## **Supporting Information**

Determination of the Absolute Configurations of Bicyclo[3.1.0]hexane Derivatives

via Electronic Circular Dichroism, Optical Rotation Dispersion, and Vibrational

## **Circular Dichroism Spectroscopy and Density Functional Theory Calculations**

Guochun Yang, Jing Li, Yang Liu, Todd L. Lowary, and Yunjie Xu\*

Department of Chemistry and Alberta Ingenuity Centre for Carbohydrate Science,

University of Alberta, Edmonton, AB, Canada, T6G 2G2

Completion of reference 19.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.

Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam,

S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.

A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M.

Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P.

Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O.

Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K.

Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich,

A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari,

J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B.

Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T.

Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill,

B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03,

Revision C.02. Gaussian, Inc., Pittsburgh PA, 2003.

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010



**Figure S1.** Optimized geometries of the 40 most stable conformers of **3** at the B3LYP/6- $311++G^{**}$  level of theory.

**Table S1**. The calculated dihedral angles and the pseudorotational phase angles for the six most stable conformers. Both are in units of degrees.

| Conformers | Dihedral a          | pseudorotational phase angle <sup>b</sup> |     |
|------------|---------------------|-------------------------------------------|-----|
| 3BIa       | C(2)-C(3)-C(4)-C(5) | -30.6939                                  | 342 |
|            | C(1)-C(2)-C(3)-C(4) | 19.3696                                   |     |
|            | C(5)-C(1)-C(2)-C(3) | -0.2169                                   |     |
|            | C(4)-C(5)-C(1)-C(2) | -19.1715                                  |     |
|            | C(3)-C(4)-C(5)-C(1) | 31.1049                                   |     |
|            |                     |                                           |     |
| 3BIb       | C(2)-C(3)-C(4)-C(5) | -30.7117                                  | 343 |
|            | C(6)-C(2)-C(3)-C(4) | 19.7542                                   |     |
|            | C(5)-C(6)-C(2)-C(3) | -0.7663                                   |     |
|            | C(4)-C(5)-C(6)-C(2) | -18.7045                                  |     |
|            | C(3)-C(4)-C(5)-C(6) | 30.9156                                   |     |
|            |                     |                                           |     |
| 3BIc       | C(2)-C(3)-C(4)-C(5) | -30.5864                                  | 343 |
|            | C(1)-C(2)-C(3)-C(4) | 19.5848                                   |     |
|            | C(5)-C(1)-C(2)-C(3) | -0.7007                                   |     |
|            | C(4)-C(5)-C(1)-C(2) | -18.6161                                  |     |
|            | C(3)-C(4)-C(5)-C(1) | 30.7324                                   |     |
|            |                     |                                           |     |
| 3BId       | C(6)-C(5)-C(4)-C(3) | -30.9107                                  | 342 |
|            | C(2)-C(6)-C(5)-C(4) | 19.5087                                   |     |
|            | C(3)-C(2)-C(6)-C(5) | -0.2177                                   |     |
|            | C(4)-C(3)-C(2)-C(6) | -19.3359                                  |     |
|            | C(5)-C(4)-C(3)-C(2) | 31.402                                    |     |
|            |                     |                                           |     |
| 3BIIa      | C(1)-C(5)-C(4)-C(3) | -32.183                                   | 348 |
|            | C(2)-C(1)-C(5)-C(4) | 21.1698                                   |     |
|            | C(3)-C(2)-C(1)-C(5) | -2.0237                                   |     |
|            | C(4)-C(3)-C(2)-C(1) | -18.158                                   |     |
|            | C(5)-C(4)-C(3)-C(2) | 31.4292                                   |     |
|            |                     |                                           |     |
| 3BIIb      | C(1)-C(5)-C(4)-C(3) | -32.183                                   | 345 |
|            | C(2)-C(1)-C(5)-C(4) | 21.1698                                   |     |
|            | C(3)-C(2)-C(1)-C(5) | -2.0237                                   |     |
|            | C(4)-C(3)-C(2)-C(1) | -18.158                                   |     |
|            | C(5)-C(4)-C(3)-C(2) | 31.4292                                   |     |

<sup>a</sup> See Chart 1 for atom labelling. <sup>b</sup> Calculated using the Altona-Sundaralingam system (Ref. 11). The Cremer-Pople (D. Cremer and J. A. Pople, J. Am. Chem. Soc., 97, 1354-1358, 1975) phase angle values can be obtained by simply subtracting 90° from these values.

**Table S2.** Calculated excitation energies, oscillator strengths and rotational strengths for conformer **3BIa** in the gas phase at the B3LYP/  $6-311++G^{**}$  level.

| #  | Con    |        |        |           |          |  |
|----|--------|--------|--------|-----------|----------|--|
| #  |        |        |        |           |          |  |
|    | ev     | λ.     | T      | Rvelocity | Rlength  |  |
| 1  | 4.4297 | 279.89 | 0.0001 | -1.1470   | -1.3541  |  |
| 2  | 5.3798 | 230.46 | 0.0004 | -0.9580   | -0.9255  |  |
| 3  | 5.6294 | 220.24 | 0.0005 | -0.4293   | -0.4620  |  |
| 4  | 5.7666 | 215.00 | 0.0006 | 1.1891    | 1.6772   |  |
| 5  | 6.1576 | 201.35 | 0.0068 | -4.1269   | -4.2489  |  |
| 6  | 6.2555 | 198.20 | 0.0084 | 12.6665   | 12.9337  |  |
| 7  | 6.3088 | 196.53 | 0.0023 | -2.0999   | -2.3854  |  |
| 8  | 6.3274 | 195.95 | 0.0104 | 8.7879    | 8.7672   |  |
| 9  | 6.3616 | 194.89 | 0.0080 | 0.2124    | 0.1439   |  |
| 10 | 6.4436 | 192.41 | 0.0091 | -1.9839   | -2.2874  |  |
| 11 | 6.4748 | 191.49 | 0.0065 | -5.7102   | -6.2725  |  |
| 12 | 6.4962 | 190.86 | 0.0066 | -8.1989   | -8.4517  |  |
| 13 | 6.5755 | 188.56 | 0.0004 | 3.2103    | 2.9539   |  |
| 14 | 6.6035 | 187.76 | 0.0027 | 6.3338    | 6.0407   |  |
| 15 | 6.6594 | 186.18 | 0.0067 | -5.5356   | -5.2096  |  |
| 16 | 6.6862 | 185.43 | 0.0014 | 3.1802    | 3.1965   |  |
| 17 | 6.7530 | 183.60 | 0.0208 | -30.6343  | -31.7770 |  |
| 18 | 6.7668 | 183.22 | 0.0111 | 14.6190   | 15.2348  |  |
| 19 | 6.7892 | 182.62 | 0.0118 | 2.1928    | 1.9343   |  |
| 20 | 6.8009 | 182.30 | 0.0029 | 0.1101    | 0.3237   |  |
| 21 | 6.8653 | 180.60 | 0.0035 | 10.6316   | 10.8839  |  |
| 22 | 6.9534 | 178.31 | 0.0078 | 6.9483    | 7.0019   |  |
| 23 | 6.9714 | 177.85 | 0.0077 | -16.8196  | -17.5119 |  |
| 24 | 6.9888 | 177.40 | 0.0012 | 0.7252    | 0.5763   |  |
| 25 | 7.0924 | 174.81 | 0.0124 | 4.7283    | 4.3936   |  |
| 26 | 7.1273 | 173.96 | 0.0089 | 10.1625   | 10.2818  |  |
| 27 | 7.1355 | 173.76 | 0.0021 | -1.6973   | -1.3238  |  |
| 28 | 7.1597 | 173.17 | 0.0078 | 14.4850   | -14.1042 |  |
| 29 | 7.2038 | 172.11 | 0.0046 | -1.2100   | -2.0217  |  |
| 30 | 7.2647 | 170.67 | 0.0082 | 4.2070    | 4.7662   |  |

Compound 3BIa

<sup>a</sup>  $\lambda$  in nm. <sup>b</sup> Oscillator Strengths. <sup>c</sup> R values (in 10<sup>-40</sup> esu<sup>2</sup>cm<sup>2</sup>) using the velocity-gauge representation and length-gauge representation of the electric dipole operator.



**Figure S2.** Calculated ECD spectra in the gas phase for the six most stable conformers of compound **3** at the B3LYP/ 6-311++G\*\* level.



Figure S3. Calculated ECD spectra for the six most stable conformers of compound **3** in acetonitrile with IPCM for solvation at the B3LYP/  $6-311++G^{**}$  level.



**Figure S4.** Comparison of the calculated gas phase VA and VCD spectra of conformer **3BIa** at the B3LYP/6-311++G\*\* (bottom) and the B3LYP/aug-cc-pVDZ level (top).



Figure S5. Raw experimental VCD spectra of compound 3 and 4 studied in this paper. The solvent baselines are not corrected.