.7, 127.4, 115.4, 103.5, 55.1, 53.0, 43.0, 37.8, 32.6, 28.0, 22.3, 17.2, 16.4 ppm. IR (ATR): $\tilde{v}=2937,2874,2836,1699,1595,1475,1381,1322$, 1255, 1206, 1128, 1039, 948, 777, $734 \mathrm{~cm}^{-1}$; HRMS (EI): calc'd. for $\left[\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3}\right]^{+}$: 276.1720, found: 276.1723; $[\alpha]_{\mathrm{D}}{ }^{20}=-18.1\left(\mathrm{c}=0.91, \mathrm{CHCl}_{3}\right) ; \boldsymbol{R}_{\mathrm{f}}: 0.43$ (DCM/EtOH, 98:2)

(2R,3S)-2-(2,6-dichlorobenzyl)-2,3-dimethylcyclohexanone (4e), 33 \% yield: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.29-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.23(\mathrm{~m}$, $1 \mathrm{H}), 7.12-7.02(\mathrm{~m}, 1 \mathrm{H}), 3.57$ (d, J = 14.3, 1H), 3.42 (d, J = 14.4, 1H), 3.16-3.00 (m, 1H), 2.42-2.14 (m, 3H), 2.00-1.86 (m, 2H), 1.35-1.19 (m, 1 H), 0.89 (dd, J = 7.0, 0.9, 3H), 0.85 (d, J = 1.0, 3H) ppm; ${ }^{13}$ C-NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ס 215.5, 136.5, 135.8, 128.3, 128.0, 52.7, 43.9, 39.6, 37.9, 28.0, 22.3, 16.9, 16.1.; IR (ATR): $\tilde{v}=3943,2875,1703,1561,1435,1384,1310,1258$, 1167, 1094, 918, $777 \mathrm{~cm}^{-1}$; HRMS (EI) calc'd. for $\left[\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{O}\right]^{+}: 284.0735$, found: 284.0728; $[\alpha]_{\mathrm{D}}{ }^{20}=-14.9\left(c=0.54, \mathrm{CHCl}_{3}\right) ; \boldsymbol{R}_{\mathrm{f}}: 0.81$ (Pentane/EtOAc, 90:10).

(2R,3S)-2-(2-propinyl)-2,3-dimethylcyclohexanone (4f), 61 \% yield: ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$) $\delta=2.65(\mathrm{dd}, \mathrm{J}=16.6,2.6,1 \mathrm{H}), 2.52-2.40(\mathrm{~m}, 1 \mathrm{H})$, 2.40-2.31 (m, 1H), 2.29-2.15 (m, 2H), 2.02-1.91 (m, 2H), 1.79-1.53 (m, 3H), 1.06 (s, 3H), 0.97 (d, J=6.9, 3H) ppm; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 213.4, 81.6, 70.1, 52.0, 38.2, 37.9, 29.2, 25.3, 24.5, 18.1, $15.5 \mathrm{ppm} ; \tilde{v}$ IR (ATR): = 3236, 2956, 2923, 2861, 1697, 1459, 1417, 385, 1320, 1278, 1260, 1142, 1094, 1051, 952, $708 \mathrm{~cm}^{-1}$; HRMS (EI) calc'd. for $\left[\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}\right]^{+}$: 164.1186, found:
164.1197; $[\alpha]_{\mathrm{D}}{ }^{20}=+52.7\left(c=2.30, \mathrm{CHCl}_{3}\right) ; \boldsymbol{R}_{\mathrm{f}}: 0.27$ (Pentane/EtOAc, 95:5); m.p.: 48.5$50.0^{\circ} \mathrm{C}$.

(2R,3S)-2-(3-trimethylsilyl-2-propinyl)-2,3-dimethylcyclohexanone $(4 \mathrm{~g}), 69$ \% yield: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=2.64(\mathrm{~d}, \mathrm{~J}=16.8$, 1H), 2.48-2.30 (m, 3H), 2.22-2.13 (m, 1H), 1.99-1.89 (m, 1H), 1.80$1.51(\mathrm{~m}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~d}, \mathrm{~J}=6.9,3 \mathrm{H}), 0.12(\mathrm{~s}, \mathrm{~J}=3.5,9 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=213.3$, 104.4, 86.8, 52.1, 38.5, 38.0, 29.2, 27.0, 24.3, 18.1, 15.6, 0.1 ppm ; IR (ATR): $\tilde{v}=2959,2175,1708,1461$, 1382, 1248, 1035, 949, 838, 759, 698, $641 \mathrm{~cm}^{-1}$; HRMS (ESI) calc'd. for $\left[\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{OSi}\right]^{+}$: 236.1591, found: 236.1592; $[\alpha]_{\mathrm{D}}{ }^{20}=+2.6\left(c=1.45, \mathrm{CHCl}_{3}\right.$); $\boldsymbol{R}_{\mathbf{f}}: 0.37$ (Pentane/EtOAc, 9:1).

(2R, 3S)-2,3-dimethyl-2-((2-tosylisoindolin-5-yl) methyl) cyclohexanone (4i): A solution of N-tosyldiprop-2-ynylamine $(49.5 \mathrm{mg}$, 0.20 mmol) in DCE (1.5 ml) was added dropwise over 15 min to a stirred solution of alkyne $3 \mathrm{e}(39.4 \mathrm{mg}, 0.24 \mathrm{mmol})$ and $\mathrm{Cp}{ }^{*} \mathrm{Ru}(\mathrm{Cod}) \mathrm{Cl}(3.80 \mathrm{mg}, 10.0 \mu \mathrm{~mol})$ in DCE $(1.5 \mathrm{ml})$ at $23^{\circ} \mathrm{C}$ and then stirred for 1 hr at $23^{\circ} \mathrm{C}$. The mixture was evaporated and purified on silica gel (EtOAc/Pentane 4:1) to give ketone 3 g ($64 \mathrm{mg}, 78$ \% yield) as slightly yellow gum.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.79-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 7.02$ (s, 1H), $6.98(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 4 \mathrm{H}), 3.17(\mathrm{~d}, \mathrm{~J}=13.7,1 \mathrm{H}), 2.67(\mathrm{~d}, \mathrm{~J}=13.8,1 \mathrm{H}), 2.43-$ $2.35(\mathrm{~m}, 5 \mathrm{H}), 1.93-1.74(\mathrm{~m}, 3 \mathrm{H}), 1.68-1.48(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~d}, \mathrm{~J}=6.6,3 \mathrm{H})$. ${ }^{13}$ C-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=215.5,143.5,138.3,135.9,133.9,133.7,130.1,129.7$, 127.6, 124.6, 122.0, 53.8, 53.6, 53.4, 41.2, 38.5, 37.2, 28.9, 23.4, 21.5, 19.5, 15.9 ppm ; IR (ATR): $\tilde{v}=2928,2868,1701,1462,1347,1165,1097,1061,817,758,667,624$ cm^{-1}; HRMS (EI) calc'd. for $\left[\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}^{+}: 411.1863\right.$, found: 411.1861; $[\alpha]_{\mathrm{D}}{ }^{20}=+5.8$ (c $=0.50, \mathrm{CHCl}_{3}$); $\boldsymbol{R}_{\mathrm{f}}: 0.35$ (Pentane/EtOAc, 4:1).

(2R,3S)-2-(2-methoxybenzyl)-2,3-dimethylcyclohex-1-enyltrifluoromethansulfonate (8a):To a $0^{\circ} \mathrm{C}$ cold solution of diisopropylamine (0.71 $\mathrm{ml}, 4.95 \mathrm{mmol}$) in 25 mL dry THF was added dropwise n-butyllithium (1.6 M in hexane, $3.10 \mathrm{ml}, 4.95 \mathrm{mmol}$). After 10 min , the solution was cooled down to $-78^{\circ} \mathrm{C}$ and a solution of ketone $4 \mathrm{a}(1.11 \mathrm{~g}, 3.30 \mathrm{mmol})$ in 5 mL THF was added dropwise. After 1 h , a solution of N -(2pyridyl)bis(trifluoromethanesulfonimide) ($1.42 \mathrm{~g}, 3.96 \mathrm{mmol}$) in 3 mL THF was added and the mixture was slowly warmed to $0^{\circ} \mathrm{C}$ over 1 h . The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and was extracted with EtOAc. The aqueous phase was extracted again with EtOAc and the combined organic layers were washed with brine, dried over MgSO_{4} and evaporated. The resulting brown oil was purified by chromatography on silica gel (DCM/pentane 1:1 and then pentane/EtOAc $4: 1$) to give 1.03 g (83%) of triflate $\mathbf{8 a}$ as colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.23-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{dd}, \mathrm{J}=7.5,1.7,1 \mathrm{H}), 6.90-6.81$ $(\mathrm{m}, 2 \mathrm{H}), 5.75(\mathrm{dd}, \mathrm{J}=5.2,3.1,1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{~d}, \mathrm{~J}=13.8,1 \mathrm{H}), 2.74(\mathrm{~d}, \mathrm{~J}=$ 13.8, 1H), 2.16-2.01 (m, 1H), 1.99-1.85 (m, 1H), 1.70-1.54 (m, 2H), 1.43-1.30 (m, 1H), 1.10 (s, 3H), $0.96(\mathrm{~d}, \mathrm{~J}=6.8,3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.2,154.5$, 131.6, 127.6, 126.1, 120.2, 117.6, 116.9, 110.2, 54.9, 43.7, 35.1, 34.5, 26.0, 23.0, 19.9, 16.0.; IR (ATR): $\tilde{v}=2933,1601,1494,1456,1410,1245,1209,1144,1033,987,931$, 908, 872, 754, 683, $610 \mathrm{~cm}^{-1}$; HRMS (EI) calc'd. for $\left[\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S}^{+}\right.$: 378.1113 , found: 378.1108; $[\alpha]_{\mathrm{D}}{ }^{20}=-39.4\left(c=1.57, \mathrm{CHCl}_{3}\right) ; \boldsymbol{R}_{\mathrm{f}}: 0.77$ (Pentane/EtOAc, 90:10).

(2R,3S)-2-(2-(methoxymethoxy)benzyl)-2,3-dimethylcyclohex-1-enyltrifluoromethansulfonate (8b), prepared in 78% yield with using the same procedure: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.22-7.06(\mathrm{~m}, 3 \mathrm{H})$, 6.97-6.87 (m, 1H), 5.77 (dd, J = 5.1, 3.3, 1H), 5.18 (d, J = 6.8, 1H), 5.14 (d, J = 6.8, 1H), 3.47 (s, 3H), 3.01 (d, J = 13.9, 1H), 2.78 (d, J = 13.9, $1 \mathrm{H}), 2.10$ (dq, J = 17.8, 5.2, 1H), 1.95 (m, 1H), 1.78-1.55 (m, 2H), 1.48$1.29(\mathrm{~m}, 1 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~d}, \mathrm{~J}=6.8,3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 156.3, 154.3, 131.7, 127.7, 126.5, 121.4, 117.7, 116.8, 113.8, 94.7, 56.0, 43.6, 35.3, 34.4, 26.0, 22.9, 19.9, 16.1 ppm IR (ATR): $\tilde{v}=2934,1674,1600,1492,1407,1202$, 1139, 1077, 984, 907, $870 \mathrm{~cm}^{-1}$; HRMS (EI) calc'd. for [$\left.\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S}\right]^{+}: 408.1213$, found: 408.1216; $[\alpha]_{\mathrm{D}}{ }^{20}=-49.4\left(c=1.10, \mathrm{CHCl}_{3}\right) ; \boldsymbol{R}_{\mathrm{f}}: 0.36$ (Pentane/EtOAc, 25:1);

(1-(((1R,6S)-1,6-dimethyl-2-(4-methylpent-3-enyl)cyclohex-2-enyl)methyl)-2-methoxybenzene (9a): 4-Methyl-penta-1,3-diene ($1.10 \mathrm{~mL}, 9.61 \mathrm{mmol}$) was added to a $0{ }^{\circ} \mathrm{C}$ solution of 9 borabicyclo[3.3.1]nonane (0.5 M in $\mathrm{THF}, 18.7 \mathrm{~mL}, 9.37 \mathrm{mmol}$) and stirred for 30 min at $0^{\circ} \mathrm{C}$ and for 2 h at $23^{\circ} \mathrm{C}$. Subsequently, potassium phosphate ($1.49 \mathrm{~g}, 7.02 \mathrm{mmol}$) dissolved in $1.5 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ and triflate $8 \mathbf{a}(1.10 \mathrm{~g}, 2.34 \mathrm{mmol})$ dissolved in 3.5 ml DMF were added. Triphenylarsine ($72 \mathrm{mg}, 0.23 \mathrm{mmol}$), $\mathrm{Pd}_{2} \mathrm{dba}_{3} \cdot \mathrm{CHCl}_{3}(61 \mathrm{mg}, 59.0 \mu \mathrm{~mol})$ were added as solids and the mixture was degassed and heated to $55^{\circ} \mathrm{C}$. After 2 h the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with water, brine and dried over MgSO_{4}. Concentration and column chromatography on silica gel (pentane/EtOAc 15:1) yielded 714 mg (98% yield) of cross-coupled product 9a as colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.18-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.79(\mathrm{~m}, 2 \mathrm{H}), 5.46(\mathrm{t}, \mathrm{J}=3.7$, 1 H), 5.22-5.12 (m, 1H), $3.79(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{~d}, \mathrm{~J}=14.4,1 \mathrm{H}), 2.70(\mathrm{~d}, \mathrm{~J}=14.4,1 \mathrm{H})$, 2.22-1.89 (m, 6H), 1.88-1.77 (m, 1H), 1.74-1.65 (m, 4H), 1.63 (s, J = 7.2, 3H), 1.40$1.29(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}), 0.81(\mathrm{~d}, \mathrm{~J}=6.9,3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 158.1, 143.0, 131.4, 131.2, 128.3, 126.7, 125.0, 121.2, 119.8, 110.2, 55.1, 42.0, 36.4, 33.6, 31.4, 27.8, 26.3, 25.7, 23.5, 21.6, 17.7, 15.9 ppm. IR (ATR): $\tilde{v}=2966,2925$, 1600, 1492, 1458, 1378, 1242, 847, 752, $676 \mathrm{~cm}^{-1}$; HRMS (EI): calc'd. for [$\left.\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}\right]^{+}$: 312.2453, found: 312.2455; $[\alpha]_{\mathrm{D}}{ }^{20}=+5.2\left(\mathrm{c}=1.53, \mathrm{CHCl}_{3}\right.$); $\boldsymbol{R}_{\mathrm{f}}: 0.63$ (Pentane/EtOAc, 95:5)

(1-(((1R,6S)-1,6-dimethyl-2-(4-methylpent-3-enyl)cyclohex-2-enyl)methyl)-2-(methoxymethoxy)benzene (9b) was prepared in 99% yield using the same procedure: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.18-7.05(\mathrm{~m}, 3 \mathrm{H}), 6.93-6.86(\mathrm{~m}, 1 \mathrm{H}), 5.50-5.45(\mathrm{~m}$, $1 \mathrm{H}), 5.23-5.11(\mathrm{~m}, 3 \mathrm{H}), 3.49(\mathrm{~d}, \mathrm{~J}=3.3,3 \mathrm{H}), 2.95(\mathrm{~d}, \mathrm{~J}=14.3$, $1 \mathrm{H}), 2.74(\mathrm{~d}, \mathrm{~J}=14.3,1 \mathrm{H}), 2.23-1.95(\mathrm{~m}, 6 \mathrm{H}), 1.91-1.80(\mathrm{~m}$, $1 \mathrm{H}), 1.76-1.67(\mathrm{~m}, 4 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.41-1.32(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 0.82(\mathrm{~d}, \mathrm{~J}=6.9$, 3H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.1,142.8,131.5,131.2,128.8,126.9,124.9$, 121.3, 121.1, 113.8, 94.8, 56.0, 42.0, 36.6, 33.6, 31.4, 27.8, 26.3, 25.7, 23.4, 21.7, 17.7, 15.9; IR (ATR): $\tilde{v}=2925,1585,1489,1455,1378,1233,1153,1077,1007,753 \mathrm{~cm}^{-1}$; HRMS (EI): calc'd. for $\left[\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{2}\right]^{+}: 342.2553$, found: $342.2556[\alpha]_{\mathrm{D}}{ }^{20}=-2.7$ ($\mathrm{c}=0.90$, CHCl_{3}); $\boldsymbol{R}_{\mathrm{f}}: 0.43$ (Pentane/EtOAc, 25:1)

(1S,9aR)-8-methoxy-1,9a-dimethyl-2,3,9,9a-tetrahydro-1H-fluorene
(10a): 4-Methyl-penta-1,3-diene ($23 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$) was added to a
$0^{\circ} \mathrm{C}$ solution of 9-borabicyclo[3.3.1]nonane (0.5 M in THF, 0.4 mL , 0.20 mmol) and stirred for 30 min at $0^{\circ} \mathrm{C}$ and for 2 h at $23^{\circ} \mathrm{C}$. Subsequently, cesium fluoride ($30.5 \mathrm{mg}, 0.20 \mathrm{mmol}$) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ $(2.9 \mathrm{mg}, 2.50 \mu \mathrm{~mol})$ were added. Triflate 8a ($19.0 \mathrm{mg}, 0.05 \mathrm{mmol}$) dissolved in 3 ml dioxane was added and the mixture was degassed and heated to $85^{\circ} \mathrm{C}$. After 2 h the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with water, brine and dried over MgSO_{4}. Concentration and column chromatography on silica gel (pentane/EtOAc 95:5) yielded 10.4 mg (91%) of direct arylation product 10a as colorless film.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.16(\mathrm{t}, \mathrm{J}=7.8,1 \mathrm{H}), 7.01(\mathrm{~d}, \mathrm{~J}=7.5,1 \mathrm{H}), 6.69(\mathrm{~d}, \mathrm{~J}=$ $8.0,1 \mathrm{H}$), $5.87(\mathrm{t}, \mathrm{J}=3.7,1 \mathrm{H}$), $3.84(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{~d}, \mathrm{~J}=15.5,1 \mathrm{H}), 2.56(\mathrm{~d}, \mathrm{~J}=15.5,1 \mathrm{H})$, 2.31-2.22 (m, 2H), 1.80-1.68 (m, 1H), 1.63-1.55 (m, 2H), 1.01 (d, J = 6.8, 3H), 0.96 (s, 3H) ppm; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ~ \delta 156.7,149.3,142.9,130.3,128.0,117.1,113.1$, 108.7, 55.2, 45.5, 42.3, 37.8, 26.9, 25.3, 20.2, 16.9. IR (ATR): $\tilde{v}=2955,2928,2870$, 2835, 1585, 1481, 1376, 1282, 1259, 1090, 1070, 1016, 987, 880, 771, $713 \mathrm{~cm}^{-1}$; HRMS (EI): calc'd. for $\left[\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}^{+}\right.$: 228.1503, found: 228.1509; $[\alpha]_{\mathrm{D}}{ }^{20}=-47.6$ (c = 0.38, CHCl_{3}); $\boldsymbol{R}_{\mathrm{f}}: 0.36$ (Pentane/EtOAc, 95:5).

(2-(((1R,6S)-1,6-dimethyl-2-(4-methylpent-3-enyl)cyclohex-2-enyl)methyl)-phenol (3): Preparation of 3 from 9a: To a solution of $9 \mathrm{a}(360 \mathrm{mg}, 1.15 \mathrm{mmol})$ in HMPA (4 mL) was added n-BuSLi ($1.10 \mathrm{~g}, 11.5 \mathrm{mmol}$). The mixture was heated to $110^{\circ} \mathrm{C}$ and stirred for 2 hours. The mixture was cooled to 23°, diluted with EtOAc and poured into sat. aq. $\mathrm{NH}_{4} \mathrm{Cl} / \mathrm{pH} 7$ buffer 1:1. The aqueous layer was extracted with EtOAc. The combine organic layers were washed with water, brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was purified by chromatography on silica gel (Pentane/EtOAc: 50:1) to give 277 mg (81%) of phenol 3. Preparation of 3 from 9b: A solution of $9 \mathrm{~b}(200 \mathrm{mg}, 0.497 \mathrm{mmol})$ in 5 mL 1 M HCl in MeOH was stirred for 18 h at $23^{\circ} \mathrm{C}$. The mixture was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl} / \mathrm{pH}$ 7 buffer 1:1 and extracted with EtOAc. The combined organic layers were dried and
evaporated. The residue was purified by chromatography on silica gel (Hexane/EtOAc $4: 1)$ to give $61 \mathrm{mg}(41 \%)$ of phenol 3.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.14-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.74(\mathrm{~m}, 2 \mathrm{H}), 5.58-5.51(\mathrm{~m}$, $1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 5.10-5.02(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{~d}, \mathrm{~J}=14.3,1 \mathrm{H}), 2.57(\mathrm{~d}, \mathrm{~J}=14.3,1 \mathrm{H})$, 2.19-1.93 (m, 5H), 1.88-1.79 (m, 2H), 1.76-1.68(m, 1H), 1.66 (d, J = 0.9, 3H), $1.58(\mathrm{~s}$, 3 H), 1.48-1.37 (m, 1H), 1.01 ($\mathrm{s}, \mathrm{J}=9.2,3 \mathrm{H}$), $0.87(\mathrm{~d}, \mathrm{~J}=6.9,3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}(101$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.6,143.3,132.2,131.4,127.3,125.8,124.5,122.4,120.3,115.8$, $41.7,40.9,35.7,31.9,27.6,25.8,25.7,22.9,21.5,17.7,15.8 \mathrm{ppm}$; IR (ATR): $\tilde{v}=3428$, 2923, 1587, 1488, 1454, 1378, 1233, 1099, $752 \mathrm{~cm}^{-1}$; HRMS (EI): calc'd. for [$\left.\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}\right]^{+}$: 298.2291, found: 298.2291; $[\alpha]_{\mathrm{D}}{ }^{20}=+30.3\left(\mathrm{c}=1.10, \mathrm{CHCl}_{3}\right) ; \boldsymbol{R}_{\mathrm{f}}: 0.29$ (Pentane/EtOAc, 25:1).

(6S,6aR,121S)-6,6a-dimethyl-3-(prop-1-en-2-yl)-2,3,3a,4,5,6,6a,7-octahydro-1H-cyclopenta[d]xanthene (12): Benzoquinone (11.6 $\mathrm{mg}, 107 \mu \mathrm{~mol})$, lithium chloride ($4.6 \mathrm{mg}, 107 \mu \mathrm{~mol}$), sodium carbonate $(11.4 \mathrm{mg}, 107 \mu \mathrm{~mol})$ and $\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}(5.6 \mathrm{mg}, 21.0$ $\mu \mathrm{mol})$ were added to a dry test tube. Phenol $3(16.0 \mathrm{mg}, 50.0 \mu \mathrm{~mol})$ was added as solution in $500 \mu \mathrm{~L}$ THF. The mixture was degassed and stirred at $60{ }^{\circ} \mathrm{C}$ for 48 h . The residue was concentrated and purified by chromatography on silica gel (pentane / ether 100:1) and gave cyclized product $12(7.0 \mathrm{mg}, 44.0 \%$, 69% based on 7.3 mg recovered starting material 3) as colorless film. The stereochemistry was assigned by nOe spectroscopy.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.09(\mathrm{t}, \mathrm{J}=7.9,1 \mathrm{H}), 7.01(\mathrm{~d}, \mathrm{~J}=7.5,1 \mathrm{H}), 6.86-6.70(\mathrm{~m}$, $2 \mathrm{H}), 4.79-4.76(\mathrm{~m}, 1 \mathrm{H}), 4.76-4.72(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{dd}, \mathrm{J}=19.8,9.4,1 \mathrm{H}), 2.69(\mathrm{~d}, \mathrm{~J}=$ 16.7, 1H), $2.53(\mathrm{~d}, \mathrm{~J}=16.8,1 \mathrm{H}), 2.06-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.64(\mathrm{~m}, 6 \mathrm{H}), 1.64-1.43(\mathrm{~m}$, 5H), 1.38-1.19 (m, 1H), $0.96(\mathrm{~s}, 3 \mathrm{H}), 0.78(\mathrm{~d}, \mathrm{~J}=6.8,3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, CDCl_{3}) б 152.4, 147.4, 129.1, 126.9, 121.4, 119.5, 116.9, 109.5, 90.2, 49.2, 45.2, 36.3, $34.5,31.4,30.5,29.4,27.9,24.1,19.9,16.8,15.3 \mathrm{ppm}$; IR (ATR): $\tilde{v}=3072,2963$, 2933, 1645, 1586, 1488, 1458, 1383, 1247, 1176, 1036, 934, 886, $751 \mathrm{~cm}^{-1}$; HRMS (EI): calc'd. for $\left[\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}\right]^{+}: 296.2135$, found: 296.2138; $[\alpha]_{\mathrm{D}}{ }^{20}=+68.3\left(\mathrm{c}=0.33, \mathrm{CHCl}_{3}\right)$; $\boldsymbol{R}_{\mathrm{f}}$: 0.85 (Pentane/EtOAc, 95:5).

(1S,4aR,9aR)-1,9a-dimethyl-4a-(4-methylpent-3-enyl)-2,3,4,4a,9,9a-hexahydro-1H-xanthene (11): Phenol 3 (16.0 mg, $50.0 \mu \mathrm{~mol}$) in $100 \mu \mathrm{~L} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was to $\mathrm{PtCl}_{4}(1.7 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$ in 400 $\mu \mathrm{L} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and stirred for 1 h . The residue was concentrated and purified by chromatography on silica gel (pentane / ether 100:1) and gave partially cyclized product 8.6 mg (54%) 11 as colorless film.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.15-7.05(\mathrm{~m}, 1 \mathrm{H}), 7.02-6.94(\mathrm{~m}$, $1 \mathrm{H}), 6.86-6.73(\mathrm{~m}, 2 \mathrm{H}), 5.05-4.94(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{~s}, 2 \mathrm{H}), 2.12-1.93(\mathrm{~m}, 3 \mathrm{H}), 1.85-1.58$ (m, 5H), 1.57-1.50 (m, 2H), $1.47(\mathrm{~s}, 3 \mathrm{H}), 1.43-1.23(\mathrm{~m}, 4 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}), 0.79(\mathrm{~d}, \mathrm{~J}=$ $6.8,3 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.2,131.4,129.3,127.1,124.7,121.2$, 119.5, 116.8, 80.4, 36.9, 33.8, 32.9, 31.9, 30.0, 29.8, 25.6, 21.7, 20.9, 17.4, 16.5, 16.2.; IR (ATR): $\tilde{v}=3953,2936,2856,1586,1488,1456,1383,1303,1255,1184,1159$,

1119, 1036, 995, 934, 840, $752 \mathrm{~cm}^{-1}$; HRMS (EI) calc'd. for $\left[\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}\right]^{+}$: 298.2297, found: 298.2292; $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=+12.7\left(c=0.51, \mathrm{CHCl}_{3}\right) ; \boldsymbol{R}_{\mathbf{f}}: 0.79$ (Pentane/EtOAc, 95:5).

(4aR,7S,7aR,131S)-4,4,7,7a-tetramethyl-1,2,3,4,4a,5,6,7,7a,8-decahydrobenzo[d]xanthene (trans-1): $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}(1.3 \mathrm{mg}, 5.00 \mu \mathrm{~mol})$ and silver triflate $(3.9 \mathrm{mg}, 15 \mu \mathrm{~mol})$ were heated in $400 \mu \mathrm{~L}$ acetonitrile for 30 min at $80^{\circ} \mathrm{C}$, cooled to $23^{\circ} \mathrm{C}$ and $2.6 \mathrm{mg}(10.0 \mu \mathrm{~mol})$ triphenylphosphine, $4.5 \mathrm{mg}(13.0 \mu \mathrm{~mol})$ copper(II) triflate and 7.5 mg $(25.0 \mu \mathrm{~mol})$ phenol 3 in $100 \mu \mathrm{~L}$ acetonitrile were added. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 5 h , cooled and concentrated. The residue was purified by chromatography on silica gel (pentane / ether $100: 1$) and gave cyclized product 5.2 mg (69%) trans-1 as colorless film along with 0.8 mg of 11 .
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.13-7.04(\mathrm{~m}, 1 \mathrm{H}), 7.02-6.92(\mathrm{~m}, 1 \mathrm{H}), 6.85-6.75(\mathrm{~m}$, $2 H$), $2.60(\mathrm{~d}, \mathrm{~J}=17.2,1 \mathrm{H}), 2.55(\mathrm{~d}, \mathrm{~J}=17.3,1 \mathrm{H}), 1.78-1.55(\mathrm{~m}, 5 \mathrm{H}), 1.48-1.14(\mathrm{~m}$, 7H), $1.12(\mathrm{~s}, \mathrm{~J}=12.0,3 \mathrm{H}), 0.92(\mathrm{~d}, \mathrm{~J}=1.5,6 \mathrm{H}), 0.75(\mathrm{~d}, \mathrm{~J}=6.8,3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.8,129.3,127.0,121.2,119.4,116.9,81.4,45.6,42.0,37.2$, $33.4,33.4,32.6,31.7,30.5,28.8,22.4,21.9,17.9,16.9,16.2 \mathrm{ppm}$. IR (ATR): $\tilde{v}=2925$, 2853, 1587, 1488, 1458, 1387, 1254, 1171, 1113, $936,751 \mathrm{~cm}^{-1}$; HRMS (EI): calc'd. for $\left[\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}\right]^{+}$: 298.2282, found: 298.2297; $[\alpha]_{\mathrm{D}}{ }^{20}=+3.7\left(\mathrm{c}=0.23, \mathrm{CHCl}_{3}\right) ; \boldsymbol{R}_{\mathrm{f}}: 0.88$ (Pentane/EtOAc, 95:5).

Spectra

[^0]: ${ }^{1}$ M. Vuagnoux-d'Augustin, A. Alexakis, Chem. Eur. J. 2007, 13, 9647-9662.

