Furan ring opening – pyrrole ring closure: a new synthetic route to aryl(heteroaryl)-annulated pyrrolo[1,2-*a*][1,4]diazepines

Alexander V. Butin,^a* Tatyana A. Nevolina,^a Vitaly A. Shcherbinin,^a Igor V. Trushkov,^b Dmitry A. Cheshkov^c and Gennady D. Krapivin^a

[*] Prof. A. V. Butin
Research Institute of Heterocyclic Compounds Chemistry
Kuban State Technological University
Moskovskaya st. 2, Krasnodar 350072 Russian Federation
Fax: +7(861)2596592
E-mail: <u>alexander_butin@mail.ru</u>; <u>av_butin@yahoo.com</u>

5-Bromo-2-(1,3-dioxo-1,3-dihydro-2*H***-isoindol-2-yl)-***N***-[(5-methyl-2-furyl)methyl]benzamide (4b) was synthesized according to General procedure A from 2a (2 g, 18 mmol; solution in 50 mL of benzene) and 5-bromo-2-(1,3-dioxo-1,3-dihydro-2***H***-isoindol-2-yl)benzoyl chloride (3b) (7.22 g, 19.8 mmol; solution in 50 mL of benzene); eluent: benzene–petroleum ether (1:2); 72% (5.7 g); white solid; mp 134–135 °C (benzene–petroleum ether); \delta_{\rm H}(300 \text{ MHz, CDCl}_3) 2.20 (3H, s, Me), 4.37 (2H, d, {}^{3}J = 5.4 Hz, CH₂), 5.82 (1H, d, {}^{3}J = 3.0 Hz, H_{Fur}), 6.06 (1H, d, {}^{3}J = 3.0 Hz, H_{Fur}), 6.28 (1H, br t, {}^{3}J = 5.4 Hz, NH), 7.24 (1H, d, {}^{3}J = 8.4 Hz, H_{Ar}), 7.70 (1H, dd, {}^{3}J = 8.4 Hz, {}^{4}J = 2.1 Hz, H_{Ar}), 7.74-7.80 (3H, m, H_{Ar}+H_{Pht}), 7.87-7.93 (2H, m, H_{Pht}); \delta_{\rm C}(75 MHz, CDCl₃) 13.5, 37.0, 106.2, 108.6, 122.8, 123.9 (2C), 128.8, 131.2, 131.3, 131.7 (2C), 134.2, 134.4 (2C), 135.4, 148.5, 151.9, 165.1, 167.0 (2C); v_{max} (KBr)/cm⁻¹ 3261, 1720, 1628, 1526, 1396, 1372, 1083, 884, 794, 713;** *m***/z (EI) 440/438 (M⁺, 7/7), 330/328 (22/23), 302/300 (8/10), 193 (21), 165 (10), 111 (56), 110 (100), 104 (14), 95 (31), 75 (12), 45 (17); Found: C, 57.31; H, 3.28; N, 6.37. Calc. for C₂₁H₁₅BrN₂O₄: C, 57.42; H, 3.44; N, 6.38%.**

5-Chloro-*N*-**[(5-methyl-2-furyl)methyl]-2-nitrobenzamide (6c)** was obtained according to General procedure A from **2a** (5 g, 45 mmol; solution in 50 mL of benzene) and 5-chloro-2-nitrobenzoyl chloride (**5b**) (10.9 g, 49.5 mmol; solution in 50 mL of benzene); 91% (12.05 g); white solid; mp 158–159 °C (EtOH); $\delta_{\rm H}(300 \text{ MHz, CDCl}_3)$ 2.27 (3H, s, Me), 4.56 (2H, d, ${}^{3}J = 5.4 \text{ Hz, CH}_2$), 5.91 (1H, d, ${}^{3}J = 3.0 \text{ Hz, H}_{\rm Fur}$), 6.13 (1H, br t, ${}^{3}J = 5.4 \text{ Hz, NH}$), 6.20 (1H, d, ${}^{3}J = 3.0 \text{ Hz, H}_{\rm Fur}$), 7.48 (1H, d, ${}^{4}J = 2.1 \text{ Hz, H}_{\rm Ar}$), 7.52 (1H, dd, ${}^{3}J = 8.7 \text{ Hz, H}_2$, Hz, Har); $\delta_{\rm C}(75 \text{ MHz, CDCl}_3)$ 13.5, 37.4, 106.4, 109.1, 126.1, 129.0, 130.5, 134.1, 140.4, 144.4, 148.0, 152.3, 164.7; $v_{\rm max}$ (KBr)/cm⁻¹ 3262, 1639, 1570, 1524, 1345, 842, 790, 719; *m*/*z* (EI) 278/276 (M⁺–18, 7/22%), 170/168 (17/51), 140/138 (11/33), 110 (98), 109 (100), 95 (63), 75 (59), 63 (22), 53 (41), 43 (74); Found: C, 53.21; H, 3.70; N, 9.55. Calc. for C₁₃H₁₁ClN₂O₄: C, 52.98; H, 3.76; N, 9.51%.

4,5-Dimethoxy-N-**[(5-methyl-2-furyl)methyl]-2-nitrobenzamide (6d)**¹ was synthesized according to General procedure A from **2a** (5 g, 45 mmol; solution in 50 mL of benzene) and 4,5-dimethoxy-2-nitrobenzoyl chloride (**5c**) (12.16 g, 49.5 mmol; solution in 50 mL of benzene); eluent: benzene–petroleum ether (1:1); 84% (12.1 g); white solid.

3-Methyl-N-[(5-methyl-2-furyl)methyl]-2-nitrobenzamide (6e) was synthesized according to General procedure A from **2a** (5 g, 45 mmol; solution in 50 mL of benzene) and 3-methyl-2-nitrobenzoyl chloride (**5d**) (9.88 g, 49.5 mmol; solution in 50 mL of benzene); eluent: benzene–petroleum ether (1:1); 73% (8.96 g); white solid; mp 78–79 °C (benzene–petroleum ether); $\delta_{\rm H}(300 \text{ MHz}, \text{CDCl}_3)$ 2.24 (3H, s, Me), 2.33 (3H, s, Me), 4.45 (2H, d, 3J = 5.4 Hz, CH₂), 5.87 (1H, d, 3J = 3.0 Hz, H_{Fur}), 6.12 (1H, d, 3J = 3.0 Hz, H_{Fur}), 6.47 (1H, br t, 3J = 5.4 Hz, NH), 7.35-7.39 (3H, m, H_{Ar}); $\delta_{\rm C}(75 \text{ MHz}, \text{CDCl}_3)$ 13.5, 17.6, 37.2, 106.4, 108.7, 125.6, 129.6, 130.4, 131.2, 133.7, 148.5, 149.3, 152.1, 165.0; $\nu_{\rm max}$ (KBr)/cm⁻¹ 3264, 1644, 1540, 1524, 1448, 1360, 1296, 1216, 1064, 1020, 856, 792; *m*/*z* (EI) 256 (M⁺–18, 35%), 183 (31), 169 (52), 148 (42), 141 (25), 135 (11), 118 (39), 104 (13), 95 (63), 89 (52), 77 (32), 65 (63), 51 (46), 43 (100); Found: C, 61.35; H, 5.13; N, 10.35. Calc. for C₁₄H₁₄N₂O₄: C, 61.31; H, 5.14; N, 10.21%.

3,6-Dimethoxy-*N***-[(5-methyl-2-furyl)methyl]-2-nitrobenzamide (6f)** was synthesized according to General procedure A from **2a** (2 g, 18 mmol; solution in 30 mL of benzene) and 3,6-dimethoxy-2-nitrobenzoyl chloride (**5e**) (4.87 g, 19.8 mmol; solution in 30 mL of benzene); eluent: benzene–petroleum ether (1:1); 68% (3.9 g); colorless plates; mp 104–105 °C (ethyl acetate–petroleum ether); $\delta_{\rm H}(300 \text{ MHz}, \text{CDCl}_3)$ 2.26 (3H, s, Me), 3.84 (3H, s, OMe), 3.87 (3H, s, OMe), 4.52 (2H, d, ${}^{3}J = 5.4 \text{ Hz}, \text{CH}_2$), 5.89 (1H, d, ${}^{3}J = 3.0 \text{ Hz}, \text{H}_{\rm Fur}$), 6.14 (1H, d, ${}^{3}J = 3.0 \text{ Hz}, \text{H}_{\rm Fur}$), 7.02 (1H, d, ${}^{3}J = 9.3 \text{ Hz}, \text{H}_{\rm Ar}$), 7.08 (1H, d, ${}^{3}J = 9.3 \text{ Hz}, \text{H}_{\rm Ar}$), 7.18 (1H, br t, ${}^{3}J = 5.4 \text{ Hz}, \text{CM}_2$), 57.0, 57.1, 106.3, 108.2, 114.3, 115.8, 117.5, 141.5, 145.3, NH); $\delta_{\rm C}(75 \text{ MHz}, \text{CDCl}_3)$ 13.5, 37.0, 57.0, 57.1, 106.3, 108.2, 114.3, 115.8, 117.5, 141.5, 145.3,

148.8, 150.1, 151.8, 161.4; v_{max} (KBr)/cm⁻¹ 3344, 1643, 1541, 1485, 1363, 1268, 1076, 940, 825, 802; *m/z* (EI) 302 (M⁺–18, 60%), 229 (23), 215 (40), 200 (20), 194 (78), 166 (33), 163 (34), 151 (18), 136 (55), 125 (32), 122 (36), 111 (24), 110 (91), 95 (100), 81 (29), 65 (20), 59 (31), 45 (34), 43 (17); Found: C, 56.40; H, 4.96; N, 8.75. Calc. for C₁₅H₁₆N₂O₆: C, 56.25; H, 5.04; N, 8.75%.

N-**[(5-Ethyl-2-furyl)methyl]-2-nitrobenzamide (6g)** was obtained according to General procedure A from 5-ethylfurfurylamine (**2b**) (5 g, 40 mmol; solution in 50 mL of benzene) and **5a** (8.2 g, 44 mmol; solution in 50 mL of benzene); 82% (8.94 g); white solid; mp 78–79 °C (CH₂Cl₂–petroleum ether); $\delta_{\rm H}(300 \text{ MHz}, \text{CDCl}_3)$ 1.18 (3H, t, ${}^{3}J$ = 7.5 Hz, CH₂*Me*), 2.57 (2H, q, ${}^{3}J$ = 7.5 Hz, *CH*₂Me), 4.47 (2H, d, ${}^{3}J$ = 5.4 Hz, CH₂), 5.87 (1H, d, ${}^{3}J$ = 3.0 Hz, H_{Fur}), 6.15 (1H, br t, ${}^{3}J$ = 5.4 Hz, NH), 7.42-7.44 (1H, m, H_{Ar}), 7.47-7.53 (1H, m, H_{Ar}), 7.56-7.62 (1H, m, H_{Ar}), 7.93-7.96 (1H, m, H_{Ar}); $\delta_{\rm C}$ (75 MHz, CDCl₃) 12.0, 21.2, 37.2, 104.7, 108.4, 124.3, 128.7, 130.3, 132.5, 133.5, 146.2, 148.3, 157.7, 166.1; v_{max} (KBr)/cm⁻¹ 3276, 1636, 1524, 1352, 1292, 1256, 1188, 1020, 856, 808, 788, 748; *m*/*z* (EI) 256 (M⁺−18, 30%), 183 (11), 169 (28), 155 (41), 150 (23), 141 (13), 134 (64), 124 (65), 104 (52), 94 (23), 91 (16), 76 (80), 65 (43), 51 (100), 43 (60); Found: C, 61.46; H, 5.23; N, 10.30. Calc. for C₁₄H₁₄N₂O₄: C, 61.31; H, 5.14; N, 10.21%.

N-[(5-*tert*-Butyl-2-furyl)methyl]-2-nitrobenzamide (6h) was synthesized according to General procedure A from 5-*tert*-butylfurfurylamine (2c) (5 g, 32.6 mmol; solution in 50 mL of benzene) and **5a** (6.66 g, 35.9 mmol; solution in 50 mL of benzene); eluent: benzene–petroleum ether (1:2); 86% (8.5 g); white solid; mp 114–115 °C (acetone–petroleum ether); $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.25 (9H, s, t-Bu), 4.58 (2H, d, ${}^{3}J$ = 5.4 Hz, CH₂), 5.88 (1H, d, ${}^{3}J$ = 3.0 Hz, H_{Fur}), 6.14 (1H, br t, ${}^{3}J$ = 5.4 Hz, NH), 6.18 (1H, d, ${}^{3}J$ = 3.0 Hz, H_{Fur}), 7.48-7.51 (1H, m, H_{Ar}), 7.52-7.58 (1H, m, H_{Ar}), 7.62-7.67 (1H, m, H_{Ar}), 8.02-8.05 (1H, m, H_{Ar}); $\delta_{\rm C}$ (75 MHz, CDCl₃) 29.0 (3C), 32.6, 37.4, 102.7, 108.3, 124.5, 128.7, 130.5, 132.7, 133.7, 146.5, 148.1, 164.4, 166.1; v_{max} (KBr)/cm⁻¹ 3259, 1650, 1525, 1346, 1307, 1205, 1129, 1039, 1013, 860, 793, 749; *m/z* (EI) 302 (M⁺, 2%), 284 (5), 197 (10), 152 (34), 150 (34), 136 (99), 121 (78), 104 (55), 91 (33), 76 (85), 65 (43), 51

(100), 43 (99); Found: C, 63.58; H, 6.03; N, 9.31. Calc. for C₁₆H₁₈N₂O₄: C, 63.57; H, 6.00; N, 9.27%.

N-(2-Furylmethyl)-2-nitrobenzamide (6i) was obtained according to General procedure A from furfurylamine (2e) (5 g, 51.5 mmol; solution in 50 mL of benzene) and **5a** (10.51 g, 56.65 mmol; solution in 50 mL of benzene); 92% (11.63 g); white solid; mp 108–110 °C (EtOH); $\delta_{\rm H}(300 \text{ MHz}, \text{CDCl}_3)$ 4.56 (2H, d, ${}^3J = 5.7 \text{ Hz}, \text{CH}_2$), 6.29 (1H, dd, ${}^3J = 3.3 \text{ Hz}, {}^4J = 0.9 \text{ Hz}, \text{H}_{\rm Fur}$), 6.32 (1H, dd, ${}^3J = 1.8 \text{ Hz}, {}^3J = 3.3 \text{ Hz}, \text{H}_{\rm Fur}$), 6.42 (1H, br t, ${}^3J = 5.7 \text{ Hz}, \text{NH}$), 7.34 (1H, dd, ${}^3J = 1.8 \text{ Hz}, {}^4J = 0.9 \text{ Hz}, \text{H}_{\rm Fur}$), 7.44-7.47 (1H, m, H_{Ar}), 7.50-7.56 (1H, m, H_{Ar}), 7.59-7.65 (1H, m, H_{Ar}), 7.98-8.01 (1H, m, H_{Ar}); $\delta_{\rm C}(75 \text{ MHz}, \text{CDCl}_3)$ 37.1, 107.9, 110.5, 124.5, 128.7, 130.5, 132.4, 133.7, 142.3, 146.1, 150.3, 166.2; v_{max} (KBr)/cm⁻¹ 3272, 1648, 1560, 1528, 1444, 1352, 1308, 1260, 1152, 1076, 1016, 792, 748; *m*/*z* (EI) 228 (M⁺–18, 8%), 155 (13), 134 (27), 128 (76), 121 (15), 104 (35), 96 (56), 81 (49), 76 (72), 69 (12), 65 (30), 53 (88), 50 (100), 41 (42); Found: C, 58.46; H, 4.12; N, 11.46. Calc. for C₁₂H₁₀N₂O₄: C, 58.54; H, 4.09; N, 11.38%.

N-**[(5-(4-Chlorophenyl)-2-furyl)methyl]-2-nitrobenzamide (6j)** was synthesized according to General procedure A from 5-(4-chlorophenyl)furfurylamine (**2d**) (5 g, 24.08 mmol; solution in 50 mL of benzene) and **5a** (4.92 g, 26.5 mmol; solution in 50 mL of benzene); 82% (7.02 g); beige needles; mp 156–157 °C (EtOH); $\delta_{\rm H}(300 \text{ MHz}, \text{CDCl}_3)$ 4.62 (2H, d, ${}^3J = 5.4 \text{ Hz}, \text{CH}_2$), 6.38 (1H, d, ${}^3J = 3.3 \text{ Hz}, \text{H}_{\text{Fur}}$), 6.43 (1H, br t, ${}^3J = 5.4 \text{ Hz}, \text{NH}$), 6.54 (1H, d, ${}^3J = 3.3 \text{ Hz}, \text{H}_{\text{Fur}}$), 7.30 (2H, d, ${}^3J = 8.7 \text{ Hz}, \text{H}_A$ r), 7.45-7.49 (1H, m, H_{Ar}), 7.51-7.57 (1H, m, H_{Ar}), 7.54 (2H, d, ${}^3J = 8.7 \text{ Hz}, \text{H}_A$ r), 7.58-7.63 (1H, m, H_{Ar}), 7.98-8.01 (1H, m, H_{Ar}); $\delta_{\rm C}(75 \text{ MHz}, \text{CDCl}_3)$ 37.2, 106.3, 110.2, 124.5, 124.9 (2C), 128.7, 128.8 (2C), 129.0, 130.5, 132.4, 133.0, 133.7, 146.5, 150.2, 152.7, 166.3; v_{max} (KBr)/cm⁻¹ 3264, 1644, 1556, 1524, 1480, 1352, 1316, 1092, 832, 792, 788, 724; *m*/*z* (EI) 358/356 (M⁺, 5/16%), 340/338 (33/100), 265 (10), 231 (26), 207/205 (27/81), 191 (22), 149 (42), 134 (18), 128 (31), 115 (20), 104 (27), 75 (47), 63 (17), 51 (53); Found: C, 60.61; H, 3.63; N, 7.90. Calc. for C₁₈H₁₃ClN₂O₄: C, 60.60; H, 3.67; N, 7.85%.

N-[1-(5-Methyl-2-furyl)ethyl]-2-nitrobenzamide (6k) was obtained according to General procedure A from [1-(5-methyl-2-furyl)ethyl]amine (2f) (5 g, 40 mmol; solution in 50 mL of benzene) and 5a (8.16 g, 44 mmol; solution in 50 mL of benzene); eluent: benzene; 63% (6.9 g); colorless needles; mp 123–124 °C (CH₂Cl₂-petroleum); $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.60 (3H, d, ${}^{3}J$ = 6.9 Hz, CH*Me*), 2.26 (3H, s, Me), 5.34 (1H, dq, ${}^{3}J$ = 6.9 Hz, ${}^{3}J$ = 8.4 Hz, *CH*Me), 5.89 (1H, d, ${}^{3}J$ = 3.0 Hz, H_{Fur}), 6.00 (1H, d, ${}^{3}J$ = 8.4 Hz, NH), 6.14 (1H, d, ${}^{3}J$ = 3.0 Hz, H_{Fur}), 7.51-7.60 (2H, m, H_{Ar}), 7.63-7.68 (1H, m, H_{Ar}), 8.05-8.08 (1H, m, H_{Ar}); *δ*_C(75 MHz, CDCl₃) 13.5, 19.0, 43.7, 106.0, 106.7, 124.4, 128.7, 130.3, 132.7, 133.6, 146.2, 151.7, 152.6, 165.5; *v*_{max} (KBr)/cm⁻¹ 3224, 1635, 1525, 1448, 1347, 1106, 1022, 904, 856, 800; *m*/*z* (EI) 274 (M⁺, 2%), 256 (24), 212 (14), 159 (47), 150 (51), 134 (57), 124 (100), 108 (76), 104 (46), 90 (17), 76 (50), 65 (22), 51 (72), 43 (89); Found: C, 61.71; H, 5.22; N, 10.00. Calc. for C₁₄H₁₄N₂O₄: C, 61.31; H, 5.14; N, 10.21%.

N-**[(5-Methyl-2-furyl)(phenyl)methyl]-2-nitrobenzamide (61)** was synthesized according to General procedure A from [(5-methyl-2-furyl)(phenyl)methyl]amine (**2g**) (5 g, 26.7 mmol; solution in 50 mL of benzene) and **5a** (5.45 g, 29.37 mmol; solution in 50 mL of benzene); 90% (8.05 g); white solid; mp 152–153 °C (benzene–petroleum ether); $\delta_{\rm H}(300 \text{ MHz, CDCl}_3)$ 2.20 (3H, s, Me), 5.91 (1H, d, ${}^{3}J$ = 3.0 Hz, H_{Fur}), 6.09 (1H, d, ${}^{3}J$ = 3.0 Hz, H_{Fur}), 6.36 (1H, d, ${}^{3}J$ = 8.1 Hz, CH), 7.25-7.35 (3H, m, H_{Ar}), 7.38-7.42 (2H, m, H_{Ar}), 7.58-7.64 (2H, m, H_{Ar}), 7.68-7.73 (1H, m, H_{Ar}), 7.97-8.00 (1H, m, H_{Ar}), 8.54 (1H, d, ${}^{3}J$ = 8.1 Hz, NH); $\delta_{\rm C}$ (75 MHz, CDCl₃) 13.6, 52.1, 106.8, 109.0, 124.6, 128.0 (2C), 128.1 (2C), 129.0, 129.8, 131.0, 133.5, 134.0, 140.4, 147.6, 152.3, 152.5, 165.9; v_{max} (KBr)/cm⁻¹ 3308, 1644, 1540, 1448, 1360, 1220, 1204, 1024, 952, 856, 784, 736; *m*/*z* (EI) 318 (M⁺−18, 17%), 221 (100), 186 (78), 170 (74), 150 (18), 134 (29), 104 (49), 90 (27), 77 (38), 65 (18), 51 (50), 43 (56); Found: C, 68.08; H, 4.91; N, 8.15. Calc. for C₁₉H₁₆N₂O₄: C, 67.85; H, 4.79; N, 8.33%.

2-Amino-5-chloro-*N***-[(5-methyl-2-furyl)methyl]benzamide (1c)** was synthesized according to General procedure C from **6c** (1 g, 3.4 mmol); 89% (0.8 g); colorless plates, mp 108–109 °C (CH₂Cl₂–petroleum ether); $\delta_{\rm H}(300$ MHz, CDCl₃) 2.28 (3H, s, Me), 4.50 (2H, d, ${}^{3}J$ = 5.4 Hz, CH₂), 5.91 (1H, d, ${}^{3}J$ = 3.0 Hz, H_{Fur}), 6.15 (1H, d, ${}^{3}J$ = 3.0 Hz, H_{Fur}), 6.25 (1H, br t, ${}^{3}J$ = 5.4 Hz, NH), 6.61 (1H, d, ${}^{3}J$ = 8.7 Hz, H_{Ar}), 7.13 (1H, dd, ${}^{3}J$ = 8.7 Hz, ${}^{4}J$ = 2.4 Hz, H_{Ar}), 7.27 (1H, d, ${}^{4}J$ = 2.4 Hz, H_{Ar}); $\delta_{\rm C}(75$ MHz, CDCl₃) 13.5, 36.8, 106.3, 108.6, 116.5, 118.5, 120.8, 126.8, 132.1, 147.2, 148.9, 152.1, 167.8; v_{max} (KBr)/cm⁻¹ 3459, 3358, 3282, 1621, 1535, 1251, 1150, 1017, 904, 819, 787, 748; *m*/*z* (EI) 266/264 (M⁺, 3/10%), 156/154 (3/14), 110 (100), 95 (68), 43 (14); Found: C, 58.82; H, 5.00; N, 10.68. Calc. for C₁₃H₁₃ClN₂O₂: C, 58.99; H, 4.95; N, 10.58%.

2-Amino-4,5-dimethoxy-*N***-[(5-methyl-2-furyl)methyl]benzamide (1d)**¹ was obtained according to General procedure C from **6d** (1 g, 3.12 mmol); 89% (0.81 g); white solid.

2-Amino-3-methyl-*N*-**[(5-methyl-2-furyl)methyl]benzamide (1e)** was synthesized according to General procedure C from **6e** (1 g, 3.65 mmol); 75% (0.67 g); colorless needles, mp 102–103 °C (petroleum ether); $\delta_{\rm H}(300 \text{ MHz}, \text{CDCl}_3)$ 2.14 (3H, s, Me), 2.26 (3H, s, Me), 4.51 (2H, d, ${}^{3}J = 5.4$ Hz, CH₂), 5.58 (2H, br s, NH₂), 5.89 (1H, d, ${}^{3}J = 3.0$ Hz, H_{Fur}), 6.13 (1H, d, ${}^{3}J = 3.0$ Hz, H_{Fur}), 6.37 (1H, br t, ${}^{3}J = 5.4$ Hz, NH), 6.53-6.58 (1H, m, H_{Ar}), 7.09-7.12 (1H, m, H_{Ar}), 7.20-7.23 (1H, m, H_{Ar}); $\delta_{\rm C}(75 \text{ MHz}, \text{CDCl}_3)$ 13.6, 17.5, 36.8, 106.3, 108.4, 115.2, 115.9, 123.7, 125.1, 133.2, 147.1, 149.4, 152.0, 169.4; $\nu_{\rm max}$ (KBr)/cm⁻¹ 3420, 3340, 1640, 1616, 1576, 1520, 1460, 1332, 1256, 1188, 788, 756; *m*/*z* (EI) 244 (M⁺, 48%), 134 (30), 110 (100), 95 (56), 77 (37), 65 (13), 43 (48); Found: C, 68.81; H, 6.55; N, 11.58. Calc. for C₁₄H₁₆N₂O₂: C, 68.83; H, 6.60; N, 11.47%.

2-Amino-3,6-dimethoxy-*N***-[(5-methyl-2-furyl)methyl]benzamide (1f)** was synthesized according to General procedure C from **6f** (1 g, 3.12 mmol); residue was poured into water and extracted with diethyl ether (3×30 mL); the combined organic fractions were dried over Na₂SO₄. Solvent was removed using rotor evaporator. Residue was distilled under vacuum. Product was isolated as light-yellow oil (0.8 g, 89%) and used for further transformations without additional purification.

2-Amino-*N*-**[(5-ethyl-2-furyl)methyl]benzamide (1g)** was synthesized according to General procedure C from **6g** (1 g, 3.65 mmol); 94% (0.84 g); white solid, mp 70–71 °C (EtOH); $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.21 (3H, t, ${}^{3}J$ = 7.5 Hz, CH₂*Me*), 2.61 (2H, q, ${}^{3}J$ = 7.5 Hz, *CH*₂Me), 4.52 (2H, d, ${}^{3}J$ = 5.4 Hz, CH₂), 5.52 (2H, br s, NH₂), 5.90 (1H, d, ${}^{3}J$ = 3.0 Hz, H_{Fur}), 6.15 (1H, d, ${}^{3}J$ = 3.0 Hz, H_{Fur}), 6.35 (1H, br t, ${}^{3}J$ = 5.4 Hz, NH), 6.58-6.67 (2H, m, H_{Ar}), 7.15-7.21 (1H, m, H_{Ar}), 7.29-7.32 (1H, m, H_{Ar}); $\delta_{\rm C}$ (75 MHz, CDCl₃) 12.0, 21.3, 36.8, 104.6, 108.1, 115.6, 116.5, 117.2, 127.2, 132.3, 148.8, 149.2, 157.7, 168.9; v_{max} (KBr)/cm⁻¹ 3416, 3284, 1624, 1588, 1524, 1448, 1288, 1256, 1188, 1156, 1024, 792, 752; *m*/*z* (EI) 244 (M⁺, 12%), 124 (100), 120 (35), 109 (38), 92 (31), 65 (47), 52 (15), 43 (25); Found: C, 68.87; H, 6.67; N, 11.56. Calc. for C₁₄H₁₆N₂O₂: C, 68.83; H, 6.60; N, 11.47%.

2-Amino-*N*-**[(5-***tert*-**butyl-2-***furyl***)methyl]benzamide (1h)** was synthesized according to General procedure C from **6h** (1 g, 3.31 mmol); 92% (0.83 g); white solid, mp 79–80 °C (EtOH); $\delta_{\rm H}(300 \text{ MHz, CDCl}_3)$ 1.24 (9H, s, t-Bu), 4.53 (2H, d, ${}^3J = 5.4 \text{ Hz, CH}_2$), 5.51 (2H, br s, NH₂), 5.88 (1H, d, ${}^3J = 3.0 \text{ Hz}$, H_{Fur}), 6.13 (1H, d, ${}^3J = 3.0 \text{ Hz}$, H_{Fur}), 6.37 (1H, br t, ${}^3J = 5.4 \text{ Hz}$, NH), 6.59-6.67 (2H, m, H_{Ar}), 7.15-7.21 (1H, m, H_{Ar}), 7.29-7.32 (1H, m, H_{Ar}); $\delta_{\rm C}(75 \text{ MHz, CDCl}_3)$ 29.0 (3C), 32.5, 36.9, 102.6, 107.7, 115.8, 116.5, 117.2, 127.1, 132.3, 148.7, 149.0, 164.1, 168.9; $v_{\rm max}$ (KBr)/cm⁻¹ 3477, 3374, 3281, 1632, 1582, 1554, 1419, 1302, 1263, 1207, 1157, 1025, 982,

792, 750; *m/z* (EI) 272 (M⁺, 14%), 152 (100), 137 (31), 121 (17), 120 (56), 92 (27), 65 (30), 43 (42); Found: C, 70.89; H, 7.56; N, 10.29. Calc. for C₁₆H₂₀N₂O₂: C, 70.56; H, 7.40; N, 10.29%.

2-Amino-*N*-{[**5**-(**4**-**chlorophenyl**)-**2**-**furyl**]**methyl**}**benzamide** (1j) was synthesized according to General procedure C from 6j (1 g, 2.8 mmol); 93% (0.85 g); colorless plates, mp 163–164 °C (EtOH); $\delta_{\rm H}(300 \text{ MHz}, \text{CDCl}_3)$ 4.63 (2H, d, ${}^3J = 5.4 \text{ Hz}, \text{CH}_2$), 5.53 (2H, br s, NH₂), 6.35 (1H, d, ${}^3J = 3.3 \text{ Hz}, \text{H}_{\rm Fur}$), 6.42 (1H, br t, ${}^3J = 5.4 \text{ Hz}, \text{NH}$), 6.56 (1H, d, ${}^3J = 3.3 \text{ Hz}, \text{H}_{\rm Fur}$), 6.60-6.69 (2H, m, H_{Ar}), 7.17-7.23 (1H, m, H_{Ar}), 7.30-7.35 (3H, m, H_{Ar}), 7.56 (2H, d, ${}^3J = 8.7 \text{ Hz}, \text{H}_{\rm Ar}$); $\delta_{\rm C}(75 \text{ MHz}, \text{CDCl}_3)$ 36.8, 106.3, 109.9, 115.4, 116.6, 117.3, 123.6, 124.9 (2C), 127.2, 128.8 (2C), 132.5, 133.0, 148.8, 151.2, 152.6, 169.0; v_{max} (KBr)/cm⁻¹ 3480, 3368, 3304, 1628, 1580, 1536, 1484, 1424, 1268, 1160, 1016, 824, 788, 752; *m*/*z* (EI) 328/326 (M⁺, 5/14%), 208/206 (33/100), 191 (26), 172 (16), 128 (20), 120 (40), 99 (16), 92 (28), 65 (18), 43 (20); Found: C, 66.45; H, 4.73; N, 8.55. Calc. for C₁₈H₁₅ClN₂O₂: C, 66.16; H, 4.63; N, 8.57%.

2-Amino-*N*-**[(2-furyl)methyl]benzamide (1i)** was synthesized according to General procedure C from **6i** (1 g, 4.06 mmol); 90% (0.79 g); white solid, mp 87–88 °C (aq. EtOH); $\delta_{\rm H}$ (300 MHz, CDCl₃) 4.57 (2H, d, ${}^{3}J$ = 5.4 Hz, CH₂), 5.53 (2H, br s, NH₂), 6.26 (1H, dd, ${}^{3}J$ = 3.3 Hz, ${}^{4}J$ = 0.6 Hz, H_{Fur}), 6.32 (1H, dd, ${}^{3}J$ = 1.8 Hz, ${}^{3}J$ = 3.3 Hz, H_{Fur}), 6.41 (1H, br t, ${}^{3}J$ = 5.4 Hz, NH), 6.58-6.67 (2H, m, H_{Ar}), 7.16-7.21 (1H, m, H_{Ar}), 7.29-7.32 (1H, m, H_{Ar}), 7.36 (1H, dd, ${}^{3}J$ = 1.8 Hz, ${}^{4}J$ = 0.6 Hz, H_{Fur}); $\delta_{\rm C}$ (75 MHz, CDCl₃) 36.6, 107.5, 110.4, 115.4, 116.5, 117.3, 127.2, 132.4, 142.2, 148.8, 151.3, 169.0; v_{max} (KBr)/cm⁻¹ 3420, 3300, 1624, 1588, 1532, 1448, 1296, 1260, 1196, 1152, 1012, 752; *m/z* (EI) 216 (M⁺, 11%), 120 (46), 96(100), 92 (53), 81 (41), 65 (83), 52 (61); Found: C, 66.72; H, 5.65; N, 13.01. Calc. for C₁₂H₁₂N₂O₂: C, 66.65; H, 5.59; N, 12.95%.

2-Amino-*N***-**[**1-**(**5-methyl-2-furyl)ethyl]benzamide (1k)** was synthesized according to General procedure C from **6k** (1 g, 3.65 mmol); 96% (0.85 g); white solid, mp 93–94 °C (aq. EtOH);

 $\delta_{\rm H}(300 \text{ MHz, CDCl}_3) 1.54 (3\text{H}, \text{d}, {}^{3}J = 6.9 \text{ Hz, CH}Me)$, 2.26 (3H, s, Me), 5.30 (1H, dq, ${}^{3}J = 6.9 \text{ Hz}$, ${}^{3}J = 7.2 \text{ Hz}$, *CH*Me), 5.52 (2H, br s, NH₂), 5.89 (1H, d, ${}^{3}J = 3.0 \text{ Hz}$, H_{Fur}), 6.09 (1H, d, ${}^{3}J = 3.0 \text{ Hz}$, H_{Fur}), 6.23 (1H, br d, ${}^{3}J = 7.2 \text{ Hz}$, NH), 6.60-6.68 (2H, m, H_{Ar}), 7.16-7.22 (1H, m, H_{Ar}), 7.29-7.32 (1H, m, H_{Ar}); $\delta_{\rm C}(75 \text{ MHz}, \text{CDCl}_3) 13.5$, 19.6, 42.9, 105.9, 106.3, 115.8, 116.4, 117.2, 127.1, 132.2, 148.7, 151.6, 153.5, 168.2; v_{max} (KBr)/cm⁻¹ 3418, 3293, 1619, 1587, 1526, 1448, 1311, 1257, 1218, 1156, 1018, 941, 781, 748; *m/z* (EI) 244 (M⁺, 13%), 124 (100), 120 (41), 109 (69), 92 (25), 65 (35), 53 (11), 43 (34); Found: C, 69.10; H, 6.75; N, 11.23. Calc. for C₁₄H₁₆N₂O₂: C, 68.83; H, 6.60; N, 11.47%.

2-Amino-*N*-**[(5-methyl-2-furyl)(phenyl)methyl]benzamide (11)** was synthesized according to General procedure C from **6l** (1 g, 2.97 mmol); 91% (0.83 g); white solid, mp 138–139 °C (aq. EtOH); $\delta_{\rm H}(300 \text{ MHz}, {\rm CDCl}_3)$ 2.28 (3H, s, Me), 5.56 (2H, br s, NH₂), 5.91 (1H, d, 3J = 3.0 Hz, H_{Fur}), 6.04 (1H, d, 3J = 3.0 Hz, H_{Fur}), 6.37 (1H, d, 3J = 7.8 Hz, CH), 6.62-6.68 (2H, m, H_{Ar}), 6.78 (1H, br d, 3J = 7.8 Hz, NH), 7.18-7.21 (1H, m, H_{Ar}), 7.26-7.37 (5H, m, H_{Ar}), 7.39-7.42 (1H, m, H_{Ar}); $\delta_{\rm C}(75 \text{ MHz}, \text{CDCl}_3)$ 13.6, 51.2, 106.2, 108.7, 115.2, 116.4, 117.3, 126.9 (2C), 127.2 (2C), 127.6, 128.6, 132.5, 139.7, 149.0, 151.5, 152.3, 168.1; v_{max} (KBr)/cm⁻¹ 3428, 3304, 1620, 1588, 1520, 1452, 1316, 1256, 1160, 1024, 792, 748, 700; *m/z* (EI) 306 (M⁺, 28%), 187 (85), 186 (50), 171 (100), 128 (31), 120 (94), 104 (20), 92 (80), 77 (23), 65 (82), 51 (18), 43 (68); Found: C, 74.78; H, 5.94; N, 8.99. Calc. for C₁₉H₁₈N₂O₂: C, 74.49; H, 5.92; N, 9.14%.

N-Ethyl-*N*-[(5-methyl-2-furyl)methyl]-2-nitrobenzamide (7b) was synthesized according to General procedure D using ethyl bromide (2.51 g, 23 mmol); eluent: benzene–petroleum ether (1:1). Product was isolated as white solid by recrystallization from petroleum ether below 0 °C; 83% (2.76 g,); mp 62–63 °C. According to NMR spectra, this compound exists as two rotamers in a ratio of 1.5:1.

The major rotamer: $\delta_{\text{H}}(300 \text{ MHz}, \text{CDCl}_3, 45 \text{ °C}) 1.19 (3\text{H}, \text{t}, {}^{3}J = 7.2 \text{ Hz}, \text{CH}_2Me)$, 2.19 (3H, s, Me), 3.55 (2H, br s, *CH*₂Me), 4.13 (2H, s, CH₂), 5.81 (1H, d, {}^{3}J = 3.0 \text{ Hz}, \text{H}_{\text{Fur}}), 5.94 (1H, d, ${}^{3}J = 3.0 \text{ Hz}, \text{H}_{\text{Fur}})$, 7.44-7.53 (2H, m, H_{Ar}), 7.61-7.67 (1H, m, H_{Ar}), 8.10-8.13 (1H, m, H_{Ar}); $\delta_{\text{C}}(75)$

MHz, CDCl₃, 45 °C) 11.3, 13.2, 39.4, 45.0, 106.0, 109.4, 124.4, 128.0, 128.5, 129.5, 133.0, 133.9, 145.2, 147.3, 152.3, 167.0;

The minor rotamer: $\delta_{\rm H}(300 \text{ MHz}, \text{CDCl}_3, 45 \text{ °C}) 0.98 (3\text{H}, \text{t}, {}^{3}J = 7.2 \text{ Hz}, \text{CH}_2Me)$, 2.24 (3H, s, Me), 3.10 (2H, q, ${}^{3}J = 7.2 \text{ Hz}, CH_2\text{Me}$), 4.69 (2H, s, CH₂), 5.89 (1H, d, ${}^{3}J = 3.0 \text{ Hz}, \text{H}_{\text{Fur}}$), 6.23 (1H, d, ${}^{3}J = 3.0 \text{ Hz}, \text{H}_{\text{Fur}}$), 7.33-7.36 (1H, m, H_{Ar}), 7.44-7.53 (1H, m, H_{Ar}), 7.61-7.67 (1H, m, H_{Ar}), 8.09-8.12 (1H, m, H_{Ar}); $\delta_{\rm C}(75 \text{ MHz}, \text{CDCl}_3, 45 \text{ °C})$ 12.9, 13.3, 40.0, 42.7, 106.3, 109.5, 124.5, 128.0, 128.5, 129.5, 133.1, 134.0, 145.1, 148.2, 151.6, 167.2.

 v_{max} (KBr)/cm⁻¹ 1636, 1559, 1520, 1426, 1346, 1273, 1223, 1148, 1068, 1027, 972, 820, 793, 767; *m/z* (EI) 288 (M⁺, 17%), 272 (14), 271 (49), 178 (13), 150 (65), 138 (100), 137 (99), 122 (76), 110 (21), 104 (51), 95 (62), 81 (16), 76 (69), 65 (50), 56 (50), 51 (62); Found: C, 62.59; H, 5.48; N, 9.84. Calc. for C₁₅H₁₆N₂O₄: C, 62.49; H, 5.59; N, 9.72%.

N-Benzyl-*N*-[(5-methyl-2-furyl)methyl]-2-nitrobenzamide (7c) was synthesized according to General procedure D using benzyl chloride (2.91 g, 23 mmol); eluent: benzene–petroleum ether (1:1). 62% (2.5 g); colorless needles; mp 88–89 °C (petroleum ether–diethyl ether); according to NMR spectra, this compound exists as two rotamers in a ratio of 2:1.

The major rotamer: $\delta_{\rm H}(300 \text{ MHz}, \text{CDCl}_3) 2.25 (3\text{H}, \text{s}, \text{Me}), 4.07 (2\text{H}, \text{s}, \text{CH}_{2\text{Fur}}), 4.67 (2\text{H}, \text{s}, \text{CH}_{2\text{Ph}}), 5.86 (1\text{H}, \text{d}, {}^{3}J = 3.0 \text{ Hz}, \text{H}_{\text{Fur}}), 5.93 (1\text{H}, \text{d}, {}^{3}J = 3.0 \text{ Hz}, \text{H}_{\text{Fur}}), 7.12-7.15 (1\text{H}, \text{m}, \text{H}_{\text{Ar}}), 7.25-7.46 (5\text{H}, \text{m}, \text{H}_{\text{Ar}}), 7.57-7.62 (1\text{H}, \text{m}, \text{H}_{\text{Ar}}), 7.70-7.76 (1\text{H}, \text{m}, \text{H}_{\text{Ar}}), 8.20-8.23 (1\text{H}, \text{m}, \text{H}_{\text{Ar}}); \delta_{\rm C}(75 \text{ MHz}, \text{CDCl}_3) 13.4, 44.1, 46.8, 106.1, 110.2, 124.6, 127.3, 127.5, 128.6 (2\text{C}), 128.8 (2\text{C}), 129.8 (2\text{C}), 134.2, 136.1, 145.2, 146.6, 152.6, 167.8;$

The minor rotamer: $\delta_{\rm H}(300 \text{ MHz}, \text{CDCl}_3) 2.29 (3\text{H}, \text{s}, \text{Me}), 4.30 (2\text{H}, \text{s}, \text{CH}_{2\text{Fur}}), 5.18 (2\text{H}, \text{s}, \text{CH}_{2\text{Ph}}), 5.93 (1\text{H}, \text{d}, {}^{3}J = 3.0 \text{ Hz}, \text{H}_{\text{Fur}}), 6.22 (1\text{H}, \text{d}, {}^{3}J = 3.0 \text{ Hz}, \text{H}_{\text{Fur}}), 7.25-7.45 (4\text{H}, \text{m}, \text{H}_{\text{Ar}}), 7.49-7.66 (4\text{H}, \text{m}, \text{H}_{\text{Ar}}), 7.60-7.66 (1\text{H}, \text{m}, \text{H}_{\text{Ar}}), 8.16-8.19 (1\text{H}, \text{m}, \text{H}_{\text{Ar}}); \delta_{\rm C}(75 \text{ MHz}, \text{CDCl}_3) 13.6, 40.1, 51.5, 106.3, 110.1, 124.7, 127.7, 128.1, 128.7 (2\text{C}), 128.8 (2\text{C}), 132.7 (2\text{C}), 134.3, 135.5, 145.0, 147.6, 152.0, 167.9.$

 v_{max} (KBr)/cm⁻¹ 1639, 1529, 1445, 1353, 1258, 1219, 1022, 991, 771, 733; *m/z* (EI) 350 (M⁺, 1%), 200 (63), 150 (77), 121 (20), 104 (20), 95 (100), 91 (97), 76 (27), 65 (36), 57 (16), 51 (55), 43 (51); Found: C, 68.78; H, 5.14; N, 7.95. Calc. for C₂₀H₁₈N₂O₄: C, 68.56; H, 5.18; N, 8.00%.

2-Amino-N-ethyl-N-[(5-methyl-2-furyl)methyl]benzamide (8b) was synthesized according to General procedure C from **7b** (1 g, 3.47 mmol). Product was extracted with diethyl ether (4×20 mL). The combined organic phases dried over anhydrous Na₂SO₄. Solvent was evaporated under reduced pressure. Eluent: CH₂Cl₂–petroleum ether (1:2). Aniline **8b** was isolated as light-yellow oil in 76% yield (0.68 g); $\delta_{\rm H}(300 \text{ MHz}, \text{CDCl}_3, 45 \text{ °C})$ 1.11 (3H, t, ${}^{3}J$ = 6.9 Hz, CH₂*Me*), 2.26 (3H, s, Me), 3.42 (2H, q, ${}^{3}J$ = 6.9 Hz, *CH*₂Me), 4.16 (2H, br s, CH₂), 4.52 (2H, s, NH₂), 5.88 (1H, d, ${}^{3}J$ = 3.0 Hz, H_{Fur}), 6.10 (1H, d, ${}^{3}J$ = 3.0 Hz, H_{Fur}), 6.67-6.72 (2H, m, H_{Ar}), 7.09-7.18 (2H, m, H_{Ar}); $\delta_{\rm C}(75 \text{ MHz}, \text{CDCl}_3, 45 \text{ °C})$ 12.9, 13.4, 41.3, 42.9, 106.2, 109.1, 116.5, 117.4, 121.0, 127.5, 130.2, 145.0, 148.9, 151.9, 170.9; v_{max} (KBr)/cm⁻¹ 3459, 3359, 1647, 1495, 1217, 1146, 1073, 1021, 980, 866, 791; *m*/*z* (EI) 258 (M⁺, 11%), 138 (99), 120 (100), 110 (18), 95 (50), 92 (55), 65 (61), 56 (14), 45 (13); Found: C, 69.57; H, 6.85; N, 10.85. Calc. for C₁₅H₁₈N₂O₂: C, 69.74; H, 7.02; N, 10.84%.

2-Amino-*N***-benzyl-***N***-[(5-methyl-2-furyl)methyl]benzamide (8c)** was synthesized according to General procedure C from 7c (1 g, 2.85 mmol); eluent: CH₂Cl₂–petroleum ether (1:1); 85% (0.77 g); white powder, mp 68–69 °C (aq. EtOH); $\delta_{\rm H}(300 \text{ MHz}, \text{CDCl}_3, 45 ^{\circ}\text{C})$ 2.27 (3H, s, Me), 4.30 (2H, s, CH₂), 4.45 (2H, s, CH₂), 4.63 (2H, s, NH₂), 5.89 (1H, d, ${}^{3}J$ = 3.0 Hz, H_{Fur}), 6.06 (1H, d, ${}^{3}J$ = 3.0 Hz, H_{Fur}), 6.67-6.72 (2H, m, H_{Ar}), 7.12-7.17 (1H, m, H_{Ar}), 7.25-7.36 (6H, m, H_{Ar}); $\delta_{\rm C}(75 \text{ MHz}, \text{CDCl}_3, 45 ^{\circ}\text{C})$ 13.5, 42.7, 49.3, 106.2, 109.6, 116.6, 117.4, 120.3, 127.4, 127.7, 127.9, 128.6 (3C), 130.5, 136.9, 145.3, 148.4, 152.1, 171.4; v_{max} (KBr)/cm⁻¹ 3472, 3356, 1618, 1493, 1447, 1259, 1137, 1023, 988, 795, 749; *m*/*z* (EI) 229 (M⁺–91, 13%), 200 (30), 120 (100), 110 (11), 95 (34), 92 (23), 91 (25), 65 (27), 43 (12); Found: C, 75.10; H, 6.21; N, 8.87. Calc. for C₂₀H₂₀N₂O₂: C, 74.98; H, 6.29; N, 8.74%.

2-Amino-*N***-(4-chlorophenyl)**-*N*-**[(5-methyl-2-furyl)methyl]benzamide (8d)** was synthesized according to General procedure C from 7d (1 g, 2.7 mmol); eluent: ethyl acetate–petroleum ether (1:2). (0.66 g, 72%). Product was isolated as light-yellow solid by recrystallization from petroleum ether below 0 °C; 72% (0.66 g,); mp 96–97 °C; $\delta_{\rm H}(300 \text{ MHz, CDCl}_3)$ 2.25 (3H, s, Me), 4.75 (2H, br s, CH₂), 4.96 (2H, s, NH₂), 5.86 (1H, d, ${}^{3}J$ = 3.0 Hz, H_{Fur}), 6.10 (1H, d, ${}^{3}J$ = 3.0 Hz, H_{Fur}), 6.35-6.40 (1H, m, H_{Ar}), 6.74-6.77 (1H, m, H_{Ar}), 6.94-7.02 (3H, m, H_{Ar}), 7.11-7.16 (2H, m, H_{Ar}); $\delta_{\rm C}$ (75 MHz, CDCl₃) 13.5, 46.5, 106.3, 109.7, 116.5, 116.9, 119.4, 128.2 (2C), 129.0 (2C), 129.5, 130.7, 132.2, 142.1, 146.5, 148.6, 151.8, 170.6; v_{max} (KBr)/cm⁻¹ 3440, 3348, 1620, 1588, 1568, 1488, 1408, 1392, 1380, 1288, 1196, 1092, 1026, 1012, 780, 752 ; *m/z* (EI) 340 (M⁺, 35%), 246 (15), 220 (100), 170 (38), 120 (72), 101 (40), 95 (87), 59 (49), 43 (72); Found: C, 66.77; H, 5.17; N, 8.06. Calc. for C₁₉H₁₇ClN₂O₂: C, 66.96; H, 5.03; N, 8.22%.

8-Bromo-1-methyl-4,5-dihydro-6*H***-pyrrolo[1,2-***a***][1,4]benzodiazepin-6-one (13b) was synthesized according to General procedure E from 1b (1g, 3.23 mmol); eluent: benzene; 65% (0.61 g); colorless needles; mp 201–202 °C (benzene–petroleum ether); \delta_{\rm H}(300 MHz, CDCl₃) 2.28 (3H, s, Me), 4.09 (2H, d, {}^{3}J = 6.3 Hz, CH₂), 6.00-6.03 (2H, m, H_{Pyr}), 7.15 (1H, d, {}^{3}J = 8.7 Hz, H_{Ar}), 7.63 (1H, br t, {}^{3}J = 6.3 Hz, NH), 7.65 (1H, dd, {}^{3}J = 8.7 Hz, {}^{4}J = 2.4 Hz, H_{Ar}), 8.07 (1H, d, {}^{4}J = 2.4 Hz, H_{Ar}); \delta_{\rm C}(75 MHz, CDCl₃) 14.0, 37.9, 105.4, 109.9, 119.7, 126.4, 129.4, 130.9, 132.4, 134.0, 134.4, 134.8, 169.3; v_{max} (KBr)/cm⁻¹ 3186, 1649, 1477, 1424, 1391, 1323, 1204, 1085, 995, 822, 787, 726;** *m/z* **(EI) 292/290 (M⁺, 98/100%), 277/275 (47/49), 263/261 (29/30), 168 (40), 167 (48), 154 (21), 127 (14), 77 (16), 74 (27), 63 (10), 59 (41), 43 (48); Found: C, 53.83; H, 3.85; N, 9.67. Calc. for C₁₃H₁₁BrN₂O: C, 53.63; H, 3.81; N, 9.62%.**

8-Chloro-1-methyl-4,5-dihydro-6*H***-pyrrolo[1,2-***a***][1,4]benzodiazepin-6-one (13c) was obtained according to General procedure E from 1c (1 g, 3.77 mmol); eluent: benzene; 75% (0.7 g); white solid; mp 195–196 °C (benzene–petroleum ether); \delta_{\rm H}(300 \text{ MHz}, \text{CDCl}_3) 2.28 (3H, s, Me), 4.08 (1H, dd, {}^2J = 15.6 Hz, {}^3J = 5.7 Hz, CH₂), 4.12 (1H, dd, {}^2J = 15.6 Hz, {}^3J = 6.6 Hz, CH₂), 6.01 (2H, s, H_{Pyr}), 7.21 (1H, d, {}^3J = 8.7 Hz, H_{Ar}), 7.50 (1H, dd, {}^3J = 8.7 Hz, {}^4J = 2.4 Hz, H_{Ar}), 7.92 (1H, d, {}^4J = 2.4 Hz, H_{Ar}), 8.18 (1H, br dd, {}^3J = 5.7 Hz, {}^3J = 6.6 Hz, NH); \delta_{\rm C}(75 MHz, CDCl₃) 14.0, 37.9, 105.4, 109.9, 126.2, 129.4, 130.7, 131.1, 131.5, 132.0, 132.4, 134.4, 169.5; v_{max} (KBr)/cm⁻¹ 3237, 1619, 1480, 1329, 1205, 1124, 938, 896, 832, 796, 730;** *m/z* **(EI) 248/246 (M⁺, 33/100%), 233/231 (24/74), 219/217 (15/47), 204/202 (6/18), 190/188 (8/26), 168 (45), 154 (19), 110 (16), 75 (52), 63 (25), 51 (42); Found: C, 63.09; H, 4.40; N, 11.18. Calc. for C₁₃H₁₁ClN₂O: C, 63.29; H, 4.49; N, 11.36%.**

8,9-Dimethoxy-1-methyl-4,5-dihydro-6*H***-pyrrolo**[**1,2-***a*][**1,4**]**benzodiazepin-6-one** (**13d**)¹ was obtained according to General procedure E from **1d** (1 g, 3.44 mmol); eluent: benzene; 78% (0.73 g); beige prisms.

1,10-Dimethyl-4,5-dihydro-6*H***-pyrrolo[1,2-***a***][1,4]benzodiazepin-6-one (13e) was synthesized according to General procedure E from 1e (1g, 4.09 mmol); product was isolated by column chromatography on silica gel (eluent: ethyl acetate–benzene–petroleum ether, 9:2:6); 11% (0.1 g); white solid; mp 191–192 °C (ethyl acetate–petroleum ether); \delta_{\rm H}(300 \text{ MHz, CDCl}_3) 2.06 (3H, s, Me), 2.18 (3H, s, Me), 4.08 (2H, d, ³***J* **= 6.0 Hz, CH₂), 5.96 (1H, d, ³***J* **= 3.3 Hz, H_{Pyr}), 6.02 (1H, d, ³***J* **= 3.3 Hz, H_{Pyr}), 7.31-7.36 (1H, m, H_{Ar}), 7.41-7.44 (1H, m, H_{Ar}), 7.70-7.73 (1H, m, H_{Ar}), 7.79 (1H, br t, ³***J* **= 6.0 Hz, NH); \delta_{\rm C}(75 \text{ MHz, CDCl}_3) 12.9, 18.2, 38.3, 105.1, 108.2, 127.1, 127.8, 131.5, 131.7, 132.8, 133.7, 133.9, 134.9, 170.9; v_{max} (KBr)/cm⁻¹ 3308, 1652, 1616,** 1584, 1472, 1404, 1328, 1200, 1072, 996, 772; *m/z* (EI) 226 (M⁺, 100%), 211 (80), 196 (13), 182 (43), 168 (90), 154 (14), 115 (11), 89 (23), 77 (23), 63 (30), 51 (38); Found: C, 74.51; H, 6.03; N, 12.40. Calc. for C₁₄H₁₄N₂O: C, 74.31; H, 6.24; N, 12.38%.

Compound 13e was also synthesized from 2-amino-*N*-(2,5-dioxohexyl)-3-methylbenzamide (14e) (0.2 g, 0.76 mmol) similarly to the preparation of 13f from 14f, 75% (0.13 g), as well as from 24e (1 g, 3.42 mmol) according to General procedure H (eluent: ethyl acetate–petroleum ether (1:2)); 80% (0.62 g);

1-Ethyl-4,5-dihydro-6*H***-pyrrolo[1,2-***a***][1,4]benzodiazepin-6-one (13g) was synthesized according to General procedure E from 1g (1g, 4.1 mmol); eluent: benzene; 70% (0.65 g); white solid; mp 181–182 °C (benzene–petroleum ether); \delta_{\rm H}(300 \text{ MHz}, \text{CDCl}_3) 1.17 (3H, t, {}^3J = 7.5 Hz, CH₂***Me***), 2.54 (1H, dq, {}^2J = 15.0 Hz, {}^3J = 7.5 Hz,** *CH***₂***Me***), 2.79 (1H, dq, {}^2J = 15.0 Hz, {}^3J = 7.5 Hz,** *CH***₂Me), 4.09 (2H, d, {}^3J = 6.0 Hz, CH₂), 6.04 (1H, d, {}^3J = 3.3 Hz, H_{Pyr}), 6.06 (1H, d, {}^3J = 3.3 Hz, H_{Pyr}), 7.27-7.31 (1H, m, H_{Ar}), 7.35-7.41 (1H, m, H_{Ar}), 7.51-7.56 (1H, m, H_{Ar}), 7.90 (1H, br t, {}^3J = 6.0 Hz, NH), 7.93-7.96 (1H, m, H_{Ar}); \delta_{\rm C}(75 \text{ MHz}, \text{CDCl}_3): 13.1, 21.1, 38.0, 104.9, 107.5, 124.9, 126.2, 129.4, 131.2, 131.4, 132.7, 135.9, 136.1, 170.7; v_{max} (KBr)/cm⁻¹ 3172, 1664, 1604, 1516, 1468, 1416, 1340, 1324, 1268, 1208, 764;** *m/z* **(EI) 226 (M⁺, 55%), 211 (35), 197 (42), 182 (33), 168 (61), 154 (25), 127 (12), 115 (15), 102 (19), 90 (17), 77 (57), 63 (42), 51 (81), 38 (100); Found: C, 74.49; H, 6.02; N, 12.33. Calc. for C₁₄H₁₄N₂O: C, 74.31; H, 6.24; N, 12.38%.**

1-*tert*-**Butyl-4,5-dihydro-6***H*-**pyrrolo**[**1,2**-*a*][**1,4**]**benzodiazepin-6-one (13h)** was synthesized according to General procedure H from (**24h**) (1 g, 3.12 mmol); product was isolated by column chromatography on silica gel (eluent: acetone–petroleum ether, 2:5); 19% (0.15 g); colorless plates, mp 218–219 °C (acetone–petroleum ether); $\delta_{\rm H}(300 \text{ MHz}, \text{CDCl}_3)$ 1.22 (9H, s, *t*-Bu), 3.96 (1H, dd, ²*J* = 15.6 Hz, ³*J* = 6.0 Hz, CH₂), 4.00 (1H, dd, ²*J* = 15.6 Hz, ³*J* = 6.3 Hz, CH₂), 6.01 (1H, d, ³*J* = 3.3 Hz, H_{Pyr}), 6.13 (1H, d, ³*J* = 3.3 Hz, H_{Pyr}), 7.03 (1H, br dd, ³*J* = 6.0 Hz, ³*J* = 6.3 Hz, CH₂), 32.2 (3C), 33.0,

38.5, 104.6, 108.6, 127.0, 127.7, 129.9, 130.1, 130.5, 134.8, 138.4, 144.8, 170.6; v_{max} (KBr)/cm⁻¹ 3180, 1664, 1604, 1476, 1404, 1368, 1340, 1277, 1252, 1220, 1188, 1152, 1064, 976, 940, 764; *m*/*z* (EI) 254 (M⁺, 50%), 239 (100), 210 (22), 196 (23), 181 (14), 77 (21), 43 (28); Found: C, 75.61; H, 7.32; N, 10.92. Calc. for C₁₆H₁₈N₂O: C, 75.56; H, 7.13; N, 11.01%.

1-Methyl-4-phenyl-4,5-dihydro-6H-pyrrolo[1,2-*a***][1,4]benzodiazepin-6-one (131) was synthesized according to General procedure H from 241 (1 g, 2.82 mmol); eluent: ethyl acetate-petroleum ether (1:2); 67% (0.55 g); colorless prisms; mp 185–186 °C (petroleum ether-acetone); product was obtained as a mixture of two conformer.**

 $\delta_{\rm H}(600 \text{ MHz}, \text{DMSO-d}_6)$ conformer A, 58%: 2.26 (3H, s, Me), 5.57 (1H, d, 3J = 7.6 Hz, CH), 6.09 (1H, d, 3J = 3.3 Hz, H_{Fur}), 6.25 (1H, d, 3J = 3.3 Hz, H_{Fur}), 6.92-6.99 (3H, m, H_{Ar}), 7.01-7.06 (2H, m, H_{Ar}), 7.08-7.12 (1H, m, H_{Ar}), 7.14-7.17 (1H, m, H_{Ar}), 7.27-7.31 (1H, m, H_{Ar}), 7.50-7.53 (1H, m, H_{Ar}), 9.23 (1H, d, 3J = 7.6 Hz, NH); conformer B, 42%: 2.29 (3H, s, Me), 5.24 (1H, d, 3J = 3.5 Hz, H_{Fur}), 5.30 (1H, d, 3J = 5.6 Hz, CH), 5.94 (1H, d, 3J = 3.5 Hz, H_{Fur}), 7.37-7.43 (3H, m, H_{Ar}), 7.47-7.50 (2H, m, H_{Ar}), 7.55-7.59 (2H, m, H_{Ar}), 7.65-7.69 (1H, m, H_{Ar}), 7.84-7.87 (1H, m, H_{Ar}), 8.74 (1H, d, 3J = 5.6 Hz, NH); $\delta_{\rm C}$ (150.9 MHz, DMSO-d₆, conformer A / conformer B) 14.3/14.2, 51.5/53.4, 107.8/105.4, 109.9/109.6, 124.9/125.6, 126.1/126.9, 126.3/128.9 (2C), 126.8/128.7, 128.1/128.8 (2C), 129.4/129.5, 130.9/131.2, 131.1/130.6, 131.4/132.0, 134.4/138.0, 135.4/135.4, 140.1/134.4, 169.0/168.6; v_{max} (KBr)/cm⁻¹ 3168, 1640, 1604, 1488, 1460, 1404, 1324, 868, 768; *m/z* (EI) 288 (M⁺, 100%), 273 (84), 230 (24), 211 (56), 184 (57), 167 (13), 101 (23), 77 (32), 59 (30), 43 (67); Found: C, 79.24; H, 5.77; N, 9.56. Calc. for C₁₉H₁₆N₂O: C, 79.14; H, 5.59; N, 9.71%.

2-Amino-5-chloro-*N***-(2,5-dioxohexyl)benzamide (14c)** was obtained according to General procedure E from **1c** (1 g, 3.77 mmol) but reaction mixture was stirred for 1 h (increase of reaction time leads to decrease of yield of **14c**); product was isolated by column chromatography on Al₂O₃ (eluent: ethyl acetate–petroleum ether, 1:2); 15% (0.16 g); white powder; mp 94–95 °C (ethyl acetate–petroleum ether); $\delta_{\rm H}(300 \text{ MHz}, \text{CDCl}_3)$ 2.17 (3H, s, Me), 2.67-2.72 (2H, m, CH₂), 2.79-2.83 (2H, m, CH₂), 4.31 (2H, d, ³*J* = 4.8 Hz, CH₂), 5.49 (2H, br s, NH₂), 6.59 (1H, d, ³*J* =

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010 8.7 Hz, H_{Ar}), 6.89 (1H, br t, ³J = 4.8 Hz, NH), 7.12 (1H, dd, ³J = 8.7 Hz, ⁴J = 2.4 Hz, H_{Ar}), 7.36 $(1H, d, {}^{4}J = 2.4 Hz, H_{Ar}); \delta_{C}(75 MHz, CDCl_{3}) 29.7, 33.5, 37.0, 49.3, 116.0, 118.5, 120.9, 127.1,$ 132.4, 147.2, 168.0, 204.4, 206.9; v_{max} (KBr)/cm⁻¹ 3457, 3344, 1719, 1632, 1538, 1407, 1366, 1258, 1165, 1092, 1004, 833; *m/z* (EI) 284/282 (M⁺, 13/40%), 266/264 (5/16), 239 (11), 184 (39), 156 (45), 154 (100), 138 (23), 128/126 (20/58), 120 (25), 99 (86), 95 (20), 89 (32), 71 (13), 45 (23), 43 (13); Found: C, 55.25; H, 5.16; N, 10.02. Calc. for C₁₃H₁₅ClN₂O₃: C, 55.23; H, 5.35; N, 9.91%.

2-Amino-3-methyl-N-(2,5-dioxohexyl)benzamide (14e) was synthesized according to General procedure E from 1e (1g, 4.09 mmol); product was isolated by column chromatography on silica gel (eluent: ethyl acetate-benzene-petroleum ether, 9:2:6); 20% (0.21 g); flakes; mp 102-103 °C (ethyl acetate-petroleum ether); $\delta_{\rm H}(300 \text{ MHz}, \text{CDCl}_3) 2.12 (3\text{H}, \text{s}, \text{Me}), 2.16 (3\text{H}, \text{s}, \text{Me}), 2.67$ -2.71 (2H, m, CH₂), 2.76-2.80 (2H, m, CH₂), 4.31 (2H, d, ${}^{3}J$ = 4.8 Hz, CH₂), 5.57 (2H, br s, NH₂), 6.54-6.59 (1H, m, H_{Ar}), 6.89 (1H, br t, ${}^{3}J$ = 4.8 Hz, NH), 7.09-7.12 (1H, m, H_{Ar}), 7.28-7.31 (1H, m, H_{Ar}); δ_C(75 MHz, CDCl₃) 17.4, 29.7, 33.4, 36.9, 49.3, 114.5, 115.9, 123.6, 125.3, 133.3, 147.1, 169.5, 204.6, 206.8; v_{max} (KBr)/cm⁻¹ 3420, 3336, 1708, 1616, 1532, 1404, 1368, 1260, 1188, 1088, 1000, 744; *m/z* (EI) 262 (M⁺, 8%), 134 (100), 106 (32), 99 (14), 77 (50), 51 (17), 43 (97); Found: C, 64.21; H, 7.01; N, 10.76. Calc. for C₁₄H₁₈N₂O₃: C, 64.11; H, 6.92; N, 10.68%.

2-Amino-3,6-dimethoxy-N-(2,5-dioxohexyl)benzamide (14f) was synthesized according to General procedure E from 1f (1g, 3.44 mmol); reaction time was 2 h; reaction mixture was poured into water (100 mL), neutralized to pH ~ 7 with NaHCO₃ and extracted with ethyl acetate (4×30 mL). The combined organic fractions were dried over Na₂SO₄. Solvent was evaporated under reduced pressure. Product 14f was isolated by column chromatography on Al₂O₃ (eluent: ethyl acetate-petroleum ether, 1:1); 32% (0.34 g); white solid; mp 104-105 °C (ethyl acetate-petroleum ether); $\delta_{\rm H}(300 \text{ MHz}, \text{CDCl}_3) 2.18 (3\text{H}, \text{s}, \text{Me}), 2.70-2.75 (2\text{H}, \text{m}, \text{CH}_2), 2.78-2.82$ $(2H, m, CH_2)$, 3.79 (3H, s, OMe), 3.87 (3H, s, OMe), 4.34 $(2H, d, {}^{3}J = 4.8 \text{ Hz}, CH_2)$, 6.08 (1H, 3H)d, ${}^{3}J = 8.7$ Hz, H_{Ar}), 6.68 (1H, d, ${}^{3}J = 8.7$ Hz, H_{Ar}), 8.74 (1H, br t, ${}^{3}J = 4.8$ Hz, NH); $\delta_{\rm C}(75$ MHz, CDCl₃) 29.7, 33.4, 36.8, 49.5, 55.9, 56.0, 96.0, 103.1, 111.3, 142.0, 142.7, 153.0, 168.3, 204.7, 206.8; v_{max} (KBr)/cm⁻¹ 3504, 3347, 3314, 1710, 1628, 1534, 1458, 1407, 1357, 1268, 1226, 1157, 1094, 966, 769; *m/z* (EI) 308 (M⁺, 17%), 181 (20), 180 (100), 165 (25), 150 (43), 122 (16), 45 (22), 43 (16); Found: C, 58.63; H, 6.43; N, 9.20. Calc. for C₁₅H₂₀N₂O₅: C, 58.43; H, 6.54; N, 9.09%.

2-Amino-*N***-(6,6-dimethyl-2,5-dioxoheptyl)benzamide (14h)** was synthesized according to General procedure E from **1h** (1g, 3.67 mmol); reaction time was 4 h. Product **14h** was isolated by column chromatography on Al₂O₃ (eluent: ethyl acetate–petroleum ether, 1:1); 57% (0.6 g); white solid; mp 128–129°C; $\delta_{\rm H}(300 \text{ MHz, CDCl}_3)$: 1.15 (9H, s, t-Bu), 2.66-2.70 (2H, m, CH₂), 2.85-2.89 (2H, m, CH₂), 4.35 (2H, d, ${}^{3}J$ = 4.5 Hz, CH₂), 5.51 (2H, br s, NH₂), 6.60-6.66 (2H, m, H_{Ar}), 6.86 (1H, br t, ${}^{3}J$ = 4.5 Hz, NH), 7.15-7.21 (1H, m, H_{Ar}), 7.38-7.41 (1H, m, H_{Ar}); $\delta_{\rm C}(75 \text{ MHz, CDCl}_3)$ 26.5 (3C), 30.8, 33.6, 43.8, 49.4, 115.1, 116.6, 117.2, 127.5, 132.5, 148.8, 169.0, 204.8 (2C); $\nu_{\rm max}$ (KBr)/cm⁻¹ 3444, 3375, 3346, 1732, 1694, 1616, 1528, 1400, 1304, 1267, 1157, 1061, 995, 759; *m*/*z* (EI) 290 (M⁺, 11%), 120 (100), 92 (18), 65 (15), 57 (14); Found: C, 66.37; H, 7.89; N, 9.57. Calc. for C₁₆H₂₂N₂O₃: C, 66.19; H, 7.64; N, 9.65%.

5-Ethyl-1-methyl-4,5-dihydro-6*H***-pyrrolo[1,2-***a***][1,4]benzodiazepin-6-one (23b) was synthesized according to General procedure F using ethyl bromide (2.05 g, 18.84 mmol); 6 h; eluent: CH₂Cl₂, 93 % (2.1 g); colorless needles; mp 156–157 °C (CH₂Cl₂–petroleum ether); \delta_{\rm H}(300 MHz, CDCl₃) 1.20 (3H, t, {}^{3}J = 7.2 Hz, CH₂***Me***), 2.31 (3H, s, Me), 3.46 (1H, dq, {}^{2}J = 14.4 Hz, {}^{3}J = 7.2 Hz,** *CH***₂Me), 3.74 (1H, dq, {}^{2}J = 14.4 Hz, {}^{3}J = 7.2 Hz,** *CH***₂Me), 4.02 (1H, d, {}^{2}J = 15.6 Hz, CH₂), 4.22 (1H, d, {}^{2}J = 15.6 Hz, CH₂), 5.99 (1H, d, {}^{3}J = 3.3 Hz, H_{Pyr}), 6.03 (1H, d, {}^{3}J = 3.3 Hz, H_{Pyr}), 7.22-7.25 (1H, m, H_{Ar}), 7.33-7.38 (1H, m, H_{Ar}), 7.47-7.53 (1H, m, H_{Ar}), 7.92-7.95 (1H, m, H_{Ar}); \delta_{\rm C}(75 MHz, CDCl₃) 13.1, 14.0, 42.3, 43.8, 104.9, 109.3, 124.3, 126.1, 129.1, 130.8, 131.0, 131.5, 131.6, 135.2, 167.3; v_{max} (KBr)/cm⁻¹ 1618, 1470, 1300, 1211, 1144, 771, 713;** *m/z* **(EI) 240 (M⁺, 100%), 225 (61), 197 (51), 184 (28), 168 (43), 154 (89), 99 (24), 84 (19), 77 (31), 63 (15), 51 (34), 42 (69); Found: C, 74.89; H, 6.71; N, 11.49. Calc. for C₁₅H₁₆N₂O: C, 74.97; H, 6.71; N, 11.66%.**

5-Benzyl-1-methyl-4,5-dihydro-*6H***-pyrrolo**[**1,2-***a***][1,4**]**benzodiazepin-6-one (23c)** was synthesized according to General procedure F using benzyl chloride (2.38 g, 18.84 mmol); 48 h; eluent: CH₂Cl₂, 85 % (2.41 g); colorless prisms; mp 132–133 °C (CH₂Cl₂–petroleum ether); $\delta_{\rm H}(300 \text{ MHz}, \text{CDCl}_3)$ 2.33 (3H, s, Me), 3.95 (1H, d, 2J = 15.6 Hz, CH₂), 4.15 (1H, d, 2J = 15.6 Hz, CH₂), 4.23 (1H, d, 2J = 15.0 Hz, CH₂), 5.28 (1H, d, 2J = 15.0 Hz, CH₂), 5.92 (1H, d, 3J = 3.3 Hz, H_{Pyr}), 6.00 (1H, d, 3J = 3.3 Hz, H_{Pyr}), 7.25-7.36 (6H, m, H_{Ar}), 7.37-7.43 (1H, m, H_{Ar}), 7.51-7.57 (1H, m, H_{Ar}), 8.02-8.05 (1H, m, H_{Ar}); $\delta_{\rm C}(75 \text{ MHz}, \text{CDCl}_3)$ 13.9, 43.2, 50.1, 105.3, 109.3, 124.4, 126.1, 127.5, 128.1(2C), 128.6(2C), 129.3, 130.7, 131.0, 131.6, 135.3, 136.6(2C), 168.0; v_{max} (KBr)/cm⁻¹ 1630, 1471, 1403, 1237, 1143, 1025, 936, 762; *m*/*z* (EI) 302 (M⁺, 22%), 197 (80), 182 (17), 168 (31), 154 (100), 91 (71), 77 (32), 65 (28), 51 (32); Found: C, 79.68; H, 5.96; N, 9.33. Calc. for C₂₀H₁₈N₂O: C, 79.44; H, 6.00; N, 9.26%.

5-(4-Chlorophenyl)-1-methyl-4,5-dihydro-6H-pyrrolo[**1**,2-*a*][**1**,4]benzodiazepin-6-one (23d) was synthesized according to General procedure H from **25d** (1 g, 2.57 mmol); eluent: benzene–petroleum ether (1:2); 77% (0.64 g); white solid; mp 129–130 °C (petroleum ether–acetone); $\delta_{\rm H}(300 \text{ MHz}, \text{CDCl}_3)$ 2.36 (3H, s, Me), 4.37 (1H, d, 2J = 15.6 Hz, CH₂), 4.67 (1H, d, 2J = 15.6 Hz, CH₂), 6.07 (2H, s, H_{Pyr}), 7.26 (2H, d, 3J = 8.7 Hz, H_{Ar}), 7.29-7.32 (1H, m, H_{Ar}), 7.36 (2H, d, 3J = 8.7 Hz, H_{Ar}), 7.39-7.44 (1H, m, H_{Ar}), 7.55-7.60 (1H, m, H_{Ar}), 7.98-8.01 (1H, m, H_{Ar}); $\delta_{\rm C}$ (75 MHz, CDCl₃) 14.0, 47.8, 105.6, 109.7, 124.5, 126.3, 127.5 (2C), 129.3 (2C), 129.6, 130.7, 130.8, 131.4, 131.8, 132.6, 135.3, 141.3, 167.6; $v_{\rm max}$ (KBr)/cm⁻¹ 1644, 1492, 1460, 1408, 1384, 1336, 1196, 1160, 1092, 1012, 816, 764, 712; *m*/*z* (EI) 324/322 (M⁺, 36/100%), 309/307 (34/98), 196 (44), 183 (65), 168 (75), 154 (85), 141 (15), 127 (16), 110 (23), 77 (22), 59 (20), 51 (33), 43 (44); Found: C, 70.93; H, 4.73; N, 8.51. Calc. for C₁₉H₁₅ClN₂O: C, 70.70; H, 4.68; N, 8.68%.

5-(Ethoxycarbonylmethyl)-1-methyl-4,5-dihydro-6*H*-pyrrolo[1,2-*a*][1,4]benzodiazepin-6-

one (23e) was synthesized according to General procedure F using ethyl iodoacetate (4.03 g, 18.84 mmol); 24 h; eluent: benzene-petroleum ether (1:2), 67 % (1.9 g); light-yellow oil; $\delta_{\rm H}(300 \text{ MHz}, \text{CDCl}_3)$ 1.26 (3H, t, 3J = 7.2 Hz, CH₂*Me*), 2.31 (3H, s, Me), 3.81 (1H, d, 2J = 17.7 Hz, CH₂), 4.01 (1H, d, 2J = 15.9 Hz, CH₂), 4.11-4.27 (2H, m, *CH*₂Me), 4.44 (1H, d, 2J = 15.9 Hz, CH₂), 4.81 (1H, d, 2J = 17.7 Hz, CH₂), 6.01 (1H, d, 3J = 3.3 Hz, H_{Pyr}), 6.04 (1H, d, 3J = 3.3 Hz, H_{Pyr}), 7.24-7.27 (1H, m, H_{Ar}), 7.35-7.40 (1H, m, H_{Ar}), 7.51-7.56 (1H, m, H_{Ar}), 7.95-7.98 (1H, m, H_{Ar}); $\delta_{\rm C}$ (75 MHz, CDCl₃) 13.9, 14.0, 45.1, 48.5, 61.3, 105.3, 109.4, 124.4, 126.1, 129.5, 129.8, 130.5, 131.3, 131.7, 135.3, 168.1, 169.0; v_{max} (KBr)/cm⁻¹ 1754, 1657, 1149, 1112, 1026, 933, 860, 770; *m*/*z* (EI) 298 (M⁺, 36%), 211 (37), 196 (13), 184 (29), 167 (24), 154 (25), 77 (15), 51 (18), 42 (100); Found: C, 68.20; H, 6.26; N, 9.12. Calc. for C₁₇H₁₈N₂O₃: C, 68.44; H, 6.08; N, 9.39%.

3-Methyl-*N***-(2,5-dioxohexyl)-2-nitrobenzamide (24e)** was synthesized according to General procedure G from **6e** (1 g, 3.64 mmol); eluent: CH₂Cl₂–petroleum ether (1:1); 79% (0.84 g); colorless plates; mp 101–102 °C (CH₂Cl₂–petroleum ether); $\delta_{\rm H}(300 \text{ MHz}, \text{CDCl}_3)$ 2.16 (3H, s, Me), 2.35 (3H, s, Me), 2.67-2.71 (2H, m, CH₂), 2.80-2.82 (2H, m, CH₂), 4.31 (2H, d, ³*J* = 4.5 Hz, CH₂), 6.89 (1H, br t, ³*J* = 4.5 Hz, NH), 7.36-7.47 (3H, m, H_{Ar}); $\delta_{\rm C}(75 \text{ MHz}, \text{CDCl}_3)$ 17.5, 29.6, 33.4, 37.0, 49.5, 125.6, 129.1, 130.4, 131.3, 133.9, 149.5, 165.0, 203.9, 206.8; $v_{\rm max}$ (KBr)/cm⁻¹ 3300, 1728, 1708, 1640, 1528, 1432, 1368, 1296, 1192, 1088, 812, 776; *m*/*z* (EI) 262 (M⁺–30, 5%), 176 (53), 164 (97), 148 (40), 134 (39), 118 (55), 106 (39), 99 (100), 89 (63), 77 (38), 71 (45), 65 (87), 59 (21), 55 (55), 51 (33), 43 (51); Found: C, 57.76; H, 5.78; N, 9.64. Calc. for C₁₄H₁₆N₂O₅: C, 57.53; H, 5.52; N, 9.58.

N-(6,6-dimethyl-2,5-dioxohexyl)-2-nitrobenzamide (24h) was synthesized according to General procedure G from 6h (1 g, 3.3 mmol); reaction time 48 h; product was extracted with ethyl acetate; eluent: benzene–petroleum ether (1:1); 43% (0.46 g); colorless prisms; mp 79–80 °C (petroleum ether–acetone); $\delta_{\rm H}(300$ MHz, CDCl₃) 1.15 (9H, s, t-Bu), 2.68-2.72 (2H, m, CH₂), 2.87-2.91 (2H, m, CH₂), 4.42 (2H, d, ${}^{3}J$ = 4.8 Hz, CH₂), 6.68 (1H, br t, ${}^{3}J$ = 4.8 Hz, NH), 7.53-7.59 (2H, m, H_{Ar}), 7.63-7.68 (1H, m, H_{Ar}), 8.01-8.05 (1H, m, H_{Ar}); $\delta_{\rm C}(75$ MHz, CDCl₃) 26.4 (3C), 30.8, 33.7, 43.8, 49.6, 124.5, 128.7, 130.6, 132.3, 133.6, 146.5, 166.2, 204.0, 214.4; ν_{max} (KBr)/cm⁻¹ 3236, 1732, 1704, 1636, 1568, 1524, 1344, 1092, 1052, 1024, 856, 796, 712; *m/z* (EI) 320 (M⁺, 2%), 263 (62), 235 (15), 162 (60), 150 (85), 141 (78), 134 (61), 120 (43), 113 (83), 104 (64), 92 (25), 76 (55), 65 (40), 55 (100), 51 (75), 43 (63); Found: C, 60.17; H, 6.43; N, 8.53. Calc. for C₁₆H₂₀N₂O₅: C, 59.99; H, 6.29; N, 8.74%.

N-(2,5-Dioxohept-6-yl)-2-nitrobenzamide (24k) was synthesized according to General procedure G from 6k (1 g, 3.64 mmol); eluent: CH₂Cl₂–petroleum ether (1:2); 42% (0.45 g); white solid; mp 90–91 °C (CH₂Cl₂–petroleum ether); $\delta_{\rm H}(300 \text{ MHz}, \text{CDCl}_3)$ 1.49 (3H, d, ${}^3J = 7.2 \text{ Hz},$ CH*Me*), 2.15 (3H, s, Me), 2.68-2.90 (4H, m, CH₂CH₂), 4.79 (1H, dq, ${}^3J = 6.9 \text{ Hz}, {}^3J = 7.2 \text{ Hz},$ CH*Me*), 6.83 (1H, br d, ${}^3J = 6.9 \text{ Hz}, \text{NH}$), 7.48-7.51 (1H, m, H_{Ar}), 7.52-7.58 (1H, m, H_{Ar}), 7.61-7.67 (1H, m, H_{Ar}), 8.00-8.03 (1H, m, H_{Ar}); $\delta_{\rm C}(75 \text{ MHz}, \text{CDCl}_3)$ 17.1, 29.7, 32.6, 36.9, 54.6, 124.5, 128.7, 130.5, 132.4, 133.7, 146.3, 165.8, 206.9, 207.4; $v_{\rm max}$ (KBr)/cm⁻¹ 3292, 1724, 1712, 1640, 1520, 1444, 1352, 1176, 856, 796, 752, 712; *m/z* (EI) 262 (M⁺–30, 4%), 193 (55), 176 (24), 150 (100), 134 (37), 120 (48), 104 (33), 99 (76), 92 (32), 76 (67), 71 (27), 59 (26), 51 (83), 43 (54); Found: C, 57.62; H, 5.63; N, 9.50. Calc. for C₁₄H₁₆N₂O₅: C, 57.53; H, 5.52; N, 9.58%.

N-(2,5-Dioxo-1-phenylhexyl)-2-nitrobenzamide (24l) was synthesized according to General procedure G from 6l (1 g, 2.97 mmol); eluent: CH₂Cl₂–petroleum ether (1:2); 40% (0.42 g); white solid; mp 94–95 °C (CH₂Cl₂–petroleum ether); $\delta_{\rm H}$ (300 MHz, CDCl₃) 2.14 (3H, s, Me), 2.57-2.85 (4H, m, CH₂CH₂), 5.79 (1H, d, ³*J* = 6.0 Hz, CH), 7.15 (1H, br d, ³*J* = 6.0 Hz, NH), 7.35-7.42 (5H, m, H_{Ar}), 7.50-7.52 (1H, m, H_{Ar}), 7.53-7.59 (1H, m, H_{Ar}), 7.62-7.67 (1H, m, H_{Ar}), 8.01-8.04 (1H, m, H_{Ar}); $\delta_{\rm C}$ (75 MHz, CDCl₃) 29.6, 33.4, 36.9, 63.4, 124.5, 128.1 (2C), 128.8 (2C), 129.2 (2C), 130.6, 132.2, 133.5, 135.7, 146.4, 165.3, 204.3, 206.3; ν_{max} (KBr)/cm⁻¹ 3336, 1712, 1640, 1540, 1456, 1348, 1168, 856, 788, 740, 704; *m*/*z* (EI) 324 (M⁺–30, 2%), 255 (85), 239 (31), 222 (19), 165 (26), 150 (100), 134 (53), 120 (62), 104 (87), 99 (86), 92 (44), 77 (43), 65 (29), 51 (48), 43 (67); Found: C, 64.73; H, 5.29; N, 7.67. Calc. for C₁₉H₁₈N₂O₅: C, 64.40; H, 5.12; N, 7.91%.

N-methyl-(*N*-(2,5-Dioxohexyl)-2-nitrobenzamide (25a) was obtained according to General procedure H from 7a (1 g, 3.64 mmol); eluent: ethyl acetate–petroleum ether (1:1). Product was isolated as light-yellow oil (0.75 g, 70%) and used for further transformations without additional purification.

N-(4-chlorophenyl)-(*N*-(2,5-Dioxohexyl)-2-nitrobenzamide (25d) was synthesized according to General procedure G from 7d (1 g, 2.7 mmol); reaction time 5 h; eluent: ethyl acetate–petroleum ether (1:2); 80% (0.84 g); white solid; mp 108–109 °C (acetone–petroleum ether); $\delta_{\rm H}(300 \text{ MHz}, \text{CDCl}_3)$ 2.19 (3H, s, Me), 2.75-2.79 (2H, m, CH₂), 2.84-2.88 (2H, m, CH₂), 4.72 (2H, s, CH₂), 7.08-7.16 (4H, m, H_{Ar}), 7.36-7.41 (2H, m, H_{Ar}), 7.45-7.50 (1H, m, H_{Ar}), 7.95-7.98 (1H, m, H_{Ar}); $\delta_{\rm C}(75 \text{ MHz}, \text{CDCl}_3)$ 29.7, 33.5, 37.1, 58.8, 124.4, 128.4 (2C), 129.5 (2C), 129.6, 129.8, 132.4, 133.5, 133.6, 140.8, 145.9, 167.1, 203.4, 206.8; $v_{\rm max}$ (KBr)/cm⁻¹ 1716, 1648, 1528,

1496, 1428, 1352, 1092, 852, 788, 768, 736; *m/z* (EI) 390/388 (M⁺, 5/16%), 289 (15), 255 (10), 150 (100), 140 (55), 134 (20), 120 (37), 110 (34), 99 (78), 92 (22), 76 (29), 59 (27), 51 (26), 43 (67); Found: C, 58.93; H, 4.55; N, 7.02. Calc. for C₁₉H₁₇ClN₂O₅: C, 58.69; H, 4.41; N, 7.20%.

3-*tert*-**Butyl-1**-methyl-*N*-**[(5**-methyl-2-furyl)methyl]-4-nitro-1*H*-pyrazole-5-carboxamide (**27b**) was synthesized according to General procedure A from **2a** (5 g, 45 mmol; solution in 50 mL of benzene) and 3-*tert*-butyl-1-methyl-4-nitro-1*H*-pyrazole-5-carbonyl chloride **26b** (12.16 g, 49.5 mmol; solution in 50 mL of benzene); 88% (12.7 g); colorless needles; mp 176–177 °C (CH₂Cl₂–petroleum ether); $\delta_{\rm H}(300 \text{ MHz}, \text{CDCl}_3)$ 1.35 (9H, s, *t*-Bu), 2.24 (3H, s, Me), 3.89 (3H, s, Me), 4.53 (2H, d, ${}^{3}J$ = 5.7 Hz, CH₂), 5.88 (1H, d, ${}^{3}J$ = 3.0 Hz, H_{Fur}), 6.16 (1H, d, ${}^{3}J$ = 3.0 Hz, H_{Fur}), 7.01 (1H, br t, ${}^{3}J$ = 5.7 Hz, NH); $\delta_{\rm C}(75 \text{ MHz}, \text{CDCl}_3)$ 13.5, 28.5 (3C), 33.8, 37.2, 39.1, 106.4, 109.0, 131.1, 136.3, 147.7, 152.4, 154.1, 158.0; $v_{\rm max}$ (KBr)/cm⁻¹ 3222, 1644, 1596, 1540, 1492, 1436, 1416, 1348, 1292, 1224, 1196, 1016, 888, 800, 776; *m/z* (EI) 302 (M⁺-18, 62%), 136 (86), 122 (13), 110 (95), 95 (100), 83 (48), 67 (64), 57 (88), 53 (44), 43 (96); Found: C, 56.39; H, 6.10; N, 17.73. Calc. for C₁₅H₂₀N₄O₄: C, 56.24; H, 6.29; N, 17.49.

4-Amino-3*-tert*-**butyl-1**-**methyl**-*N*-**[(5-methyl-2-furyl)methyl]**-1*H*-**pyrazole-5**-**carboxamide** (**28b**) was synthesized according to General procedure C from **27b** (1 g, 3.12 mmol); 87% (0.79 g); white solid; mp 81–82 °C (ethyl acetate–petroleum ether); $\delta_{\rm H}(300 \text{ MHz}, \text{CDCl}_3)$ 1.34 (9H, s, *t*-Bu), 2.24 (3H, s, Me), 2.86 (2H, br s, NH₂), 4.07 (3H, s, Me), 4.48 (2H, d, ${}^{3}J = 5.7 \text{ Hz}, \text{CH}_2$), 5.87 (1H, d, ${}^{3}J = 3.0 \text{ Hz}, \text{H}_{\rm Fur}$), 6.10 (1H, d, ${}^{3}J = 3.0 \text{ Hz}, \text{H}_{\rm Fur}$), 9.00 (1H, br t, ${}^{3}J = 5.7 \text{ Hz}, \text{NH}$); $\delta_{\rm C}(75 \text{ MHz}, \text{CDCl}_3)$ 13.6, 29.4 (3C), 32.4, 35.7, 39.9, 106.2, 108.0, 123.4, 128.7, 149.7, 151.4, 151.8, 160.4; $v_{\rm max}$ (KBr)/cm⁻¹ 3400, 3268, 3232, 1652, 1544, 1444, 1368, 1340, 1292, 1256, 1216, 1020, 796; *m/z* (EI) 290 (M⁺, 8%), 110 (33), 95 (100), 69 (14), 53 (15), 43 (28); Found: C, 61.98; H, 7.83; N, 19.43. Calc. for C₁₅H₂₂N₄O₂: C, 62.05; H, 7.64; N, 19.30%.

1-*tert*-Butyl-3,9-dimethyl-5,6-dihydropyrazolo[3,4-*f*]pyrrolo[1,2-*a*][1,4]diazepin-4(3H)-one

(29b) was synthesized according to General procedure E from 28b (1 g, 3.44 mmol); eluent: benzene; 76% (0.72 g); white solid; mp 185–186 °C (benzene–petroleum ether); $\delta_{\rm H}(300$ MHz, CDCl₃) 1.32 (9H, s, *t*-Bu), 2.27 (3H, s, Me), 4.02 (1H, dd, ${}^{2}J$ = 15.6 Hz, ${}^{3}J$ = 6.3 Hz, CH₂), 4.04 (3H, s, Me), 4.06 (1H, dd, ${}^{2}J$ = 15.6 Hz, ${}^{3}J$ = 5.1 Hz, CH₂), 5.95 (1H, d, ${}^{3}J$ = 3.3 Hz, H_{Pyr}), 6.01 (1H, d, ${}^{3}J$ = 3.3 Hz, H_{Pyr}), 7.20 (1H, br dd, ${}^{3}J$ = 5.1 Hz, ${}^{3}J$ = 5.7 Hz, NH); $\delta_{\rm C}$ (75 MHz, CDCl₃) 14.6, 30.4(3C), 33.3, 38.8, 39.0, 105.9, 108.3, 119.1, 130.4, 131.9, 132.3, 151.9, 162.9; v_{max} (KBr)/cm⁻¹ 3208, 1660, 1520, 1488, 1404, 1364, 1340, 1236, 1208, 992, 784, 744; *m/z* (EI) 272 (M⁺, 61%), 257 (33), 228 (24), 103 (10), 92 (14), 77 (36), 65 (29), 57 (14), 52 (42), 41 (100); Found: C, 66.49; H, 7.54; N, 20.70. Calc. for C₁₅H₂₀N₄O: C, 66.15; H, 7.40; N, 20.57%.

2-Amino-*N***-ethylbenzamide (1m)** was isolated when General procedure E was applied to **8b**; white solid; mp 99–100 °C (CCl₄–petroleum ether); $\delta_{\rm H}(300 \text{ MHz}, \text{CDCl}_3)$ 1.22 (3H, t, ${}^3J = 7.2$ Hz, Me), 3.44 (2H, dq, ${}^3J = 5.7$ Hz, ${}^3J = 7.2$ Hz, CH₂), 5.48 (2H, br s, NH₂), 6.02 (1H, br d, ${}^3J = 5.7$ Hz, NH), 6.60-6.68 (2H, m, H_{Ar}), 7.15-7.21 (1H, m, H_{Ar}), 7.27-7.30 (1H, m, H_{Ar}); $\delta_{\rm C}(75 \text{ MHz}, \text{CDCl}_3)$ 14.8, 34.4, 116.3, 116.5, 117.1, 127.0, 132.0, 148.5, 169.2; $\nu_{\rm max}$ (KBr)/cm⁻¹ 3422, 3308, 1620, 1588, 1537, 1308, 1261, 1153, 1033, 856, 746; *m/z* (EI) 164 (M⁺, 100%), 120 (93), 119 (52), 92 (94), 65 (52), 45 (53), 43 (29); Found: C, 65.63; H, 7.30; N, 16.91. Calc. for C₉H₁₂N₂O: C, 65.83; H, 7.37; N, 17.06%.

2-Nitrobenzamide was isolated as by-product in transformation of **6a** into **24a**; white solid; mp 176–177 °C (acetone–petroleum ether); $\delta_{\rm H}(300 \text{ MHz}, \text{CDCl}_3)$ 7.62-7.70 (3H, m, H_{Ar}+NH), 7.74-7.79 (1H, m, H_{Ar}), 7.97-8.00 (1H, m, H_{Ar}), 8.12 (1H, br s, NH); $\delta_{\rm C}(75 \text{ MHz}, \text{CDCl}_3)$ 123.9, 128.8, 130.5, 132.6, 133.3, 147.2, 167.1; $v_{\rm max}$ (KBr)/cm⁻¹ 3364, 3176, 1656, 1576, 1528, 1488, 1444, 1408, 1360, 1120, 860, 788, 696; *m/z* (EI) 166 (M⁺, 80%), 150 (100), 118 (24), 104 (15),

92 (41), 76 (72), 65 (49), 51 (94), 43 (23); Found: C, 50.38; H, 3.69; N, 16.73. Calc. for $C_7H_6N_2O_3$: C, 50.61; H, 3.64; N, 16.86%.

1. 1. T. A. Stroganova, A. V. Butin, V. K. Vasilin, T. A. Nevolina and G. D. Krapivin, *Synlett*, 2007, 1106-1108.

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010 NO₂ ۴° н'n Ĭ 0 ppm 0.951 IJĮ 1.697 3.002 1.000 4.110 -146.434 -135.653 -133.538 -132.150 -130.587 -129.212 -128.793 -128.090 -124.450 ~77.424 -77.000 ~76.576 ---63.417 П ppm

1-Methyl-4,5-dihydro-6*H*-pyrrolo[1,2-*a*][1,4]benzodiazepin-6-one (13a)

HF=-683.1872066 | MP2=-685.5318556 | RMSD=7.712e-009 | RMSF=3.327e-00

Center	Atomic	Atomic	Coord	dinates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	0.452805	-0.524003	0.285716
2	6	0	1.285311	0.560251	-0.063583
3	6	0	2.673228	0.423403	0.100401
4	б	0	3.226953	-0.738150	0.637943
5	б	0	2.391059	-1.796737	1.012436
б	б	0	1.010913	-1.684644	0.844087
7	7	0	-0.949659	-0.466711	0.089599
8	б	0	-1.726645	0.611361	0.479156
9	б	0	-1.756339	-1.455758	-0.456982
10	б	0	-3.062837	-0.986831	-0.394129
11	б	0	-3.047058	0.308180	0.187858
12	б	0	-1.043260	1.834550	0.977500
13	6	0	-1.223073	-2.714565	-1.065815
14	7	0	-0.243882	2.458400	-0.075183
15	6	0	0.823564	1.859005	-0.679118
16	8	0	1.430855	2.360931	-1.615780
17	1	0	3.304100	1.250276	-0.211082
18	1	0	4.302772	-0.819620	0.761655
19	1	0	2.808012	-2.699924	1.448631
20	1	0	0.349151	-2.486323	1.153805
21	1	0	-3.926814	-1.524046	-0.762706
22	1	0	-3.893602	0.956583	0.371243
23	1	0	-0.390670	1.612379	1.831037
24	1	0	-1.787794	2.561680	1.309483
25	1	0	-1.966043	-3.104383	-1.766583
26	1	0	-0.297492	-2.528099	-1.619734
27	1	0	-1.019984	-3.497575	-0.327518
28	1	0	-0.601426	3.273412	-0.555724

1,10-Dimethyl-4,5-dihydro-6*H*-pyrrolo[1,2-*a*][1,4]benzodiazepin-6-one (13e)

HF=-722.2258602 | MP2=-724.7304019 | RMSD=8.136e-009 | RMSF=1.055e-006

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	-0.444379	-0.430233	-0.097217
2	6	0	-1.303519	0.648056	0.205517
3	6	0	-2.684696	0.426462	0.273877
4	6	0	-3.210629	-0.832470	-0.019401
5	6	0	-2.355629	-1.870393	-0.397324
б	б	0	-0.965551	-1.689502	-0.460255
7	7	0	0.960220	-0.223685	-0.065896
8	6	0	1.587658	0.768781	-0.798642
9	б	0	1.895169	-0.928891	0.677049
10	6	0	3.138838	-0.383525	0.374546
11	б	0	2.948743	0.685698	-0.538967
12	б	0	0.725198	1.801272	-1.435059
13	б	0	1.520856	-1.989234	1.663233
14	7	0	0.026360	2.590843	-0.417245
15	6	0	-0.835292	2.050671	0.501327
16	8	0	-1.280419	2.682858	1.449616
17	6	0	-0.093742	-2.808031	-0.976135
18	1	0	0.431249	3.473346	-0.130705
19	1	0	-3.326895	1.256411	0.552277
20	1	0	-4.282646	-1.000929	0.029767
21	1	0	-2.767671	-2.838692	-0.673524
22	1	0	4.075836	-0.712353	0.804712
23	1	0	3.706652	1.337377	-0.953601
24	1	0	1.333813	2.485282	-2.030828
25	1	0	-0.021388	1.351796	-2.100384
26	1	0	2.238465	-1.976520	2.488089
27	1	0	1.528575	-2.994530	1.230928
28	1	0	0.524858	-1.805086	2.078652
29	1	0	-0.557229	-3.241958	-1.867398
30	1	0	0.011506	-3.607380	-0.236263
31	1	0	0.904020	-2.451695	-1.241973

1-tert-Butyl-4,5-dihydro-6H-pyrrolo[1,2-a][1,4]benzodiazepin-6-one (13h)

HF=-800.3011282 | MP2=-803.1199492 | RMSD=9.022e-009 | RMSF=2.740e-006

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	0.611860	0.484938	-0.488974
2	6	0	1.807947	0.339220	0.238706
3	6	0	2.700804	1.419360	0.298840
4	6	0	2.451168	2.593447	-0.414017
5	6	0	1.302073	2.695062	-1.208773
6	6	0	0.394293	1.635431	-1.258485
7	7	0	-0.351111	-0.559456	-0.489899
8	6	0	-0.006502	-1.828098	-0.926857
9	6	0	-1.718975	-0.496285	-0.221374
10	б	0	-2.226153	-1.759107	-0.540384
11	6	0	-1.162083	-2.590452	-0.970132
12	6	0	1.442213	-2.154148	-1.041769
13	б	0	-2.426626	0.635657	0.501107
14	7	0	2.101672	-2.065145	0.264290
15	6	0	2.180150	-0.909060	0.994201
16	8	0	2.597684	-0.864603	2.143224
17	6	0	-3.702742	0.054945	1.136094
18	6	0	-1.551963	1.191446	1.638517
19	6	0	-2.867978	1.783380	-0.426109
20	1	0	2.222367	-2.911221	0.806700
21	1	0	3.595550	1.311193	0.904983
22	1	0	3.154028	3.419756	-0.361634
23	1	0	1.123307	3.585894	-1.804322
24	1	0	-0.483050	1.677071	-1.893963
25	1	0	-3.254423	-2.064319	-0.411608
26	1	0	-1.218346	-3.632659	-1.256010
27	1	0	1.959356	-1.484810	-1.739430
28	1	0	1.563181	-3.175426	-1.410220
29	1	0	-3.464661	-0.777242	1.805043
30	1	0	-4.204480	0.837964	1.714753
31	1	0	-4.401832	-0.297957	0.371314
32	1	0	-1.224893	0.384700	2.303503
33	1	0	-0.664562	1.707156	1.263221
34	1	0	-2.135184	1.910333	2.226163
35	1	0	-3.399097	1.389689	-1.299293
36	1	0	-3.545987	2.452511	0.117359
37	1	0	-2.021585	2.381973	-0.766636

2-(3-Oxobutyl)-3,4-dihydro-5H-1,4-benzodiazepin-5-one (15a)

HF=-759.245452 | MP2=-761.7880905 | RMSD= 5.687e-009 | RMSF=6.396e-006

Center	Atomic	Atomic Type	Coordinates (Angstroms)		
Number	Number		Х	Y	Z
1	6	0	-0.892732	-1.669812	0.078787
2	6	0	-1.979561	-2.562854	0.149772
3	б	0	-1.784562	-3.939956	0.194201
4	6	0	-0.480775	-4.453393	0.243128
5	6	0	0.605741	-3.583080	0.223889
6	6	0	0.423890	-2.191719	0.116168
7	7	0	-1.247294	-0.301984	0.103075
8	6	0	-0.603800	0.543881	-0.625139
9	б	0	0.559756	0.125296	-1.499429
10	7	0	1.672783	-0.246815	-0.643975
11	6	0	1.691608	-1.383875	0.120897
12	8	0	2.691286	-1.741812	0.729179
13	б	0	-0.957166	1.998729	-0.538809
14	б	0	0.120281	2.772754	0.226242
15	6	0	-0.162713	4.269090	0.277183
16	8	0	-1.005547	4.784040	-0.433801
17	б	0	0.663575	5.065155	1.266565
18	1	0	2.553487	0.245575	-0.706046
19	1	0	-2.976479	-2.131798	0.165936
20	1	0	-2.640780	-4.607736	0.226587
21	1	0	-0.315882	-5.524995	0.307380
22	1	0	1.622543	-3.955789	0.297560
23	1	0	0.261229	-0.718679	-2.136060
24	1	0	0.882079	0.946908	-2.143486
25	1	0	-1.062247	2.431484	-1.540434
26	1	0	-1.915832	2.094925	-0.023306
27	1	0	1.108886	2.647599	-0.238313
28	1	0	0.217578	2.383645	1.247478
29	1	0	0.550054	6.131896	1.070812
30	1	0	1.717494	4.776430	1.214341
31	1	0	0.312295	4.843004	2.280099

9-Methyl-2-(3-oxobutyl)-3,4-dihydro-5H-1,4-benzodiazepin-5-one (15e)

HF=-798.2900149 | MP2=-800.9897074 | RMSD=5.540e-009 | RMSF=4.064e-006

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	б	0	-1.611357	-0.540491	-0.100910
2	6	0	-2.602862	-1.546656	-0.219807
3	6	0	-3.947783	-1.176431	-0.287165
4	6	0	-4.324745	0.172341	-0.303575
5	6	0	-3.351388	1.163373	-0.224445
6	6	0	-1.992617	0.824306	-0.096323
7	7	0	-0.279786	-1.007646	-0.145035
8	6	0	0.614257	-0.494478	0.628550
9	6	0	0.285066	0.638996	1.576912
10	7	0	0.038535	1.832820	0.788173
11	6	0	-1.054089	1.995825	-0.024166
12	8	0	-1.277849	3.050301	-0.604073
13	6	0	2.036766	-0.954548	0.510622
14	6	0	2.897380	0.110335	-0.175647
15	6	0	4.363443	-0.295144	-0.264601
16	8	0	4.804670	-1.236943	0.367417
17	6	0	5.226043	0.540837	-1.187809
18	1	0	0.624177	2.649839	0.894640
19	6	0	-2.190444	-2.994888	-0.247881
20	1	0	-4.705021	-1.953678	-0.360519
21	1	0	-5.373438	0.444314	-0.384075
22	1	0	-3.612589	2.216000	-0.264085
23	1	0	1.116735	0.841199	2.256170
24	1	0	-0.599749	0.380858	2.174181
25	1	0	2.058061	-1.877330	-0.074485
26	1	0	2.456953	-1.167807	1.500374
27	1	0	2.514099	0.321222	-1.181861
28	1	0	2.859468	1.065840	0.366659
29	1	0	6.279140	0.316341	-1.015424
30	1	0	4.969047	0.301595	-2.225441
31	1	0	5.033055	1.607515	-1.040101
32	1	0	-3.051550	-3.634569	-0.458775
33	1	0	-1.758120	-3.300019	0.710722
34	1	0	-1.422104	-3.154655	-1.009215

2-(4,4-Dimethyl-3-oxopentyl)-3,4-dihydro-5*H*-1,4-benzodiazepin-5-one (15h)

HF=-876.3734914 | MP2=-879.3810528 | RMSD=4.874e-009 | RMSF=8.162e-006

Center	Atomic	Atomic	Coord	inates (Angst	troms)
Number	Number	Туре	Х	Y	Z
1	6	0	2.622891	-0.849894	0.186859
2	б	0	3.570104	-1.851615	0.474935
3	б	0	4.916218	-1.546752	0.652566
4	б	0	5.333682	-0.208695	0.617470
5	б	0	4.402736	0.799662	0.383048
6	б	0	3.049356	0.500341	0.139683
7	7	0	1.287587	-1.303738	0.096284
8	б	0	0.496223	-0.804245	-0.789424
9	б	0	0.941878	0.292754	-1.733745
10	7	0	1.135187	1.512445	-0.969332
11	б	0	2.164868	1.695198	-0.083757
12	8	0	2.378110	2.774433	0.452367
13	б	0	-0.934910	-1.249371	-0.825035
14	б	0	-1.847734	-0.150157	-0.270123
15	б	0	-3.322391	-0.535878	-0.354994
16	8	0	-3.683957	-1.435670	-1.094349
17	б	0	-4.312830	0.229979	0.526055
18	1	0	0.593542	2.339943	-1.178845
19	б	0	-5.737680	-0.034064	0.037828
20	б	0	-4.017059	1.735681	0.496858
21	б	0	-4.154696	-0.301730	1.962104
22	1	0	3.206422	-2.872381	0.550484
23	1	0	5.629944	-2.340995	0.852248
24	1	0	6.376756	0.044414	0.783564
25	1	0	4.696579	1.844598	0.387625
26	1	0	1.874274	-0.002632	-2.233751
27	1	0	0.184901	0.483597	-2.498166
28	1	0	-1.244154	-1.485767	-1.849456
29	1	0	-1.035563	-2.153682	-0.219328
30	1	0	-1.727054	0.783446	-0.837150
31	1	0	-1.567961	0.084753	0.762576
32	1	0	-5.868750	0.320395	-0.989234
33	1	0	-5.961922	-1.102903	0.052933
34	1	0	-6.451902	0.489296	0.682327
35	1	0	-4.081172	2.130905	-0.523334
36	1	0	-4.757087	2.263240	1.108290
37	1	0	-3.026460	1.968178	0.898975
38	1	0	-4.353047	-1.377976	2.000143
39	1	0	-3.150900	-0.117825	2.357921
40	1	0	-4.873028	0.203054	2.617406

1-Hydroxy-1-methyl-1,2,4,5-tetrahydro-6*H*-pyrrolo[1,2-*a*][1,4]benzodiazepin-6-one (16a)

Isomer 1

HF=-759.2281885 | MP2=-761.7891554 | RMSD=5.500e-009 | RMSF=1.060e-005

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	б	0	-0.553172	-0.573986	-0.386599
2	б	0	-1.473078	0.412174	0.045511
3	6	0	-2.828299	0.068247	0.193340
4	6	0	-3.285571	-1.218973	-0.081025
5	6	0	-2.375276	-2.196073	-0.499799
б	6	0	-1.029209	-1.871257	-0.658700
7	7	0	0.842310	-0.360529	-0.526360
8	б	0	1.374712	0.903562	-0.817630
9	6	0	1.781943	-1.034999	0.421392
10	6	0	3.110206	-0.282898	0.156428
11	б	0	2.667278	1.021687	-0.444348
12	б	0	0.469307	1.918613	-1.432742
13	б	0	1.300591	-0.869642	1.852420
14	7	0	-0.358251	2.546785	-0.408140
15	6	0	-1.138169	1.821719	0.457735
16	8	0	-1.617413	2.312769	1.470747
17	1	0	-0.024403	3.415451	-0.009123
18	8	0	1.872114	-2.417582	0.179137
19	1	0	2.196940	-2.505881	-0.723857
20	1	0	-3.508671	0.834786	0.551832
21	1	0	-4.337924	-1.459583	0.037591
22	1	0	-2.712207	-3.205675	-0.717918
23	1	0	-0.316461	-2.619347	-0.983781
24	1	0	3.715890	-0.863954	-0.556729
25	1	0	3.690454	-0.189569	1.079896
26	1	0	3.303063	1.869202	-0.666993
27	1	0	-0.173917	1.454637	-2.188358
28	1	0	1.054963	2.702780	-1.917779
29	1	0	1.220525	0.195454	2.091464
30	1	0	2.015499	-1.342150	2.531639
31	1	0	0.322656	-1.340485	1.978640

1-Hydroxy-1-methyl-1,2,4,5-tetrahydro-6*H*-pyrrolo[1,2-*a*][1,4]benzodiazepin-6-one (16a)

Isomer 2

HF=-759.2260966 | MP2=-761.7883427 | RMSD=5.817e-009 | RMSF=2.657e-005

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	б	0	-0.577826	-0.588065	-0.416712
2	б	0	-1.445747	0.399243	0.101330
3	б	0	-2.806701	0.097984	0.274852
4	б	0	-3.321854	-1.146150	-0.086724
5	б	0	-2.469365	-2.116247	-0.626703
6	б	0	-1.115608	-1.828973	-0.801503
7	7	0	0.824338	-0.415437	-0.568677
8	б	0	1.371572	0.833932	-0.915614
9	6	0	1.735407	-0.987323	0.465378
10	б	0	3.090242	-0.391548	0.028943
11	б	0	2.681414	0.920828	-0.590402
12	б	0	0.450713	1.876198	-1.458353
13	б	0	1.708401	-2.498182	0.542464
14	7	0	-0.284880	2.497130	-0.358591
15	б	0	-1.027998	1.774424	0.544396
16	8	0	-1.411011	2.250918	1.603867
17	1	0	0.097420	3.349755	0.031955
18	8	0	1.365218	-0.525283	1.750497
19	1	0	1.456142	0.435704	1.731601
20	1	0	-3.446613	0.861087	0.707845
21	1	0	-4.377823	-1.358261	0.052504
22	1	0	-2.859064	-3.083700	-0.930699
23	1	0	-0.446727	-2.560180	-1.243929
24	1	0	3.569740	-1.048075	-0.710364
25	1	0	3.748096	-0.305609	0.899068
26	1	0	3.331835	1.752519	-0.828200
27	1	0	-0.256390	1.441127	-2.172479
28	1	0	1.015905	2.659008	-1.968915
29	1	0	1.908249	-2.934142	-0.438456
30	1	0	0.737022	-2.837847	0.909123
31	1	0	2.476443	-2.825050	1.248795

1-Hydroxy-1,10-dimethyl-1,2,4,5-tetrahydro-6*H*-pyrrolo[1,2-*a*][1,4]benzodiazepin-6-one

(16e) Isomer 1

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	б	0	-0.577849	-0.046926	0.539435
2	б	0	-1.399506	-0.070645	-0.614437
3	б	0	-2.752013	0.287259	-0.522929
4	б	0	-3.310642	0.626157	0.708340
5	б	0	-2.515548	0.588945	1.855166
6	б	0	-1.155415	0.251998	1.796375
7	7	0	0.823928	-0.297417	0.485306
8	б	0	1.347191	-1.272524	-0.384369
9	б	0	1.768943	0.869197	0.410147
10	б	0	3.102431	0.158349	0.084690
11	б	0	2.655329	-1.071258	-0.656516
12	б	0	0.401035	-2.264034	-0.975938
13	б	0	1.344591	1.832884	-0.685558
14	7	0	-0.290866	-1.651106	-2.110746
15	б	0	-0.938726	-0.441616	-1.998386
16	8	0	-1.225192	0.239808	-2.973042
17	б	0	-0.370827	0.171215	3.081705
18	1	0	0.139781	-1.774339	-3.019863
19	8	0	1.801967	1.608826	1.599574
20	1	0	-3.344937	0.296179	-1.432518
21	1	0	-4.360210	0.897614	0.777599
22	1	0	-2.953870	0.815551	2.824717
23	1	0	3.766297	0.820193	-0.479871
24	1	0	3.609218	-0.103971	1.027965
25	1	0	3.283356	-1.738940	-1.232334
26	1	0	0.941451	-3.138805	-1.344674
27	1	0	-0.334708	-2.599097	-0.237499
28	1	0	1.315343	1.319397	-1.650395
29	1	0	0.354447	2.239711	-0.465972
30	1	0	2.064462	2.654680	-0.734721
31	1	0	-1.022569	-0.177952	3.888141
32	1	0	0.462564	-0.527373	2.974322
33	1	0	0.028756	1.149086	3.361662
34	1	0	2.111038	1.004649	2.282899

1-Hydroxy-1,10-dimethyl-1,2,4,5-tetrahydro-6*H*-pyrrolo[1,2-*a*][1,4]benzodiazepin-6-one

(16e) Isomer 2

HF=-798.2644693 | MP2=-800.9869335 | RMSD=4.512e-009 | RMSF=1.921e-005

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	-0.581767	-0.553400	0.022077
2	6	0	-1.355784	0.571356	-0.347676
3	6	0	-2.741822	0.569433	-0.142156
4	б	0	-3.374364	-0.560790	0.375374
5	6	0	-2.619733	-1.698813	0.667059
6	б	0	-1.228338	-1.721356	0.488122
7	7	0	0.841813	-0.553990	-0.051398
8	б	0	1.501047	0.020739	-1.158012
9	б	0	1.616388	-0.096484	1.143654
10	б	0	3.044385	-0.055182	0.562134
11	б	0	2.786218	0.332362	-0.872913
12	б	0	0.679633	0.364133	-2.356668
13	б	0	1.442648	-0.976451	2.359859
14	7	0	-0.022326	1.623033	-2.096741
15	б	0	-0.797566	1.818695	-0.972949
16	8	0	-1.105097	2.936361	-0.583053
17	б	0	-0.476171	-3.005352	0.738947
18	1	0	0.446868	2.470219	-2.395605
19	8	0	1.189196	1.192207	1.540558
20	1	0	-3.303572	1.463093	-0.397066
21	1	0	-4.449525	-0.562666	0.530886
22	1	0	-3.114021	-2.598914	1.026811
23	1	0	3.651658	0.659634	1.125637
24	1	0	3.509560	-1.048279	0.634507
25	1	0	3.508707	0.725176	-1.576524
26	1	0	1.312595	0.506884	-3.235294
27	1	0	-0.048869	-0.422303	-2.578714
28	1	0	1.756311	-1.998586	2.145909
29	1	0	2.053532	-0.570340	3.170467
30	1	0	0.397079	-0.966778	2.679440
31	1	0	-1.049181	-3.847164	0.337818
32	1	0	0.502392	-2.977799	0.255994
33	1	0	-0.326956	-3.184729	1.808107
34	1	0	1.375569	1.787353	0.803451

1-tert-Butyl-1-hydroxy-1,2,4,5-tetrahydro-6H-pyrrolo[1,2-a][1,4]benzodiazepin-6-one (16h)

HF=-876.3467025 | MP2=-879.3809113 | RMSD=9.389e-009 | RMSF=6.744e-00

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	б	0	-0.867827	0.559461	-0.221126
2	6	0	-1.683802	0.571869	0.933680
3	6	0	-3.077129	0.656214	0.810257
4	6	0	-3.675186	0.770812	-0.445373
5	6	0	-2.868989	0.786325	-1.589287
6	6	0	-1.479114	0.699908	-1.481985
7	7	0	0.530164	0.402013	-0.062538
8	6	0	1.268680	1.322226	0.697922
9	6	0	1.437071	-0.315079	-0.981247
10	6	0	2.838338	0.008572	-0.379496
11	6	0	2.599011	1.192730	0.515571
12	б	0	0.507809	2.180533	1.655659
13	6	0	1.146159	-1.833464	-1.072155
14	7	0	-0.160210	1.348523	2.651382
15	6	0	-1.125472	0.429731	2.321109
16	8	0	-1.551696	-0.399198	3.112899
17	1	0	0.330220	1.147536	3.513851
18	8	0	1.363394	0.208148	-2.306756
19	6	0	1.018249	-2.423238	0.337096
20	6	0	-0.149437	-2.140359	-1.839627
21	6	0	2.304528	-2.507423	-1.824955
22	1	0	1.666537	1.121861	-2.242209
23	1	0	-3.676211	0.624923	1.716006
24	1	0	-4.755814	0.835321	-0.532134
25	1	0	-3.318923	0.884431	-2.573666
26	1	0	-0.856574	0.698288	-2.367478
27	1	0	3.542747	0.177455	-1.201024
28	1	0	3.217762	-0.833493	0.208852
29	1	0	3.358739	1.749541	1.048474
30	1	0	-0.243268	2.785546	1.136091
31	1	0	1.191494	2.857711	2.172523
32	1	0	0.165880	-1.991081	0.870373
33	1	0	1.916542	-2.258120	0.940764
34	1	0	0.862728	-3.505226	0.260257
35	1	0	-1.035961	-1.813577	-1.292816
36	1	0	-0.222189	-3.225899	-1.973490
37	1	0	-0.146866	-1.671379	-2.826674
38	1	0	3.253563	-2.415712	-1.288065
39	1	0	2.420194	-2.070913	-2.820839
40	1	0	2.088805	-3.575466	-1.936104

1-tert-Butyl-1-hydroxy-1,2,4,5-tetrahydro-6H-pyrrolo[1,2-a][1,4]benzodiazepin-6-one (16h)

Isomer 2

HF=-876.3351363 | MP2=-879.3738153 | RMSD=4.837e-009 | RMSF=1.530e-006

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			Х	Y	Z
1	6	0	0.745472	0.605523	-0.538408
2	б	0	1.879534	0.304963	0.247088
3	б	0	2.830483	1.303406	0.510699
4	б	0	2.713217	2.571255	-0.058948
5	б	0	1.637092	2.846730	-0.910606
6	б	0	0.674200	1.865978	-1.154033
7	7	0	-0.315723	-0.326513	-0.772000
8	б	0	0.040839	-1.661877	-1.072461
9	б	0	-1.460123	-0.440717	0.202957
10	б	0	-2.128572	-1.750852	-0.288144
11	6	0	-0.962444	-2.531221	-0.825625
12	б	0	1.468340	-1.965180	-1.395169
13	6	0	-2.430952	0.759606	0.282998
14	7	0	2.218699	-2.060978	-0.138608
15	б	0	2.186493	-1.055262	0.804396
16	8	0	2.502224	-1.236151	1.971374
17	1	0	2.281635	-2.983445	0.276979
18	8	0	-0.948666	-0.619122	1.511737
19	б	0	-2.893462	1.204187	-1.107757
20	б	0	-3.668154	0.310998	1.083007
21	6	0	-1.811427	1.944156	1.042631
22	1	0	-0.473614	-1.460207	1.510417
23	1	0	3.669586	1.055192	1.154412
24	1	0	3.459934	3.332358	0.148053
25	1	0	1.552745	3.815968	-1.394297
26	1	0	-0.157536	2.070188	-1.818623
27	1	0	-2.869220	-1.543834	-1.070054
28	1	0	-2.637823	-2.232863	0.551344
29	1	0	-0.938452	-3.593410	-1.033205
30	1	0	1.915228	-1.195813	-2.031947
31	1	0	1.549308	-2.926647	-1.907203
32	1	0	-3.411538	0.400253	-1.639721
33	1	0	-2.061666	1.532746	-1.731713
34	1	0	-3.596222	2.038300	-1.000339
35	1	0	-4.249325	-0.444783	0.545478
36	1	0	-4.319567	1.176266	1.247491
37	1	0	-3.373021	-0.090885	2.055805
38	1	0	-0.925104	2.343072	0.549115
39	1	0	-1.532695	1.645049	2.055331
40	1	0	-2.555167	2.746967	1.106295