Supporting Information

Facile One-Pot Synthesis of Three Different Substituted Thiazoles from Propargylic Alcohols

Xun Gao, Ying-ming Pan, Min Lin, Li Chen, and Zhuang-ping Zhan^{*}

Department of Chemistry, College of Chemistry and Chemical Engineering, and State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, Fujian, P. R. China

S1-S12	Experimental and Spectral data of compounds 3aa-6pf , 14a
S13-S15	X-ray data for compound 3fa
S16-S97	Copies of ¹ H and ¹³ C NMR spectra of new compounds

*Correspondence : Prof. Zhuang-ping Zhan, Department of Chemistry, Xiamen University, Xiamen 361005, Fujian, P. R.

China;

Tel: (+86)-592-2180318;

Fax: (+86)-592-2180318;

E-mail: zpzhan@xmu.edu.cn

Experimental

General methods and materials. Melting points were uncorrected. NMR spectra were in CDCl₃ (¹H at 400 MHz and ¹³C at 100 MHz). Column chromatography was performed on silica gel (300-400 mesh). Unless otherwise noted, all reagents were obtained commercially and used without further purification.

General procedure for synthesis of substituted thiazoles 3 and 4. To a 5-mL flask, propargylic alcohols 1 (0.5 mmol), thioamides 2 (0.6 mmol), chlorobenzene (2.0 mL), and AgOTf (0.05 mmol) were successively added. The reaction mixture was stirred at reflux, and monitored periodically by TLC. Upon completion, the chlorobenzene was removed under reduced pressure, and then the residue was purified by silica gel column chromatography (EtOAc/hexane) to afford corresponding substituted thiazoles 3 (or two regioisomers 3 and 4).

General Procedure for Synthesis of Substituted Thiazoles 6. To a 5-mL flask, propargylic alcohols 1 (0.5 mmol), amides **5** (0.55 mmol), acetonitrile (2.0 mL) and FeCl₃ (0.05 mmol) were successively added. The reaction was allowed to stir at 70-80 °C, and monitored periodically by TLC. Upon reaction completion, acetonitrile was removed in vacuo, followed by the addition of toluene (2 mL) and Lawesson's reagent (0.55 mmol). The reaction mixture was heated to reflux temperature for an additional 10 h until completion. Upon completion, the toluene was removed under reduced pressure, and then the residue was purified by silica gel column chromatography (EtOAc/hexane) to afford corresponding substituted thiazoles **6**.

4-benzyl-2,5-diphenylthiazole (3aa): a white solid (mp 108-109 °C). ¹H NMR (400 MHz, CDCl₃): δ 4.24 (s, 2H), 7.20-7.26 (m, 1H), 7.30-7.32 (m, 4H), 7.36-7.49 (m, 8H), 7.96-8.01 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 35.5, 126.1, 126.4, 128.2, 128.5, 128.6, 128.8, 128.9, 129.4, 129.9, 131.9, 133.7, 133.8, 139.9, 150.9, 165.6; IR (film): 3026, 1600, 1485 cm⁻¹; ESI-MS: *m/z* (%) = 328 (100) [M+H]⁺. Anal calcd for C₂₂H₁₇NS: C, 80.70; H, 5.23; N, 4.28. Found: C, 80.98; H, 5.04; N, 4.51.

Ph // Ph

4-benzyl-5-butyl-2-phenylthiazole (3ba): a pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 0.90 (t, J =

7.2 Hz, 3H), 1.32-1.41 (m, 2H), 1.55-1.62 (m, 2H), 2.76 (t, J = 7.6 Hz, 2H), 4.12 (s, 2H), 7.15-7.23 (m, 1H), 7.25-7.30 (m, 4H), 7.32-7.42 (m, 3H), 7.86-7.91 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 13.8, 22.3, 26.3, 34.0, 35.3, 126.1, 126.2, 128.4, 128.6, 128.8, 129.4, 134.1, 134.5, 139.8, 151.1, 163.9; IR (film): 3061, 1601, 1494 cm⁻¹; ESI-MS: m/z (%) = 308 (100) [M+H]⁺, 330 (46) [M+Na]⁺. Anal calcd for C₂₀H₂₁NS: C, 78.13; H, 6.88; N, 4.56. Found: C, 78.42; H, 6.62; N, 4.81.

4-benzyl-5-cyclopropyl-2-phenylthiazole (3ca): a pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 0.69-0.74 (m, 2H), 1.02-1.08 (m, 2H), 1.94-2.01 (m, 1H), 4.24 (s, 2H), 7.18-7.23 (m, 1H), 7.28-7.42 (m, 7H), 7.85-7.89 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 7.9, 9.8, 35.6, 126.0, 126.1, 128.3, 128.6, 128.7, 129.3, 134.0, 137.3, 139.7, 152.6, 162.7; IR (film): 3027, 1602, 1496 cm⁻¹; ESI-MS: *m/z* (%) = 292 (100) [M+H]⁺, 314 (32) [M+Na]⁺. Anal calcd for C₁₉H₁₇NS: C, 78.31; H, 5.88; N, 4.81. Found: C, 78.02; H, 5.54; N, 5.06.

4-benzyl-5-cyclohexenyl-2-phenylthiazole (3da): a pale yellow solid (mp 91-92 °C). ¹H NMR (400 MHz, CDCl₃): δ 1.62-1.69 (m, 2H), 1.72-1.79 (m, 2H), 2.15-2.21 (m, 2H), 2.28-2.35 (m, 2H), 4.23 (s, 2H), 5.93-5.96 (m, 1H), 7.18-7.24 (m, 1H), 7.27-7.33 (m, 4H), 7.36-7.44 (m, 3H), 7.91-7.94 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 21.7, 22.9, 25.6, 31.2, 36.0, 125.9, 126.3, 128.3, 128.6, 128.7, 129.0, 129.5, 129.6, 134.0, 136.8, 140.2, 150.0, 163.9; IR (film): 3024, 1616, 1491 cm⁻¹; ESI-MS: *m/z* (%) = 332 (100) [M+H]⁺, 354 (20) [M+Na]⁺. Anal calcd for C₂₂H₂₁NS: C, 79.72; H, 6.39; N, 4.23. Found: C, 79.47; H, 6.74; N, 4.01.

5-butyl-2-phenyl-4-(thiophen-2-ylmethyl)thiazole (3ea): a pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 0.92 (t, J = 7.2 Hz, 3H), 1.34-1.43 (m, 2H), 1.58-1.65 (m, 2H), 2.79 (t, J = 8.0 Hz, 2H), 4.26 (d, J = 0.8 Hz, 2H), 6.84-6.86 (m, 1H), 6.89 (dd, J = 5.2, 3.6 Hz, 1H), 7.11 (dd, J = 5.2, 1.2 Hz, 1H), 7.31-7.41 (m, 3H), 7.87-7. 91 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 13.8, 22.2, 26.2, 29.7, 33.9, 123.8, 124.8, 126.2, 126.6, 128.7, 129.4, 133.9, 134.5, 142.4, 150.3, 164.1; IR (film): 3012, 1604, 1495 cm⁻¹; ESI-MS: m/z (%) = 314 (100) [M+H]⁺, 336 (29) [M+Na]⁺. Anal calcd for C₁₈H₁₉NS₂: C, 68.97; H, 6.11; N, 4.47. Found: C, 69.22; H, 6.35; N, 4.26.

4-cinnamyl-2,5-diphenylthiazole (3fa): a pale yellow solid (mp 93-94 °C). ¹H NMR (400 MHz, CDCl₃): δ 3.77 (dd, J = 6.0, 1.6 Hz, 2H), 6.43 (d, J = 16.0 Hz, 1H), 6.54 (dt, J = 16.0, 6.0 Hz, 1H), 7.16-7.21 (m,

1H), 7.25-7.30 (m, 2H), 7.34-7.45 (m, 8H), 7.49-7.52 (m, 2H), 7.94-7.98 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 33.5, 126.2, 126.5, 127.1, 128.1, 128.2, 128.5, 128.8, 128.9, 129.4, 129.9, 131.2, 131.9, 133.3, 133.8, 137.6, 150.6, 165.7; **IR** (film): 3025, 1598, 1509 cm⁻¹; **ESI-MS**: *m/z* (%) = 354 (100) [M+H]⁺. **Anal** calcd for C₂₄H₁₉NS: C, 81.55; H, 5.42; N, 3.96. Found: C, 81.74; H, 5.75; N, 3.72.

5-butyl-4-(naphthalen-1-ylmethyl)-2-phenylthiazole (3ga): a pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 0.90 (t, J = 7.2 Hz, 3H), 1.31-1.41 (m, 2H), 1.55-1.63 (m, 2H), 2.77 (t, J = 7.6 Hz, 2H), 4.63 (s, 2H), 7.22 (d, J = 7.6 Hz, 1H), 7.37-7.45 (m, 4H), 7.50-7.61 (m, 2H), 7.77 (d, J = 8.0 Hz, 1H), 7.90 (d, J = 7.6 Hz, 1H), 7.93-7.97 (m, 2H), 8.34 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 13.8, 22.3, 26.4, 32.8, 33.9, 124.1, 125.5, 125.6, 125.9, 126.0, 126.2, 127.0, 128.7, 128.8, 129.4, 132.2, 133.9, 134.2, 135.3, 135.7, 150.5, 163.9; **IR** (film): 3065, 1616, 1503 cm⁻¹; **ESI-MS**: m/z (%) = 358 (100) [M+H]⁺, 380 (70) [M+Na]⁺. **Anal** calcd for C₂₄H₂₃NS: C, 80.63; H, 6.48; N, 3.92. Found: C, 80.47; H, 6.69; N, 3.67.

4-(2-methoxybenzyl)-5-butyl-2-phenylthiazole (3ha): a pale yellow oil. ¹**H** NMR (400 MHz, CDCl₃): δ 0.90 (t, J = 7.6 Hz, 3H), 1.32-1.42 (m, 2H), 1.54-1.65 (m, 2H), 2.78 (t, J = 7.6 Hz, 2H), 3.86 (s, 3H), 4.09 (s, 2H), 6.84-6.87 (m, 2H), 7.07-7.10 (m, 1H), 7.15-7.19 (m, 1H), 7.31-7.40 (m, 3H), 7.86-7.90 (m, 2H); ¹³**C** NMR (100 MHz, CDCl₃): δ 13.8, 22.3, 26.2, 28.8, 34.1, 55.3, 110.0, 120.5, 126.2, 127.2, 128.2, 128.7, 129.3, 129.8, 134.2, 134.6, 150.8, 157.0, 163.7; **IR** (film): 3058, 1600, 1493 cm⁻¹; **ESI-MS**: *m/z* (%) = 338 (100) [M+H]⁺, 360 (71) [M+Na]⁺. **Anal** calcd for C₂₁H₂₃NOS: C, 74.74; H, 6.87; N, 4.15. Found: C, 75.01; H, 6.53; N, 4.41.

4-(4-bromobenzyl)-5-butyl-2-phenylthiazole (3ia): a pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 0.91 (t, J = 7.2 Hz, 3H), 1.32-1.41 (m, 2H), 1.55-1.63 (m, 2H), 2.75 (t, J = 7.6 Hz, 2H), 4.05 (s, 2H), 7.14 (d, J = 8.4 Hz, 2H), 7.34-7.42 (m, 5H), 7.85-7.89 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 13.8, 22.3, 26.3, 34.0, 34.6, 119.9, 126.2, 128.8, 129.5, 130.3, 131.4, 133.9, 134.6, 138.8, 150.4, 164.2; IR (film): 3061, 1613, 1518 cm⁻¹; ESI-MS: m/z (%) = 386 (100) [M+H]⁺, 408 (49) [M+Na]⁺. Anal calcd for C₂₀H₂₀BrNS: C, 62.18; H, 5.22; N, 3.63. Found: C, 61.95; H, 5.51; N, 3.87.

methyl 4-((2,5-diphenylthiazol-4-yl)methyl)benzoate (3ja): a pale yellow solid (mp 121-122 °C). ¹H **NMR** (400 MHz, CDCl₃): δ 3.89 (s, 3H), 4.26 (s, 2H), 7.34 (d, J = 8.4 Hz, 2H), 7.37-7.45 (m, 8H), 7.94-7.97 (m, 4H); ¹³C **NMR** (100 MHz, CDCl₃): δ 35.5, 52.0, 126.4, 128.1, 128.4, 128.7, 128.8, 128.9, 129.4, 129.8, 130.1, 131.5, 133.5, 134.1, 145.2, 149.9, 165.9, 167.1; **IR** (film): 3028, 1717, 1616, 1509 cm⁻¹; **ESI-MS**: m/z (%) = 386 (100) [M+H]⁺, 408 (73) [M+Na]⁺. **Anal** calcd for C₂₄H₁₉NO₂S: C, 74.78; H, 4.97; N, 3.63. Found: C, 75.03; H, 4.65; N, 3.82.

4-benzhydryl-2,5-diphenylthiazole (3ka): a white solid (mp 93-94 °C). ¹**H** NMR (400 MHz, CDCl₃): δ 5.60 (s, 1H), 7.20-7.25 (m, 2H), 7.28-7.34 (m, 4H), 7.38-7.48 (m, 12H), 7.95-7.99 (m, 2H); ¹³**C** NMR (100 MHz, CDCl₃): δ 50.3, 126.3, 126.5, 128.2, 128.3, 128.8, 129.3, 129.7, 129.8, 131.8, 133.9, 134.0, 143. 6, 152.9, 165.4; **IR** (film): 3055, 1613, 1491 cm⁻¹; **ESI-MS**: *m/z* (%) = 404 (100) [M+H]⁺. **Anal** calcd for C₂₈H₂₁NS: C, 83.34; H, 5.25; N, 3.47. Found: C, 83.05; H, 5.41; N, 3.18.

2-phenyl-4-(1-phenylethyl)thiazole (3la): a pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 1.75 (d, J = 7.2 Hz, 3H), 4.38 (q, J = 7.2 Hz, 1H), 6.80 (d, J = 0.8 Hz, 1H), 7.22-7.25 (m, 1H), 7.31-7.38 (m, 4H), 7.39-7.45 (m, 3H), 7.93-7.97 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 21.6, 42.3, 113.2, 126.4, 126.6, 127.7, 128.5, 128.8, 129.8, 133.9, 144.9, 162.4, 167.6; IR (film): 3030, 1616, 1509 cm⁻¹; ESI-MS: *m/z* (%) = 266 (100) [M+H]⁺, 288 (31) [M+Na]⁺. Anal calcd for C₁₇H₁₅NS: C, 76.94; H, 5.70; N, 5.28. Found: C, 76.70; H, 5.44; N, 5.43.

4-isopropyl-2,5-diphenylthiazole (3na): a white solid (mp 81-82 °C). ¹H NMR (400 MHz, CDCl₃): δ 1.37 (d, J = 6.4 Hz, 6H), 3.23 (sep, J = 6.8 Hz, 1H), 7.35-7.48 (m, 8H), 8.96-7.00 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 23.0, 28.4, 126.4, 127.8, 128.7, 128.8, 129.6, 129.7, 130.7, 132.3, 134.2, 158.7, 165.4; **IR** (film): 3061, 1613, 1509 cm⁻¹; **ESI-MS**: m/z (%) = 280 (100) [M+H]⁺. **Anal** calcd for C₁₈H₁₇NS: C, 77.38; H, 6.13; N, 5.01. Found: C, 77.05; H, 6.43; N, 5.07.

4-cyclohexyl-2,5-diphenylthiazole (3oa): a pale yellow solid (mp 97-98 °C). ¹H NMR (400 MHz, CDCl₃): δ 1.23-1.43 (m, 3H), 1.70-1.95 (m, 7H), 2.81-2.88 (m, 1H), 7.36-7.46 (m, 8H), 7.95-7.99 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 25.9, 26.5, 33.0, 38.4, 126.4, 127.8, 128.7, 128.8, 129.6, 129.7, 131.0, 132.3, 134.2, 158.2, 165.2; **IR** (film): 3051, 1613, 1506 cm⁻¹; **ESI-MS**: *m/z* (%) = 320 (100) [M+H]⁺. **Anal** calcd for C₂₁H₂₁NS: C, 78.95; H, 6.63; N, 4.38. Found: C, 79.22; H, 6.41; N, 4.15.

4-benzyl-5-butyl-2-(4-methoxyphenyl)thiazole (3bb): a pale yellow oil. ¹**H NMR** (400 MHz, CDCl₃): δ 0.92 (t, J = 7.2 Hz, 3H), 1.33-1.43 (m, 2H), 1.55-1.63 (m, 2H), 2.76 (t, J = 7.6 Hz, 2H), 3.84 (s, 3H), 4.12 (s, 2H), 6.92 (d, J = 9.2 Hz, 2H), 7.17-7.23 (m, 1H), 7.26-7.31 (m, 4H), 7.84 (d, J = 9.2 Hz, 2H); ¹³**C NMR** (100 MHz, CDCl₃): δ 13.8, 22.3, 26.3, 34.0, 35.2, 55.4, 114.1, 126.0, 127.1, 127.7, 128.3, 128.6, 133.4, 139.9, 150.7, 160.7, 163.9; **IR** (film): 3028, 1607, 1491 cm⁻¹; **ESI-MS**: m/z (%) = 338 (100) [M+H]⁺, 360 (29) [M+Na]⁺. **Anal** calcd for C₂₁H₂₃NOS: C, 74.74; H, 6.87; N, 4.15. Found: C, 74.52; H, 7.06; N, 4.39.

4-benzyl-5-phenyl-2-p-tolylthiazole (3ac): a pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 2.31 (s, 3H), 4.13 (s, 2H), 7.10-7.18 (m, 4H), 7.19-7.24 (m, 4H), 7.25-7.38 (m, 5H), 7.77 (d, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 21.4, 35.4, 126.1, 126.4, 128.0, 128.4, 128.6, 128.7, 129.4, 129.5, 131.1, 131.9, 133.2, 139.9, 140.1, 150.7, 165.8; IR (film): 3025, 1613, 1509 cm⁻¹; ESI-MS: m/z (%) = 342 (100) [M+H]⁺, 364 (38) [M+Na]⁺. Anal calcd for C₂₃H₁₉NS: C, 80.90; H, 5.61; N, 4.10. Found: C, 80.68; H, 5.87; N, 4.33.

4-benzyl-5-butyl-2-(4-chlorophenyl)thiazole (3bd): a pale yellow solid (mp 43-44 °C). ¹H NMR (400 MHz, CDCl₃): δ 0.90 (t, J = 7.2 Hz, 3H), 1.32-1.41 (m, 2H), 1.54-1.62 (m, 2H), 2.77 (t, J = 7.6 Hz, 2H), 4.10 (s, 2H), 7.16-7.21 (m, 1H), 7.23-7.30 (m, 4H), 7.35 (d, J = 8.8 Hz, 2H), 7.81 (d, J = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 13.8, 22.3, 26.3, 34.0, 35.2, 126.1, 127.4, 128.4, 128.6, 128.9, 132.6, 134.9, 135.2, 139.7, 151.4, 162.5; **IR** (film): 3028, 1616, 1497 cm⁻¹; **ESI-MS**: m/z (%) = 342 (100) [M+H]⁺, 364 (37) [M+Na]⁺. **Anal** calcd for C₂₀H₂₀CINS: C, 70.26; H, 5.90; N, 4.10. Found: C, 70.52; H, 6.17; N, 4.41.

4-benzyl-5-butyl-2-(4-nitrophenyl)thiazole (3be): a pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 0.92 (t, J = 7.2 Hz, 3H), 1.34-1.43 (m, 2H), 1.57-1.66 (m, 2H), 2.82 (t, J = 7.6 Hz, 2H), 4.14 (s, 2H), 7.18-7.22 (m, 1H), 7.24-7.32 (m, 4H), 8.04 (d, J = 9.2 Hz, 2H), 8.25 (d, J = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 13.7, 22.3, 26.4, 33.9, 35.3, 124.2, 126.3, 126.6, 128.5, 128.6, 137.3, 139.3, 139.6, 148.0, 152.6, 160.8; **IR** (film): 3028, 1611, 1593, 1507 cm⁻¹; **ESI-MS**: m/z (%) = 353 (100) [M+H]⁺, 375 (40) [M+Na]⁺. **Anal** calcd for C₂₀H₂₀N₂O₂S: C, 68.16; H, 5.72; N, 7.95. Found: C, 67.88; H, 5.97; N, 7.73.

4-benzyl-5-butyl-2-methylthiazole (3bf): a pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 0.89 (t, J = 7.2 Hz, 3H), 1.29-1.39 (m, 2H), 1.49-1.57 (m, 2H), 2.61 (s, 3H), 2.70 (t, J = 7.6 Hz, 2H), 4.01 (s, 2H), 7.14-7.20 (m, 3H), 7.23-7.35 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 13.8, 19.2, 22.3, 26.1, 34.1, 35.0, 126.0, 128.4, 128.5, 133.4, 139.9, 149.2, 162.1; **IR** (film): 3030, 1613, 1494 cm⁻¹; **ESI-MS**: m/z (%) = 246 (100) [M+H]⁺, 268 (12) [M+Na]⁺. **Anal** calcd for C₁₅H₁₉NS: C, 73.42; H, 7.80; N, 5.71. Found: C, 73.71; H, 7.55; N, 5.88.

4-benzyl-5-butyl-2-isopropylthiazole (3bg): a pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 0.88 (t, *J* = 7.2 Hz, 3H), 1.25-1.41 (m, 8H), 1.47-1.56 (m, 2H), 2.68 (t, *J* = 7.6 Hz, 2H), 3.23 (sep, *J* = 6.8 Hz, 1H), 4.03 (s, 2H), 7.13-7.20 (m, 3H), 7.23-7.28 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 13.8, 22.3, 23.3, 26.2, 33.3, 34.0, 35.1, 125.9, 128.3, 128.5, 132.4, 140.0, 148.8, 174.0; **IR** (film): 3028, 1619, 1503 cm⁻¹; **ESI-MS**: *m/z* (%) = 274 (100) [M+H]⁺, 296 (10) [M+Na]⁺. **Anal** calcd for C₁₇H₂₃NS: C, 74.67; H, 8.48; N, 5.12. Found: C, 74.39; H, 8.72; N, 5.32.

4-benzyl-2-methyl-5-phenylthiazole (3af): a pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 2.69 (s, 3H), 4.12 (s, 2H), 7.16-7.21 (m, 3H), 7.25-7.30 (m, 2H), 7.31-7.42 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 19.3, 35.2, 126.1, 127.9, 128.4, 128.5, 128.7, 129.4, 132.0, 133.0, 139.9, 149.3, 163.9; IR (film): 3025, 1619, 1598, 1491 cm⁻¹; ESI-MS: m/z (%) = 266 (100) [M+H]⁺, 288 (22) [M+Na]⁺. Anal calcd for C₁₇H₁₅NS: C, 76.94; H, 5.70; N, 5.28. Found: C, 77.17; H, 5.46; N, 5.54.

4-(1-phenylethyl)-2-propylthiazole (3mh): a pale yellow oil. **1H NMR** (400 MHz, CDCl₃): δ 0.99 (t, *J* = 7.2 Hz, 3H), 1.66 (d, *J* = 7.2 Hz, 3H), 1.71-1.84 (m, 2H), 2.93 (t, *J* = 7.6 Hz, 2H), 4.28 (q, *J* = 7.2 Hz, 1H), 6.66 (d, *J* = 0.8 Hz, 1H), 7.17-7.22 (m, 1H), 7.24-7.32 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 13.6, 21.6, 23.5, 35.5, 42.1, 112.1, 126.3, 127.6, 128.4, 145.0, 160.7, 170.9; **IR** (film): 3027, 1613, 1506 cm⁻¹; **ESI-MS**: *m/z* (%) = 232 (100) [M+H]⁺, 254 (11) [M+Na]⁺. **Anal** calcd for C₁₄H₁₇NS: C, 72.68; H, 7.41; N, 6.05. Found: C, 72.91; H, 7.18; N, 6.23.

4-benzyl-5-cyclopropyl-2-propylthiazole (3ch): a pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 0.59-0.63 (m, 2H), 0.93-0.99 (m, 5H), 1.68-1.78 (m, 2H), 1.84-1.92 (m, 1H), 2.84 (t, *J* = 7.2 Hz, 2H), 4.12 (s, 2H), 7.14-7.18 (m, 1H), 7.21-7.28 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 7.6, 9.4, 13.6, 23.5, 35.3, 35.4, 125.9, 128.3, 128.5, 135.6, 139.8, 150.5, 166.4; **IR** (film): 3031, 1616, 1494 cm⁻¹; **ESI-MS**: *m/z* (%) = 258 (100) [M+H]⁺, 280 (36) [M+Na]⁺. **Anal** calcd for C₁₆H₁₉NS: C, 74.66; H, 7.44; N, 5.44. Found: C, 74.41; H, 7.72; N, 5.28.

4-benzyl-5-cyclohexenyl-2-propylthiazole (3dh): a pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 0.99 (t, J = 7.6 Hz, 3H), 1.56-1.63 (m, 2H), 1.65-1.73 (m, 2H), 1.73-1.81 (m, 2H), 2.08-2.15 (m, 2H), 2.15-2.25 (m, 2H), 2.89 (t, J = 7.2 Hz, 2H), 4.10 (s, 2H), 5.81-5.85 (m, 1H), 7.12-7.19 (m, 3H), 7.22-7.27 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 13.6, 21.7, 22.9, 23.5, 25.6, 31.2, 35.4, 35.7, 125.8, 128.2, 128.4, 128.9, 129.2, 135.6, 140.3, 148.0, 167.6; **IR** (film): 3030, 1604, 1494 cm⁻¹; **ESI-MS**: m/z (%) = 298 (100) [M+H]⁺. **Anal** calcd for C₁₉H₂₃NS: C, 76.72; H, 7.79; N, 4.71. Found: C, 76.56; H, 8.02; N, 7.45. Ph—

4-benzyl-2-phenylthiazole (3pa): a pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 4.19 (d, J = 0.4 Hz, 2H), 6.72 (t, J = 0.8 Hz, 1H), 7.21-7.27 (m, 1H), 7.28-7.34 (m, 4H), 7.35-7.44 (m, 3H), 7.91-7.95 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 38.1, 114.4, 126.5, 126.6, 128.6, 128.9, 129.2, 129.9, 133.8, 139.1, 157.6, 167.9; IR (film): 3021, 1619, 1494 cm⁻¹; ESI-MS: m/z (%) = 252 (68) [M+H]⁺, 274 (100) [M+Na]⁺.

Data are in accordance with previously reported results.¹

TMS—	N	
Ph-	ר א_א_ש	[∕] Ph

2,5-diphenyl-4-((trimethylsilyl)methyl)thiazole (4pa): a pale yellow oil. ¹**H NMR** (400 MHz, CDCl₃): δ 0.05 (s, 9H), 2.40 (s, 2H), 7.32-7.36 (m, 1H), 7.39-7.46 (m, 5H), 7.47-7.50 (m, 2H), 7.93-7.97 (m, 2H); ¹³**C NMR** (100 MHz, CDCl₃): δ -1.0, 20.3, 126.2, 127.6, 128.7, 128.9, 129.3, 129.5, 129.6, 132.8, 134.0, 151.7, 164.4; **IR** (film): 3061, 1619, 1598, 1482 cm⁻¹; **ESI-MS**: m/z (%) = 324 (100) [M+H]⁺, 346 (37) [M+Na]⁺. **Anal** calcd for C₁₉H₂₁NSSi: C, 70.54; H, 6.54; N, 4.33. Found: C, 70.77; H, 6.39; N, 4.61.

Ph

4-benzyl-2-methylthiazole (3pf): a pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 2.68 (s, 3H), 4.08 (s, 2H), 6.60 (t, J = 0.8 Hz, 1H), 7.20-7.33 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 19.2, 37.9,113.7, 126.4, 128.5, 129.0, 139.1, 155.9, 165.8; **IR** (film): 3025, 1617, 1496 cm⁻¹; **ESI-MS**: m/z (%) = 190 (100) [M+H]⁺. **Anal** calcd for C₁₁H₁₁NS: C, 69.80; H, 5.86; N, 7.40. Found: C, 69.53; H, 6.04; N, 7.16.

2-methyl-5-phenyl-4-((trimethylsilyl)methyl)thiazole (4pf): a pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ -0.05 (s, 9H), 2.33 (s, 2H), 2.66 (s, 3H), 7.27-7.33 (m, 1H), 7.36-7.42 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ -1.2, 19.1, 20.2, 127.3, 127.9, 128.6, 129.4, 133.1, 150.1, 162.7; **IR** (film): 3059, 1597, 1494 cm⁻¹; **ESI-MS**: *m/z* (%) = 262 (100) [M+H]⁺, 284 (42) [M+Na]⁺. **Anal** calcd for C₁₄H₁₉NSSi: C, 64.31; H, 7.32; N, 5.36. Found: C, 64.57; H, 7.08; N, 5.54.

4-methyl-2,5-diphenylthiazole (4qa): a pale yellow oil. ¹**H** NMR (400 MHz, CDCl₃): δ 2.56 (s, 3H), 7.33-7.37 (m, 1H), 7.39-7.46 (m, 5H), 7.47-7.50 (m, 2H), 7.92-7.96 (m, 2H); ¹³**C** NMR (100 MHz, CDCl₃): δ 16.4, 126.3, 127.8, 128.7, 128.9, 129.2, 129.8, 132.2, 133.7, 148.8, 165.1; **IR** (film): 3027, 1616, 1506 cm⁻¹; **ESI-MS**: m/z (%) = 252 (100) [M+H]⁺, 274 (27) [M+Na]⁺.

Data are in accordance with previously reported results.²

4-(4-chlorobenzyl)-2-propylthiazole (3rh): a pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 1.01 (t, J = 7.2 Hz, 3H), 1.75-1.85 (m, 2H), 2.95 (t, J = 7.2 Hz, 2H), 4.06 (s, 2H), 6.62 (s, 1H), 7.19 (d, J = 4.8 Hz, 2H), 7.27 (d, J = 4.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 13.6, 23.5, 35.5, 37.2, 113.5, 128.6, 130.3, 132.2, 137.7, 155.1, 171.5; **IR** (film): 3062, 1599, 1491 cm⁻¹; **ESI-MS**: m/z (%) = 252 (100) [M+H]⁺. **Anal** calcd for C₁₃H₁₄CINS: C, 62.02; H, 5.60; N, 5.56. Found: C, 61.77; H, 5.74; N, 5.27.

5-(4-chlorophenyl)-2-propyl-4-((trimethylsilyl)methyl)thiazole (4rh): a pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ -0.05 (s, 9H), 1.02 (t, *J* = 7.2 Hz, 3H), 1.77-1.86 (m, 2H), 2.30 (s, 2H), 2.91 (t, *J* = 7.2 Hz, 2H), 7.31-7.37 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ -1.2, 13.6, 20.3, 23.4, 35.4, 126.2, 128.8, 130.6, 131.7, 133.2, 150.4, 168.3; IR (film): 3060, 1609, 1501 cm⁻¹; ESI-MS: *m/z* (%) = 324 (100) [M+H]⁺. Anal calcd for C₁₆H₂₂CINSSi: C, 59.32; H, 6.84; N, 4.32. Found: C, 59.61; H, 6.55; N, 4.58.

4-(4-chlorobenzyl)-2-phenylthiazole (3sa): a pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 4.15 (s, 2H), 6.76 (s, 1H), 7.23-7.31 (m, 4H), 7.38-7.46 (m, 3H), 7.89-7.96 (m, 2H); ¹³C NMR (100 MHz, CDCl₃):

δ 37.3, 114.4, 126.5, 128.6, 128.9, 129.9, 130.4, 132.3, 133.7, 137.6, 156.8, 168.2; **IR** (film): 3061, 1613, 1506 cm⁻¹; **ESI-MS**: m/z (%) = 286 (100) [M+H]⁺.

Data are in accordance with previously reported results.¹

5-(4-chlorophenyl)-4-methyl-2-phenylthiazole (4sa): a pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 2.54 (s, 3H), 7.37-7.48 (m, 7H), 7.91-7.94 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 16.3, 126.3, 128.6, 128.9, 129.9, 130.4, 130.7, 130.9, 133.6, 133.8, 149.2, 165.4; IR (film): 3058, 1616, 1506 cm⁻¹; ESI-MS: m/z (%) = 286 (100) [M+H]⁺. Anal calcd for C₁₆H₁₂ClNS: C, 67.24; H, 4.23; N, 4.90. Found: C, 67.01; H, 4.45; N, 4.72.

4-(naphthalen-1-ylmethyl)-2-phenylthiazole (3ta): a pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 4.73 (s, 2H), 6.56 (s, 1H), 7.43-7.56 (m, 7H), 7.86 (dd, J = 6.8, 2.8 Hz, 1H), 7.91-7.96 (m, 1H), 8.01-8.06 (m, 2H), 8.09-8.14 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 35.6, 114.7, 124.3, 125.6, 126.0, 126.4, 127.3, 127.5, 128.6, 128.8, 129.8, 131.9, 133.7, 133.9, 135.0, 157.1, 167.6; IR (film): 3058, 1616, 1595, 1506 cm⁻¹; ESI-MS: m/z (%) = 302 (100) [M+H]⁺.

Data are in accordance with previously reported results.¹

5-(naphthalen-1-yl)-2-phenyl-4-((trimethylsilyl)methyl)thiazole (4ta): a pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ -0.03 (s, 9H), 2.10 (s, 2H), 7.41-7.56 (m, 7H), 7.86 (d, J = 8.0 Hz, 1H), 7.90-7.94 (m, 2H), 7.98-8.01 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ -1.1, 20.5, 125.23, 125.24, 126.0, 126.1, 126.2, 126.5, 128.38, 128.39, 128.9, 129.6, 129.7, 132.5, 133.8, 134.03, 134.04, 153.9, 165.7; IR (film): 3055, 1613, 1503 cm⁻¹; ESI-MS: m/z (%) = 374 (100) [M+H]⁺, 396 (29) [M+Na]⁺. Anal calcd for C₂₃H₂₃NSSi: C, 73.94; H, 6.21; N, 3.75. Found: C, 74.19; H, 5.97; N, 3.46.

4-(4-((5-butyl-2-phenylthiazol-4-yl)methyl)benzyl)-5-butyl-2-phenylthiazole (3ua): a white solid (mp 87-88 °C). ¹H NMR (400 MHz, CDCl₃): δ 0.91 (t, *J* = 7.2 Hz, 6H), 1.33-1.42 (m, 4H), 1.56-1.63 (m, 4H),

2.77 (t, J = 7.6 Hz, 4H), 4.09 (s, 4H), 7.20 (s, 4H), 7.33-7.42 (m, 6H), 7.87-7.91 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 13.8, 22.3, 26.3, 34.0, 34.9, 126.2, 128.6, 128.8, 129.4, 134.1, 134.3, 137.5, 151.3, 163.9; **IR** (film): 3061, 1613, 1509 cm⁻¹; **ESI-MS**: m/z (%) = 537 (85) [M+H]⁺, 559 (100) [M+Na]⁺. **Anal** calcd for C₃₄H₃₆N₂S₂: C, 76.07; H, 6.76; N, 5.22. Found: C, 75.85; H, 6.49; N, 5.51.

5-benzyl-2,4-diphenylthiazole (6aa): a pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 4.32 (s, 2H), 7.25-7.30 (m, 3H), 7.32-7.36 (m, 2H), 7.39-7.43 (m, 4H), 7.44-7.50 (m, 2H), 7.72-7.75 (m, 2H), 7.95-7.98 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 33.3, 126.3, 126.8, 127.9, 128.4, 128.5, 128.7, 128.8, 129.8, 133.0, 133.8, 135.0, 140.0, 152.6, 165.1; IR (film): 3059, 1599, 1498 cm⁻¹; ESI-MS: *m/z* (%) = 328 (100) [M+H]⁺, 350 (35) [M+Na]⁺. Anal calcd for C₂₂H₁₇NS: C, 80.70; H, 5.23; N, 4.28. Found: C, 80.93; H, 5.08; N, 4.50.

5-benzyl-2-(4-methoxyphenyl)-4-phenylthiazole (6ab): a pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 3.85 (s, 3H), 4.29 (s, 2H), 6.92 (d, J = 9.2 Hz, 2H), 7.23-7.29 (m, 3H), 7.31-7.40 (m, 3H), 7.42-7.48 (m, 2H), 7.69-7.73 (m, 2H), 7.85 (d, J = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 33.2, 55.4, 114.2, 126.7, 126.8, 127.8, 128.4, 128.5, 128.7, 128.8, 132.0, 135.1, 140.2, 152.3, 161.0, 165.1; IR (film): 3025, 1606, 1496 cm⁻¹; ESI-MS: m/z (%) = 358 (100) [M+H]⁺, 380 (33) [M+Na]⁺, Anal calcd for C₂₃H₁₉NOS: C, 77.28; H, 5.36; N, 3.92. Found: C, 77.08; H, 5.56; N, 4.15.

5-benzyl-2-(4-chlorophenyl)-4-phenylthiazole (6ac): a pale yellow oil. ¹**H** NMR (400 MHz, CDCl₃): δ 4.30 (s, 2H), 7.22-7.27 (m, 3H), 7.30-7.34 (m, 2H), 7.36 (d, J = 8.4 Hz, 2H), 7.39-7.40 (m, 1H), 7.43-7.47 (m, 2H), 7.68-7.71 (m, 2H), 7.88 (d, J = 8.4 Hz, 2H); ¹³**C** NMR (100 MHz, CDCl₃): δ 33.3, 126.8, 127.5, 128.0, 128.3, 128.5, 128.7, 128.8, 129.0, 132.3, 133.5, 134.8, 135.7, 139.9, 152.7, 163.7; **IR** (film): 3026, 1599, 1493 cm⁻¹; **ESI-MS**: m/z (%) = 362 (100) [M+H]⁺, 384 (56) [M+Na]⁺. **Anal** calcd for C₂₂H₁₆ClNS: C, 73.02; H, 4.46; N, 3.87. Found: C, 73.15; H, 4.20; N, 4.12.

5-benzyl-4-phenyl-2-propylthiazole (6ad): a pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 1.02 (t, J = 7.6 Hz, 3H), 1.76-1.85 (m, 2H), 2.93 (t, J = 7.2 Hz, 2H), 4.22 (s, 2H), 7.17-7.25 (m, 3H), 7.27-7.35 (m, 3H), 7.37-7.42 (m, 2H), 7.58-7.64 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 13.7, 23.4, 33.0, 35.5, 126.6,

127.6, 128.3, 128.4, 128.6, 128.9, 131.5, 135.1, 140.2, 150.9, 168.7; **IR** (film): 3060, 1601, 1494 cm⁻¹; **ESI-MS**: m/z (%) = 294 (100) [M+H]⁺, 316 (78) [M+Na]⁺. **Anal** calcd for C₁₉H₁₉NS: C, 77.77; H, 6.53; N, 4.77. Found: C, 77.53; H, 6.71; N, 4.66.

5-pentyl-2,4-diphenylthiazole (6ba): a pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 0.96 (t, J = 7.2 Hz, 3H), 1.36-1.46 (m, 4H), 1.75-1.83 (m, 2H), 3.00 (t, J = 7.6 Hz, 2H), 7.40-7.46 (m, 3H), 7.46-7.54 (m, 3H), 7.75-7.78 (m, 2H), 8.03-8.07 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 13.9, 22.3, 27.2, 31.3, 31.9, 126.2, 127.5, 128.3, 128.68, 128.70, 129.5, 133.9, 135.1, 135.3, 151.6, 163.7; IR (film): 3060, 1598, 1483 cm⁻¹; ESI-MS: m/z (%) = 308 (100) [M+H]⁺. Anal calcd for C₂₀H₂₁NS: C, 78.13; H, 6.88; N, 4.56. Found: C, 78.25; H, 6.76; N, 4.79.

2-(4-methoxyphenyl)-4-phenyl-5-((trimethylsilyl)methyl)thiazole (6pb): a pale yellow solid (mp 105-106 °C). ¹H NMR (400 MHz, CDCl₃): δ 0.05 (s, 9H), 2.46 (s, 2H), 3.85 (s, 3H), 6.95 (d, *J* = 8.8 Hz, 2H), 7.31-7.39 (m, 1H), 7.42-7.49 (m, 2H), 7.63-7.71 (m, 2H), 7.91 (d, *J* = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ -1.5, 17.0, 55.3, 114.1, 126.9, 127.2, 127.6, 128.3, 128.8, 131.3, 135.8, 150.3, 160.6, 162.0; IR (film): 3058, 1605, 1495 cm⁻¹; ESI-MS: *m/z* (%) = 354 (100) [M+H]⁺, 376 (24) [M+Na]⁺. Anal calcd for C₂₀H₂₃NOSSi: C, 67.94; H, 6.56; N, 3.96. Found: C, 67.75; H, 6.75; N, 3.70.

4-phenyl-2-p-tolyl-5-((trimethylsilyl)methyl)thiazole (6pe): a pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 0.05 (s, 9H), 2.40 (s, 3H), 2.47 (s, 2H), 7.23 (d, J = 8.0 Hz, 2H), 7.32-7.37 (m, 1H), 7.42-7.48 (m, 2H), 7.65-7.70 (m, 2H), 7.86 (d, J = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ -1.5, 17.1, 21.3, 126.1, 127.3, 128.3, 128.9, 129.4, 131.3, 131.8, 135.8, 139.5, 150.5, 162.3 ; **IR** (film): 3022, 1601, 1496 cm⁻¹; **ESI-MS**: m/z (%) = 338 (100) [M+H]⁺, 360 (71) [M+Na]⁺. **Anal** calcd for C₂₀H₂₃NSSi: C, 71.16; H, 6.87; N, 4.15. Found: C, 71.33; H, 6.75; N, 4.30.

2-(4-bromophenyl)-4-phenyl-5-((trimethylsilyl)methyl)thiazole (6pf): a pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 0.03 (s, 9H), 2.47 (s, 2H), 7.32-7.39 (m, 1H), 7.42-7.48 (m, 2H), 7.54 (d, *J* = 8.4 Hz, 2H), 7.62-7.69 (m, 2H), 7.82 (d, *J* = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ -1.5, 17.3, 123.5, 127.5, 127.6, 128.4, 128.9, 131.9, 132.9, 133.0, 135.5, 151.0, 160.8; IR (film): 3054, 1600, 1588, 1500 cm⁻¹; ESI-MS: *m/z* (%) = 402 (100) [M+H]⁺. Anal calcd for C₁₉H₂₀BrNSSi: C, 56.71; H, 5.01; N, 3.48. Found: C, 56.58; H, 5.23; N, 3.64.

4-Methyl-N-(1-phenyl-3-(trimethylsilyl)prop-2-ynyl)benzamide (14a): a white solid (mp 136-138 °C). ¹H NMR (CDCl₃, 400 MHz): δ 0.22 (s, 9H), 2.39 (s, 3H), 6.28 (d, 1H, J = 8.4 Hz), 6.60 (d, 1H, J = 8.8 Hz), 7.22 (d, 2H, J = 8.0 Hz), 7.29-7.39 (m, 3H), 7.54-7.59 (m, 2H), 7.69 (d, 2H, J = 8.0 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ -0.09, 21.5, 45.5, 90.0, 103.2, 127.15, 127.17, 128.1, 128.7, 129.3, 131.0, 139.0, 142.3, 166.0; **IR** (film): 3208, 3046, 1635, 1604, 1587, 1492 cm⁻¹; **ESI-MS**: *m/z* (%) = 322 (100) [M+H⁺]. **Anal** calcd for C₁₉H₂₁NOSi: C, 74.72; H, 7.21; N, 4.36. Found: C,74.54; H, 7.47; N, 4.19.

References

1 M. Yoshimatsu, T. Yamamoto, A. Sawa, T. Kato, G. Tanabe, and O. Muraoka, Org. Lett., 2009, 11, 2952.

2 T. Nishio and M. Ori, Helv. Chim. Acta, 2001, 84, 2347.

X-ray data for compound 3fa.

Table 1. Crysta	l data and	structure i	refinement	for	3fa.
-----------------	------------	-------------	------------	-----	------

-	
Identification code	p
Empirical formula	C ₂₄ H ₁₉ NS
Formula weight	353.46
Temperature	273 (2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	Fdd2
Unit cell dimensions	$a = 17.699(4)$ Å $\alpha = 90^{\circ}$
	$b = 74.502(18) \text{ Å} \qquad \beta = 90^{\circ}$
	$c = 5.7208(14) \text{ Å} \qquad \gamma = 90^{\circ}$
Volume	7544(3) Å ³
Ζ	16
Absorption coefficient	0.178 mm^{-1}
F(000)	2976
Crystal size	0.13 x 0.41 x 0.15 mm
Theta range for data collection	1.09–26°
Index ranges	$-21 \le h \le 21, -90 \le k \le 90, -7 \le l \le 7$
Reflections collected	14565
Independent reflections	3678 [<i>R</i> (int) = 0.1042]
Absorption correction	none
R indices	$R[F^2 > 2\sigma(F^2)] = 0.0722 wR(F^2) = 0.2081$
Largest diff. peak and hole	0.366 and -0.347 e $Å^{-3}$
Flack value	0.02(18)

Table 2. Bond lengths [Å] and angles [°] for **3fa**.

S1-C11	1.717(5)	S1-C12	1.756(5)
N1-C12	1.274(6)	N1-C10	1.391(6)
C13-C14	1.400(8)	C13-C15	1.366(7)
C13-C12	1.447(7)	C19-C21	1.386(7)
C19-C20	1.373(7)	C19-C11	1.484(7)
C20-C22	1.392(7)	C11-C10	1.346(7)
C10-C9	1.478(7)	C7-C8	1.276(7)
C7-C6	1.459(8)	C6-C4	1.361(8)
C6-C5	1.373(8)	C23-C24	1.371(8)
C23-C21	1.367(7)	C8-C9	1.529(7)
C24-C22	1.373(8)	C5-C3	1.361(8)
C18-C16	1.321(8)	C18-C17	1.366(9)
C14-C16	1.383(8)	C3-C1	1.338(9)
C15-C17	1.369(8)	C4-C2	1.383(9)
C2-C1	1.344(10)		
C11-S1-C12	89.7(3)	C12-N1-C10	112.0(4)
C14-C13-C15	117.6(6)	C14-C13-C12	118.6(5)
C15-C13-C12	123.7(5)	C21-C19-C20	118.7(5)
C21-C19-C11	120.3(5)	C20-C19-C11	121.0(5)
C19-C20-C22	120.2(5)	C10-C11-C19	131.0(5)
C10-C11-S1	109.4(4)	C19-C11-S1	119.6(4)
C11-C10-N1	115.6(5)	C11-C10-C9	126.3(5)
N1-C10-C9	117.9(5)	C8-C7-C6	128.8(6)
N1-C12-C13	128.2(5)	N1-C12-S1	113.2(4)
C13-C12-S1	118.5(4)	C4-C6-C5	117.6(6)
C4-C6-C7	119.3(6)	C5-C6-C7	123.0(6)
C24-C23-C21	120.6(6)	C7-C8-C9	126.0(6)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

C15-C17-C18	119.1(6)	C2-C1-C3	120.6(7)
C6-C4-C2	121.9(6)	C1-C2-C4	118.5(7)
C5-C3-C1	121.3(6)	C17-C15-C13	122.0(6)
C18-C16-C14	121.7(6)	C10-C9-C8	112.9(4)
C16-C14-C13	119.0(5)	C24-C22-C20	120.4(6)
C3-C5-C6	120.0(6)	C16-C18-C17	120.6(6)
C23-C24-C22	119.2(6)	C19-C21-C23	120.9(6)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

899

bpm

bbu <mark>8</mark>. ≤∕ 28.8 970.0-0.5 1.0 1.5 2.0 3.00 1.96 1.96 2.5 2.396 2.471 3.0 3.5 4.0 4.5 5.0 5.5 6.0 1.22.7 -122.7 -122.7 -6.5 6pe 7.0 <u>2.02</u> 2.05 СH₃ 2.00 2.01 8.0 2 8.5 9.0 Z^{2} Ś 9.5 Б 10.0 TMS 10.5

bpm τς.τ- — 0 9 E 2 £5.12 -----____ Ē 30 F 6 F 50 09 F A DOWNERS IN COMPANY 20 F 89.97 -00.77 -15.77 -- 8 F 8 10 ŧ 110 - 126.07 - 127.29 - 128.31 Ē 120 98.821 -130 E - 131.28 - 131.82 - 135.80 - 139.46 6pe 140 150 CH₃ 0S.0SI -160 E ₽8.291-170 8 ZŹ ഗ 190 Ч TMS 200
bpm <mark>3</mark> ∠ 86.8 τεο.ο-0.5 1.0 1.5 2.0 <mark>3:5</mark> 2.5 <u>____5.467</u> 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.337 -7.337 -222 - 2 932 - 2 7 - 328 7 - 433 7.0 6pf 10.1 C
 F
 C
 C
 F
 C
 C
 C
 F
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
⊒⁄ <u>90.5</u> 7.5 <u> < 70.5</u> Å 20.2 8.0

J

Z

Ч

Ś

TMS

S108

8.5

9.0

9.5

10.0

10.5

S109

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

S110

mdd 60.0--تمامين البايعاني فتراتيا والمتليب Ē 9 Ē 3 84.12 -----فخران فارتشار المند مشاطئا كالرافا المردر المعرف يلاحد تشري 8 ŧ 6 ŧ 68.84 -----Ē 50 فقالسانين يلته 8 Ē 20 Ē L MARKED SL'9L -90'LL -8€'LL -8 Ē والمتعدية والمراجعة Ē 6 _____ <mark>6</mark> 22.EOI — 19 120 90.821 -71.721 -72.721 -والمراجع الأراد 130 - 131.01 - 128.69 - 128.69 Ē فليقار وبالملية

S111