Electronic Supplementary Material (ESI) for Organic Biomolecular Chemistry

Visualization of G-quadruplexes by Using a BODIPY-Labeled Macrocyclic Heptaoxazole

Masayuki Tera,^a Keisuke Iida,^a Kazunori Ikebukuro,^a Hiroyuki Seimiya,^b

Kazuo Shin-ya,^c and Kazuo Nagasawa^{*a}

 M. Tera, K. Iida, Prof. Dr. K. Ikebukuro. Prof. Dr. K. Nagasawa Department of Biotechnology and Life Science, Faculty of Technology Tokyo University of Agriculture and Technology 2-24-16 Nakamachi, Koganei Tokyo 184-8588 (Japan) Fax: (+81) 42-388-7295 E-mail: knaga@cc.tuat.ac.jp

> b Dr. H. Seimiya Cancer Chemotherapy Center Japanese Foundation for Cancer Research

c Dr. K. Shin-ya Biological Information Research Center National Institute of Advanced Industrial Science and Technology

Table of Contents:

1. Synthesis of activated ester of BODIPY (S2)	2
2. HPLC chart for L1BOD-70TD (2)	2
3. Copies of NMR spectra of compounds (S2, 2)	3-6
4. Excitation and emission spectrum of L1BOD-7OTD (2)	7
5. UV melting analysis	8
6. ESI-MS spectra	9
7. Fluorescent polarization titration	.10

Synthesis of activated ester of BODIPY S2.

To a solution of $S1^1$ (450 mg, 1.35 mmol) in THF (10 mL), was added Et₃N (1.0 mL, 6.75 mmol), EDCI (776 mg, 6.75 mmol) N-hidroxylsuccinimide (466 mg, 4.05 mmol), and the mixture was stirred for 12 h at room temperature. To the reaction mixture was added H₂O and the organic layer was extracted with AcOEt, dried over MgSO₄, filtered, and concentrated *in vacuo*. The residue was chromatographed on silica gel (CHCl₃-AcOEt = 20:1) to give activated ester of BODIPY S2 as a dark red solid (284 mg, 50%). TLC R_f = 0.5 (6:1 CHCl₃/EtOAc)

Spectral data for **S2**: ¹H NMR (400 MHz, DMSO-d6) δ 6.24 (s, 2H), 3.07 (m, 2H), 2.95 (t, J = 6.9 Hz, 2H), 2.42 (s, 6H), 2.40 (s, 6H), 1.90 (m, 2H); ¹³C NMR (100 MHz, DMSO-d6) δ 170.2, 168.6, 153.5, 145.1, 141.1, 130.7, 121.9, 30.2, 26.6, 26.1, 25.4, 15.9, 14.1; HRMS (ESI, M+Na) calcd for C₂₁H₂₄BF₂N₃O₄Na 454.1726, found 454.1715.

¹Z. Li, E. Mintzer, R. Bittman, J. Org. Chem. 2006, 71, 1718-1721.

HPLC chart of L1BOD-7OTD (2).

Copies of NMR spectra of compounds S2 and 2.

Fig. S1 Excitation and emission spectra of **2** (0.7 μ M) in the absence (a) or presence (b-f) of GFOs (4 μ M). All samples were diluted by 10 mM Tris-HCl buffer, pH7.3. The spectra are representative of three averaged scans taken at 25 °C.

UV melting analysis of L1BOD-7OTD (2) in the presence of double-stranded DNA.

Fig. S2 UV melting curves of double-stranded DNA (salmon sperm DNA) in the absence and presence of L1BOD-70TD (2). The salmon sperm DNA was dissolved in Tris-HCl buffer (10 mM, pH 7.2) containing 50 mM KCl. L1BOD-70TD was dissolved in DMSO. The salmon sperm DNA was used at a base pair concentration of 15 μ M and L1BOD-70TD also used the same concentration. The melting curves were acquired on a Beckman Coulter UV/Visible spectrophotometer (DU 800) using quarts cell of 10-mm optical path length. The heating rate was 1.0 °C/min and the samples were allowed to equilibrate for 1.0 min at each temperature setting.

Fig. S3 ESI-MS spectra of 10 μ M GFOs without L1BOD-70TD: (a) telo24, (b) myc22, (c) bcl27, (d) kit22 and (e) thr15. The measurement conditions and the sample preparation procedures were as follows: capillary needle voltage, -2.0 kV; ring lens voltage, -15 V; orifice 1 voltage, -75 V; orifice 2 voltage, 0 V; orifice 1 temperature, 80 °C; desolvation temperature, 80 °C; sample flow rate, 5 μ L/min; All experiments were performed in 20 mM NH₄OAc containing 10 μ M of GFOs. Methanol (10%) was added just before injection. The role of methanol is to increase ion signals.

Fluorescent polarization (FP) titration using telomut24 and ds-telo24.

Fig. S4 FP titrations of telomut24 and ds-telo24. L1BOD-7OTD (**2**) (0.7 μ M) was incubated with various concentrations (0.02-4 μ M) of the oligonucleotides (open circle: telomut24, open triangle: ds-telo24) at 25 °C for 12 h in the presence of 50 mM KCl, 5 mM Tris-HCl, pH 7.0 and 50% DMSO (v/v). The polarization associated with the emission of **2** was measured at 530 nm (excitation at 500 nm). The fluorescent polarization values are representative of five scans taken at 25°C. All plots result from duplicate assays.