Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

SUPPORTING INFORMATION

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

Paul W. Davies* and Christelle Detty-Mambo

School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.

E-mail: p.w.davies@bham.ac.uk

GENERAL EXPERIMENTAL
PREPARATION OF ALKYNYL KETONE CYCLISATION PRECURSORS
GOLD-CATALYSED CYCLISATION REACTIONS9
¹ H AND ¹³ C NMR SPECTRA OF CYCLISATION PRECURSORS
¹ H AND ¹³ C NMR SPECTRA OF CYCLISATION PRODUCTS
ALDOL DEHYDRATION OF DIKETONE 10 46
CATALYSIS REACTION OF 1A MONITORED BY ¹ H NMR

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

General Experimental

Flash chromatography: Fluorochem silica gel 60 (0.043-0.063 mm). Thin layer chromatography (TLC): Macherey Nagel silica gel 60F₂₅₄ analytical plates (plastic support) which were developed using standard visualising agents: UV fluorescence (254 and 366 nm), phosphomolybdic acid $/\Delta$, and potassium permanganate $/\Delta$. IR: Perkin–Elmer Spectrum 100 FTIR spectrometer or a Paragon 1600, only selected absorbencies (v_{max}) are reported in cm⁻¹. MS and HRMS (EI): VG ProSpec or VG-ZabSpec at 70 eV. High resolution EI spectra were measured using perfluorokerosene (PFK) as an internal calibrant. MS and HRMS (ES): Micromass LCT using a methanol mobile phase. HRMS was obtained using a lock-mass to adjust the calibrated mass scale. MS data are reported as m/z (relative intensity). GC-MS were performed using a HP 5890 Series II apparatus. Melting points: Kofler hot stage. Elemental analyses: Carlo Erba EA1110 simultaneous CHNS analyser based on a dynamic flash combustion and GC separation system. Commercially available compounds were purchased from Aldrich, Fluka, Acros, Strem, Alfa Aesar and used without further purification; except for 2-cyclohexen-1-one which was purified by Kugelrohr distillation (oven temperature 90 °C, pressure 50 mBar). All reactions were carried out under Ar in flame-dried glassware. The solvents used were purified by distillation over the drying agents indicated and were transferred under Ar: THF (Na benzophenone ketyl), CH₂Cl₂ (CaH₂), toluene (Na), EtOH (Mg turnings). Anhydrous DMF and ClCH₂CH₂Cl were purchased from Aldrich. Asynt DrySin heating blocks on stirrer hotplates were employed for reactions with temperature controlled via external probe. NMR: Spectra were recorded on Bruker AC300 ($^{1}H = 300$ MHz, $^{13}C = 75.5$ MHz), Bruker AV300 (${}^{1}\text{H} = 300 \text{ MHz}$, ${}^{13}\text{C} = 75.5 \text{ MHz}$), and Bruker AV400 (${}^{1}\text{H} = 400 \text{ MHz}$, ${}^{13}\text{C} = 101$ MHz) in the solvents indicated; Chemical shifts (δ) are given in ppm relative to TMS. The solvent signals were used as references and the chemical shifts converted to the TMS scale (CDCl₃: $\delta_C \equiv 77.0$ ppm; residual CHCl₃ in CDCl₃: $\delta_H \equiv 7.26$ ppm; CD₂Cl₂: $\delta_C \equiv 53.8$ ppm; residual CH₂Cl₂ in CD₂Cl₂: $\delta_{\rm H} = 5.32$ ppm). Coupling constants (J) are reported in Hz. Multiplicity is denoted in ¹H NMR by: s (singlet), br s (broad singlet), d (doublet), t (triplet), q (quadruplet), m (multiplet). Multiplicity is denoted in ¹³C NMR as s, d, t, q for C, CH, CH₂, CH₃ based on PENDANT pulse programme. 1D and 2D spectra were recorded using the following pulse sequences from the Bruker standard pulse program library: JMOD, PENDANT, DEPT 45, DEPT 135; Gradient COSY 90; Gradient HSQC for ${}^{1}J(C,H) = 145$ Hz; Gradient HMBC for correlations via ${}^{n}J(C,H)$. HPLC was performed on a Dionex Summit instrument. When given, NMR signal assignments are based on COSY and HSQC and/or HMBC. The numbering schemes are arbitrary and are shown in the inserts.

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

Preparation of Alkynyl Ketone Cyclisation Precursors

General Notes

Diethyl propargyl malonate,¹ propargyl malononitrile,² and ethyl propargyl acetoacetate³ were prepared according to literature methods. Diethyl homopropargyl malonate was prepared by a modification of literature method⁴ using NaH in place of NaOEt. The alkynyl ketones **1a**, **1d-1h** were prepared by nucleophilic attack of the required nucleophiles onto cyclic enones following the method described by Renaud.⁵ The procedure was varied by using a slight excess on enone in some cases as described below for alkynyl ketone **1a**. Methyl 2-oxocyclooctanecarboxylate was prepared using the method of Holmes.⁶

2-(3-Oxocyclohexyl)-2-prop-2-ynylmalonic acid diethyl ester (1a)

2-Cyclohexen-1-one (1.37 mL, 14.14 mmol) and DBU (2.11 mL, 14.14 mmol) were added to a solution of diethyl propargylmalonate (2.15 g, 10.87 mmol) in THF (32 mL). The mixture was heated to 40 °C and stirred for 48 h before saturated NH_4Cl (80 mL) was added, followed by ethyl acetate (80 mL). The two

layers were separated. The organic layer was washed with saturated aqueous NaCl (80 mL), dried over Na₂SO₄, filtered, and the solvent removed under reduced pressure. The residue was purified by flash chromatography (hexane/ethyl acetate: 8/2) to afford **1a** as a light yellow oil (2.05 g, 64%); EA (Found: C, 65.43; H, 7.81. Calc. for C₁₆H₂₂O₅: C, 65.29; H, 7.53%); v_{max} /cm⁻¹ (neat) 3278, 2981, 2940, 2870, 1727; δ_{H} (300 MHz; CDCl₃) 1.27 (6 H, t, *J* 7.1), 1.36-1.52 (1 H, m), 1.59-1.76 (1 H, m), 2.03 (1 H, t, *J* 2.6), 2.05-2.34 (4 H, m), 2.37-2.48 (1 H, m), 2.53-2.74 (2 H, m), 2.86 (2 H, d, *J* 2.6), 4.23 (4 H, q, *J* 7.1); δ_{C} (75.5 MHz; CDCl₃) 13.9 (2q), 22.6 (t), 24.5 (t), 26.9 (t), 40.6 (d), 40.9 (t), 43.4 (t), 59.5 (s), 61.5 (2t), 71.7 (d), 78.6 (s), 168.9 (2s), 209.8 (s); *m/z* (ES) 317.1369 (calc. for [M⁺ + Na] C₁₆H₂₂O₅Na: 317.1365).

¹ Padgett, H.; Csendes, I. G.; Rapoport, H. J. Org. Chem. 1979, 44, 3492.

² Diez-Barra, E.; De la Hoz, A.; Moreno, A.; Sánchez-Verdú, P. J. Chem. Soc. Perkin Trans. 1, 1991, 2589.

³ Reynolds, R. C.; Trask, T. W.; Sedwick, W. D. J. Org. Chem. **1991**, 56, 2391.

⁴ Eglinton, G.; Whiting, M. C. J. Chem. Soc. 1953, 3052.

⁵ Beaufils, F.; Dénès, F.; Becattini, B.; Renaud, P. Adv. Synth. Catal. 2005, 347, 1587.

⁶ Carling, R. W.; Clark, J. S.; Holmes, A. B. J. Chem. Soc. Perkin Trans 1. 1992, 83.

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

2-(3-Oxocyclohexyl)-2-prop-2-ynyl-malononitrile (1b)

Addition of propargyl malononitrile (200 mg, 1.92 mmol) to 2-cyclohexen-1-one (93 µL, 0.96 mmol) was achieved using a method described by Parham and NC CN Czuba.⁷ **1b** was obtained after flash chromatography (Hexanes:EtOAc 7:3) as a light yellow solid (170 mg, 89%); mp 96-98 °C; v_{max} /cm⁻¹ (neat) 3246, 2985, 2930, 2878, 1714; δ_{H} (300 MHz; CDCl₃), 1.63-1.84 (2 H, m), 2.19-2.39 (4 H, m), 2.40 (1 H, t, *J* 2.7), 2.45-2.60 (2 H, m), 2.63-2.74 (1 H, m), 2.92 (1 H, dd, *J* 17.0 and 2.7), 3.02 (1 H, dd, *J* 17.0 and 2.7); δ_{C} (75.5 MHz; CDCl₃) 23.5 (t), 26.0 (t), 26.8 (t), 40.3 (t), 41.4 (s), 42.4 (t), 42.4 (d), 73.7 (s), 75.8 (d), 113.0 (s), 113.4 (s), 206.1 (s); *m/z* (ES) 223.0842 (calc. for [M⁺ + Na] C₁₂H₁₂N₂ONa: 223.0847).

2-But-3-ynyl-2-(3-oxocyclohexyl)-malonic acid diethyl ester (1c)

Following the method of Iwasawa⁸ diethyl homopropargylmalonate (0.38 g,1.79 mmol) was added to a suspension of NaH (0.12 g, 3.00 mmol) in THF (2.9 mL) at 0 °C. After the evolution of H₂, 2-cyclohexen-1-one (0.14 mL, 1.45 EtO₂C^{CO}₂Et mmol) was added to the reaction mixture, followed by addition of TMSOTf (0.29 mL, 1.59 mmol) at 0°C. The mixture was stirred at 0°C for 4 h before saturated NH₄Cl (25 mL) was added, followed by ethyl acetate (25 mL). The two layers were separated. The organic layer was washed with saturated aqueous NaCl (40 mL), dried over Na₂SO₄, filtered, and the solvent removed under reduced pressure. The residue was purified by flash chromatography (hexane/ethyl acetate: 8/2) to afford the silyl enol ether as a colourless liquid (0.31 g, 56%). The silvl enol ether (300 mg, 0.79 mmol) was dissolved in THF (8.5 mL) and cooled to -35 °C. TBAF (1 M in THF, 1.0 mL, 1.00 mmol) was added and the mixture stirred for 40 min at -35 °C. The reaction was quenched with saturated NH₄Cl (25 mL) and extracted with ethyl acetate (25 mL). The two layers were separated. The organic layer was washed with saturated aqueous NaCl (25 mL), dried over Na₂SO₄, filtered, and the solvent removed under reduced pressure. The residue was purified by flash chromatography (hexane/ethyl acetate: 8/2) to afford **1c** as a yellow liquid (129 mg, 53%). v_{max} /cm⁻¹ (neat) 3281, 2937, 2870, 1715; $\delta_{\rm H}(300 \text{ MHz}; \text{CDCl}_3)$ 1.27 (6 H, t, J 7.1), 1.32-1.69 (3 H, m), 1.96 (1 H, t, J 2.2), 1.98-2.52 $(10 \text{ H}, \text{ m}), 4.21 (2 \text{ H}, \text{ q}, J 7.1), 4.22 (2 \text{ H}, \text{ q}, J 7.1); \delta_{\mathbb{C}}(75.5 \text{ MHz}; \text{CDCl}_3) 14.1 (2\text{q}), 14.5 (t),$ 24.7 (t), 27.0 (t), 32.5 (t), 41.1 (t), 42.2 (d), 43.6 (t), 60.2 (s), 61.4 (2t), 68.8 (d), 83.1 (s), 169.6

⁷ Parham, W. E.; Czuba, L. J. J. Org. Chem. **1969**, 34, 1899.

⁸ Iwasawa, N.; Maeyama, K.; Kusama, H. Org. Lett. 2001, 3, 3871.

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

Using

(s), 169.8 (s), 210.0 (s); HR-MS (ES-TOF): *m/z*: calcd for C₁₇H₂₄O₅Na: 331.1521, found $331.1526 [M^+ + Na].$

2-But-3-ynyl-2-(3-oxocyclopentyl)-malonic acid diethyl ester (1d) 2-cyclopenten-1-one

homopropargylmalonate (400 mg, 1.89 mmol) and after purification by flash CO₂Et chromatography (Hexanes:EtOAc 8:2) 1d was obtained as a colourless liquid (400 mg, 72%); v_{max} /cm⁻¹ (neat) 3283, 2981, 2938, 1725; $\delta_{\rm H}$ (300 MHz; CDCl₃) 1.27 (6 H, t, J 7.1), 1.62-1.79 (1 H, m), 1.97 (1 H, t, J 2.4), 2.10-2.40 (8 H, m), 2.50 (1 H, dd, J 18.7 and 7.9), 2.74-2.88 (1 H, m), 4.21 (4 H, q, J 7.1); δ_C(75.5 MHz; CDCl₃) 14.0 (2 q), 14.4 (t), 24.8 (t), 32.7 (t), 38.4 (t), 40.3 (d), 41.1 (t), 59.3 (s), 61.5 (2t), 68.9 (d), 83.0 (s), 169.8 (s), 170.0 (s), 217.2 (s); HR-MS (ES-TOF): *m/z*: calcd for C₁₆H₂₂O₅Na: 317.1365, found 317.1359 $[M^{+} + Na].$

(0.16

mL,

1.89

mmol)

and

diethyl

2-(3-Oxocyclopentyl)-2-prop-2-ynylmalonic acid diethyl ester (1e)

Using 2-cyclopenten-1-one (0.21 mL, 2.52 mmol) and diethylpropargyl malonate (0.50 g, 2.52 mmol) and after purification by flash chromatography (Hexanes:EtOAc 8:2) **1e** was obtained as a colourless liquid (623 mg, 88%); v_{max} EtO₂C^CCO₂Et 1e /cm⁻¹ (neat) 3279, 2982, 2937, 2907, 1729; $\delta_{\rm H}(300 \text{ MHz}; \text{CDCl}_3)$ 1.27 (6 H, t,

J 7.1), 1.62-1.81 (1 H, m), 2.04 (1 H, t, J 2.4), 2.14-2.43 (4 H, m), 2.60 (1 H, dd, J 18.4 and 7.4), 2.85 (1 H, dd, J 17.4 and 2.4), 2.93 (1 H, dd, J 17.4 and 2.4), 3.00-3.15 (1 H, m), 4.17-4.32 (4 H, m); $\delta_{\rm C}(75.5 \text{ MHz}; {\rm CDCl}_3)$ 14.0 (2 q), 23.7 (t), 24.9 (t), 38.5 (t), 39.4 (d), 41.1 (t), 58.8 (s), 61.8 (2t), 71.8 (d), 78.6 (s), 169.2 (s), 169.3 (s), 217.3 (s); HR-MS (ES-TOF): m/z: calcd for $C_{15}H_{20}O_5Na$: 303.1208, found 303.1199 [M⁺ + Na].

2-(3-Oxocycloheptyl)-2-prop-2-ynyl-malonic acid diethyl ester (1f)

Using 2-cyclohepten-1-one (266 mg, 2.42 mmol) and diethylpropargyl malonate (480 mg, 2.42 mmol) and after purification by flash chromatography (Hexanes:EtOAc 8:2) **1f** was obtained as a yellow oil (418 mg, 56%); v_{max} /cm⁻¹ (neat) 3277, 2935, 1725, 1701; $\delta_{\rm H}$ (300 MHz; CDCl₃) 1.13-1.24 (1 H, m), 1.26

(3 H, t, J 7.1), 1.28 (3 H, t, J 7.1), 1.45-1.60 (2 H, m), 1.91-2.09 (3 H, m), 2.05 (1 H, t, J 2.7), 2.42-2.54 (2 H, m), 2.59-2.77 (3 H, m), 2.82 (1 H, dd, J 17.5 and 2.7), 2.89 (1 H, dd, J 17.5 and 2.7), 4.18-4.28 (4 H, m); $\delta_{\rm C}$ (75.5 MHz; CDCl₃) 14.0 (2 q), 23.0 (t), 25.1 (t), 29.4 (t), 32.3 (t), 38.4 (d), 43.1 (t), 46.0 (t), 60.5 (s), 61.7 (2t), 71.8 (d), 78.9 (s), 169.2 (s), 169.4 (s), 212.8 (s); HR-MS (ES-TOF): m/z: calcd for C₁₇H₂₄O₅Na: 331.1521, found 331.1517 [M⁺ + Na].

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

2-(3-Oxocyclooctyl)-2-prop-2-ynyl-malonic acid diethyl ester (1g)

Using 2-cycloocten-1-one (200 mg, 1.61 mmol) and diethylpropargyl malonate (319 mg, 1.61 mmol) and after purification by flash chromatography (Hexanes:EtOAc 8:2) **1g** was obtained as a light yellow oil (218 mg, 42%); v_{max} /cm⁻¹ (neat) 3277, 2937, 2861, 1729, 1699; $\delta_{\rm H}(300$ MHz; CDCl₃)

1.05-1.23 (1 H, m), 1.27 (3 H, t, *J* 7.1), 1.28 (3 H, t, *J* 7.1), 1.32-1.49 (2 H, m), 1.59-1.96 (5 H, m), 2.08 (1 H, t, *J* 2.8), 2.26-2.37 (2 H, m), 2.66-2.74 (1 H, m), 2.82 (1 H, dd, *J* 17.5 and 2.7), 2.80-2.89 (1 H, m), 2.97 (1 H, dd, *J* 17.5 and 2.7), 3.18 (1 H, tt, *J* 12.6, 3.4), 4.14-4.31 (4 H, m); $\delta_{\rm C}$ (75.5 MHz; CDCl₃) 14.0 (2 q), 23.0 (t), 23.8 (t), 25.8 (t), 28.0 (t), 29.5 (t), 36.5 (d), 40.6 (t), 46.1 (t), 60.0 (s), 61.7 (2t), 71.8 (d), 79.0 (s), 169.4 (s), 169.8 (s), 215.9 (s); HR-MS (ES-TOF): *m/z*: calcd for C₁₈H₂₆O₅Na: 345.1678, found 345.1690 [M⁺ + Na].

2-Acetyl-2-(3-oxocyclohexyl)-pent-4-ynoic acid ethyl ester (1h)

Using 2-cyclohexen-1-one (0.29 mL, 2.98 mmol) and ethyl propargyl acetoacetate (0.50 g, 2.98 mmol) and after purification by flash chromatography (Hexanes:EtOAc 8:2) **1h** is obtained as a colorless oil in a 1:1.2 mixture of diastereoisomers (357 mg, 45%); v_{max} /cm⁻¹ (neat) 3278, 2940, 1705; $\delta_{\rm H}(300$

MHz; CDCl₃) 1.30 (3 H, t, *J* 7.1, isomer a), 1.31 (3 H, t, *J* 7.2, isomer b), 1.40 (1 H, dt, *J* 12.8 and 3.3, isomer a), 1.43 (1 H, dt, *J* 12.8 and 3.4, isomer b), 1.57-1.75 (2 H, m, both isomers), 1.92-2.01 (2 H, m, both isomers), 2.04 (1 H, t, *J* 2.7, isomer a), 2.04 (1 H, t, *J* 2.7, isomer b), 2.05-2.19 (4 H, m, both isomers), 2.22 (3 H, s, isomer a), 2.22 (3 H, s, isomer b), 2.27 (2 H, dd, *J* 16.8 and 11.5, both isomers), 2.33-2.51 (4 H, m, both isomers), 2.62-2.77 (2 H, m, both isomers), 2.79 (2 H, dd, *J* 4.6 and 2.7, both isomers), 2.82 (2 H, d, *J* 2.7, both isomers), 4.20-4.33 (4 H, m, both isomers); $\delta_{\rm C}$ (75.5 MHz; CDCl₃) 13.8 (2 q), 20.9 (t), 21.1 (t), 24.6 (2t), 26.5 (t), 27.3 (t), 27.5 (q), 27.8 (q), 40.1 (d), 40.5 (d), 40.7 (t), 40.9 (t), 42.9 (t), 43.4 (t), 61.6 (t), 61.7 (t), 64.7 (s), 64.9 (s), 71.9 (d), 72.0 (d), 78.6 (s), 79.0 (s), 169.7 (2s), 202.0 (s), 202.1 (s), 209.5 (2s); HR-MS (ES-TOF): *m*/*z*: calcd for C₁₅H₂₀O₄Na: 287.1259, found 287.1251 [M⁺ + Na].

Diethyl 2-(3-oxo-3-phenylpropyl)-2-(prop-2-yn-1-yl)malonate (1i)⁹

Na (57.9 mg, 2.52 mmol) was carefully dissolved in absolute EtOH (7 mL). Diethyl propargylmalonate (500 mg, 2.52 mmol) was added dropwise over t 15 min, followed by the addition of 3-chloropropiophenone (302 mg,

⁹ Maeyama, K.; Iwasawa, N. J. Am. Chem. Soc. 1998, 120, 1928-1929.

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

1.79 mmol). The reaction mixture was then stirred at rt for 2 h; before H₂O (30 mL) was added to quench the reaction. The aqueous phase was extracted with Et₂OAc (2×30 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (hexane/EtOAc: 8/2) to afford **1i** as a white solid (562 mg, 95%); $R_f 0.37$ (hexane/EtOAc: 8/2); δ_H (300 MHz; CDCl₃) $1.25 (6 \text{ H}, t, J7.1, \text{CH}_2\text{CH}_3), 2.01-2.05 (1 \text{ H}, \text{m}, \text{C} \equiv \text{CH}), 2.45-2.54 (2 \text{ H}, \text{m}, \text{CH}_2), 2.89 (2 \text{ H}, \text{d})$ J 2.7, H₂CC=CH), 2.99-3.09 (2 H, m), 4.08-4.30 (4 H, m, CH₂CH₃), 7.42-7.49 (2 H, m, Ar H), 7.53-7.60 (1 H, m, Ar H), 7.94-7.99 (2 H, m, Ar H); δ_C(75.5 MHz; CDCl₃) 14.0 (2 q, CH₂CH₃), 23.8 (t, CH₂), 27.0 (t, CH₂), 33.7 (t, CH₂), 56.1 (s, C(CO₂Et)₂), 61.8 (2 t, CH₂CH₃), 71.8 (d, CH₂C=CH), 78.7 (s, C=CH), 128.1 (d, Ar CH), 128.6 (d, Ar CH), 133.1 (d, Ar CH), 154.1 (s, Ar CH), 170.0 (2 s, CO₂Et), 198.6 (s, CO); *m*/*z* (TOF ES+) 353.2 ([M+Na]⁺, 100%); HR-MS (ES-TOF): m/z: calcd for C₁₉H₂₂O₅Na: 353.1365, found 353.1375 [M⁺ + Na].

General Procedure 1 (GP1): α-Alkylation of β-ketoesters

Following a modified literature procedure⁵ the β -ketoester (1 eq) was added dropwise to a suspension of sodium hydride (1.2 eq) in DMF (0.96 M) at 0°C. The reaction mixture was stirred at rt for 55 min before 5-iodopent-1-yne (1 eq) was added dropwise. After the addition, the mixture was stirred at rt for 24 h before aq 1 M HCl (10 × solvent volume) was added followed by toluene ($10 \times$ solvent volume). The two layers were separated. The organic layer was washed with brine, dried over Na₂SO₄, filtered, and the solvent removed under reduced pressure. The residue was purified by flash chromatography (hexane/ethyl acetate: 8/2) to afford the alkylated product.

General Procedure 2 (GP2): Decarbethoxylation of alkylated β-ketoesters

Following a modified literature procedure⁵ LiI (5 eq) was added to a solution of the alkylated β-ketoesters (1 eq) in DMF (0.76 M). The reaction mixture was stirred at 150 °C. After completion, the reaction mixture was allowed to cool to rt and treated with aq 1 M HCl $(10 \times \text{solvent volume})$. Diethyl ether was added $(10 \times \text{solvent volume})$ and the two layers were separated. The organic layer was extracted twice, washed with brine, dried over Na₂SO₄, filtered, and the solvent removed carefully under reduced pressure. The residue was purified by flash chromatography (hexane/diethyl ether: 9/1) to give the decarbethoxylated product.

2-(Pentin-4-yl)-2-ethoxycarbonylcyclopentanone (6a)

Following GP1 using ethyl 2-oxocyclopentanecarboxylate (403 mg, 2.58 mmol) **6a** was obtained as a colourless liquid (426 mg, 74%). v_{max} /cm⁻¹ (neat) 3282,

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

2964, 1748, 1722; $\delta_{\rm H}(300 \text{ MHz}; \text{CDCl}_3)$ 1.25 (3 H, t, *J* 7.1), 1.37-1.73 (3 H, m), 1.83-2.10 (5 H, m), 2.16-2.33 (3 H, m), 2.36-2.59 (2 H, m), 4.16 (2 H, q, *J* 7.1); $\delta_{\rm C}(75.5 \text{ MHz}; \text{CDCl}_3)$ 13.6 (q), 18.2 (t), 19.1 (t), 23.4 (t), 32.4 (2t), 37.3 (t), 59.5 (s), 60.8 (t), 68.4 (d), 83.1 (s), 170.3 (s), 213.8 (s); HR-MS (ES-TOF): m/z: calcd for C₁₃H₁₈O₃Na: 245.1154, found 245.1156 [M⁺ + Na].

2-Oxo-1-pent-4-ynyl-cyclohexanecarboxylic acid ethyl ester (6b)

Following general procedure 1, using ethyl 2-oxocyclohexanecarboxylate (439 mg, 2.58 mmol) **6b** was obtained as a colourless liquid (454 mg, 75%). v_{max} /cm⁻¹ (neat) 3285, 2940, 2867, 1711; $\delta_{H}(300 \text{ MHz}; \text{CDCl}_{3})$ 1.26 (3 H, t, *J* 7.1), 1.35-1.56 (3 H, m), 1.57-1.81 (4 H, m), 1.89-2.06 (2 H, m), 1.94 (1 H, t, *J* 2.6), 2.15-2.23 (2 H, m), 2.38-2.56 (3 H, m), 4.21 (2 H, q, *J* 7.1); $\delta_{C}(75.5 \text{ MHz}; \text{CDCl}_{3})$ 14.1 (q), 18.7 (t), 22.5 (t), 23.4 (t), 27.5 (t), 33.8 (t), 36.0 (t), 41.0 (t), 60.5 (s), 61.2 (t), 68.5 (d), 83.8 (s), 171.8 (s), 207.7 (s); HR-MS (ES-TOF): m/z: calcd for C₁₄H₂₀O₃Na: 259.1310, found 259.1307 [M⁺ + Na].

2-Pent-4-ynylcyclohexanone (4a)

Following GP2, using ethyl 2-oxo-1-pent-4-ynylcyclohexanecarboxylate **6b** (300 mg, 1.83 mmol) **4a** was obtained as a colourless liquid (140 mg, 67%). v_{max} /cm⁻¹ (neat) 3291, 2934, 2861, 1709; $\delta_{H}(300 \text{ MHz}; \text{ CDCl}_3)$ 1.24-1.57 (4 H, m), 1.59-1.76 (2 H, m), 1.80-1.93 (2 H, m), 1.94 (1 H, t, *J* 2.6), 1.98-2.44 (7 H, m); $\delta_{C}(75.5 \text{ MHz}; \text{ CDCl}_3)$ 18.6 (t), 24.9 (t), 26.1 (t), 28.0 (t), 28.7 (t), 34.0 (t), 42.0 (t), 50.3 (d), 68.3 (d), 84.3 (s), 213.0 (s); MS(EI) 164 (M⁺, 5%), 149 (21), 146 (5), 135 (34), 133 (4), 131 (16), 125 (11), 123 (35), 121 (100). Data are identical to those reported in the literature.⁵

2-Pent-4-ynyl-cyclooctanone (4b)

Following GP1, using methyl 2-oxocyclooctanecarboxylate (950 mg, 5.16 mmol) methyl 2-oxo-1-pent-4-ynylcyclooctanecarboxylate was obtained as a colourless liquid (832 mg, 64%). v_{max} /cm⁻¹ (neat) 3286, 2930, 2859, 1736, 1705; $\delta_{H}(300 \text{ MHz}; \text{CDCl}_{3}) 0.87 \cdot 1.03 (1 \text{ H, m}), 1.21 \cdot 1.89 (10 \text{ H, m}), 1.93 (1 \text{ H, t, J } 2.7),$ 1.96-2.30 (5 H, m), 2.47 (1 H, ddd, J 15.7, 11.6, 4.4), 2.69 (1 H, dt, J 11.9 and 3.8), 3.68 (3H, s); $\delta_{C}(75.5 \text{ MHz}; \text{CDCl}_{3}) 18.8 (t), 23.1 (t), 23.9 (t), 24.2 (t), 25.5 (t), 28.4 (t), 29.3 (t), 30.2 (t),$ 38.5 (t), 52.3 (q), 62.0 (s), 68.5 (d), 83.9 (s), 172.2 (s), 212.2 (s); HR-MS (ES-TOF): *m/z*: calcd for C₁₅H₂₂O₃Na: 273.1467, found 273.1457 [M⁺ + Na]. Methyl 2-oxo-1-pent-4ynylcyclooctanecarboxylate (622 mg, 2.49 mmol) was then subjected to GP2 and **4b** was obtained as a yellow liquid (392 mg, 82%); v_{max} /cm⁻¹ (neat) 3292, 2927, 2856, 1696; $\delta_{H}(300 \text{ MHz}; \text{CDCl}_3) 1.17 \cdot 1.31 (1 \text{ H, m}), 1.34 \cdot 1.88 (12 \text{ H, m}), 1.90 \cdot 2.06 (1 \text{ H, m}), 1.94 (1 \text{ H, t, t})$

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

J 2.7), 2.13-2.21 (2 H, m), 2.26-2.35 (1 H, m), 2.38-2.49 (1 H, m), 2.53-2.63 (1 H, m); $\delta_{\rm C}$ (75.5 MHz; CDCl₃) 18.4 (t), 24.7 (t), 25.5 (t), 25.7 (t), 26.3 (t), 27.3 (t), 31.6 (t), 32.7 (t), 42.0 (t), 50.2 (d), 68.5 (d), 84.1 (s), 219.9 (s); HR-MS (ES-TOF): *m*/*z*: calcd for C₁₃H₂₀ONa: 215.1412, found 215.1406 [M⁺ + Na]

Gold-Catalysed Cyclisation Reactions

Survey table using simple metal salts

Entry	Conditions	Time	Ratio		
			1a	2a	3 a
1	PtCl ₂ , toluene	48 h	>98	<2	-
2^a	PtCl ₂ , toluene	5 d	92	8	-
3	AuCl, anhydrous toluene at 70°C	2 d	78	22	0
4	AuCl, toluene non-dried at 70°C	2 d	78	-	-
5	AuCl, DCM	2 d	98.6	-	-
6	AuCl, DCM non-dried, rt	2 d	98.6	1.4	-
7	AuCl, THF, 70°C	1 d	100	-	-
8 ^{<i>a</i>}	AuCl ₃ , DCM, rt	2 h 30	71	-	3

Procedure: a 0.1 M solution of the substrate in the required solvent was added onto the catalyst under argon atmosphere in a flame-dried Schlenk tube. ^{*a*} The reaction temperature was progressively increased : 3 days at rt, 1 day at 40 °C, 1 day at 70 °C. The ratios were determined by ¹H NMR analysis of the crude mixture.

General procedure for gold-catalysed reactions

AgOTf (0.06 eq) was weighed into a flame-dried Schlenk (or carousel tube) under argon atmosphere, followed by the addition of the Ph_3PAuCl (0.06 eq). Immediately after this addition, a 0.1 M solution of the substrate in the desired solvent was added *via* syringe, and the mixture stirred at rt for the required length of time. On completion of the reaction, the solution was either loaded directly onto a silica gel column followed by elution with the appropriate eluent, or filtered through a short pad of silica gel (CH₂Cl₂, diethyl ether or hexane/ethyl acetate: 8/2), the solvent removed under reduced pressure and the residue was purified by flash

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

chromatography (hexanes/ethyl acetate). When required the ratio of isomers was determined by NMR analysis of the crude reaction.

The following compounds were prepared by this method:

Diethyl 3-methyl-4-oxo-2,4,5,6,7,7a-hexahydroindene-1,1-dicarboxylate (2a)

Using **1a** (117 mg, 0.4 mmol), cyclised product **2a** was obtained as a yellow oil (102 mg, 87%); v_{max} /cm⁻¹ (neat) 2981, 2942, 2871, 1731, 1682, 1626; $\delta_{H}(300 \text{ MHz}; \text{ CDCl}_{3})$ 1.07-1.14 (1 H, m, 4-H), 1.20 (6 H, t, J 7.1, 2 × CH₂CH₃), 1.61-1.81 (1 H, m, 3-H), 1.91-2.00 (1 H, m, 3-H), 2.03 (3 H, s,

10-H), 2.05-2.19 (2 H, m, 4-H, 2-H), 2.31-2.44 (1 H, m, 2-H), 2.70 (1 H, br d, *J* 18.3, 6-H), 3.04 (1 H, br d, *J* 18.3, 6-H), 3.59-3.73 (1 H, m, 9-H), 4.02-4.28 (4 H, m, $2 \times CH_2CH_3$); $\delta_C(75.5 \text{ MHz}; \text{CDCl}_3)$ 13.9 (q), 14.0 (q), 15.5 (q), 23.4 (t), 27.4 (t), 40.5 (t), 46.0 (t), 51.6 (d), 61.2 (t), 61.3 (t), 61.8 (s), 131.9 (s), 149.3 (s), 170.1 (s), 171.0 (s), 199.1 (s); HR-MS (ES-TOF): *m/z*: calcd for C₁₆H₂₂O₅Na: 317.1365, found 317.1362 [M⁺ + Na].

3-Methyl-4-oxo-2,4,5,6,7,7a-hexahydroindene-1,1-dicarbonitrile (2b)

Using **1b** (80 mg, 0.4 mmol), cyclised product **2b** was obtained as a white solid (65 mg, 81%); mp 80-82 °C; v_{max} /cm⁻¹ (neat) 2964, 2872, 2254, 1681, 1623; $\delta_{H}(300 \text{ MHz}; \text{CDCl}_{3})$ 1.71-1.94 (2 H, m), 2.14-2.21 (3 H, m), 2.21-2.39 (3 H, m), 2.50-2.62 (1 H, m), 3.12 (1 H, br d, *J* 17.4), 3.24 (1 H, br d, *J* 17.4), 3.43-3.53 (1 H, m); $\delta_{C}(75.5 \text{ MHz}; \text{CDCl}_{3})$ 15.8 (q), 22.1 (t), 26.8 (t), 38.2 (s), 40.2 (t), 48.5 (t), 54.7 (d), 114.4 (s), 115.0 (s), 130.8 (s), 148.3 (s), 196.8 (s); HR-MS (EI): *m/z*: calcd for C₁₂H₁₂N₂O: 200.0949, found 200.0954.

4-Methyl-5-oxo-3,5,6,7,8,8a-hexahydro-2H-naphthalene-1,1-dicarboxylic acid diethyl ester (2c)

Using **1c** (115 mg, 0.37 mmol), cyclised product **2c** was obtained as a light yellow oil (70 mg, 61%); v_{max} /cm⁻¹ (neat) 2940, 2872, 1732, 1694, 1632; $\delta_{\text{H}}(300 \text{ MHz}; \text{CDCl}_3)$ 1.19-1.29 (6 H, m), 1.59-1.73 (2 H, m), 1.73-2.20 (6 H, m), 1.87-1.92 (3 H, m), 2.32 (1 H, ddd, *J* 15.8, 9.8 and 6.1), 2.53 (1 H, dt, *J* 15.8)

and 5.4), 3.02-3.12 (1 H, m), 4.07-4.29 (4 H, m); $\delta_{\rm C}$ (75.5 MHz; CDCl₃) 13.9 (2q), 20.8 (q), 22.0 (t), 24.9 (t), 26.8 (t), 30.2 (t), 40.3 (d), 41.2 (s), 56.6 (t), 61.1 (t), 61.3 (t), 132.0 (s), 140.3 (s), 170.1 (s), 170.5 (s), 203.2 (s); HR-MS (ES-TOF): m/z: calcd for C₁₇H₂₄O₅Na: 331.1521, found 331.1518 [M⁺ + Na].

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

7-Methyl-1-oxo-1,2,3,3a,5,6-hexahydroindene-4,4-dicarboxylic acid diethyl ester (2d)

Using **1d** (117 mg, 0.4 mmol), cyclised product **2d** was obtained as a light yellow liquid (93 mg, 79%); v_{max} /cm⁻¹ (neat) 2981, 1726, 1710, 1643; $\delta_{H}(300 \text{ MHz};$ CDCl₃) 1.22 (3 H, t, *J* 7.1), 1.28 (3 H, t, *J* 7.1), 1.86-2.10 (2 H, m), 2.10-2.17 (3 H, m), 2.17-2.50 (6 H, m), 3.01-3.13 (1 H, m), 4.15 (2 H, q, *J* 7.1), 4.24 (2 H, qd, *J* 7.1 and 1.7); $\delta_{C}(75.5 \text{ MHz}; \text{CDCl}_3)$ 13.9 (q), 14.0 (q), 18.2 (q), 22.8 (t), 29.4 (t), 31.3 (t),

38.5 (t), 43.8 (d), 55.2 (s), 60.7 (t), 61.3 (t), 129.2 (s), 146.5 (s), 169.1 (s), 171.3 (s), 205.9 (s); HR-MS (EI): m/z: calcd for C₁₆H₂₂O₅Na: 294.1467, found 294.1461 [M⁺ + Na].

3-Methyl-4-oxo-4,5,6,6a-tetrahydro-2H-pentalene-1,1-dicarboxylic acid diethyl ester, diethyl 6-oxo-4-methylene-bicyclo[3.3.0]octane-2,2-dicarboxylate, 3-methyl-4-oxo-4,5,6,6a-tetrahydro-3aH-pentalene-1,1-dicarboxylic acid diethyl ester (2e)

Using **1e** (112 mg, 0.4 mmol), cyclised products **2e** were obtained as a clear yellow oil (111 mg, 98%) in a 3.7:2:1 mixture of isomers. HPLC separation (C_{18} 250 × 4.16 mm, isocratic in CH₃CN/water 40/60, 1.0 mL/min, 230 nm) gave **2e-a** pure and a mixture of **2e-b** and **2e-c**.

HR-MS (ES-TOF) (mixture of the 3 isomers): m/z: calcd for C₁₅H₂₀O₅Na: 303.1208, found 303.1202.

3-Methyl-4-oxo-4,5,6,6a-tetrahydro-2H-pentalene-1,1-dicarboxylic acid diethyl ester (2e-a)

3-Methyl-4-oxo-4,5,6,6a-tetrahydro-2H-pentalene-1,1-dicarboxylic acid diethyl ester v_{max} /cm⁻¹ (neat) 2931, 1728, 1713, 1665; $\delta_{H}(300 \text{ MHz}; \text{CDCl}_{3})$ 1.25 (3 H, t, *J* 7.1), 1.26 (3 H, t, *J* 7.1), 1.30-1.46 (2 H, m), 2.04 (3 H, s), 2.13-2.27 (1 H, m), 2.39-2.54 (2 H, m), 3.07 (1 H, br d, *J* 18.3), 3.41 (1 H, br d, *J* 18.3),

4.08-4.34 (4 H, m); $\delta_{\rm C}$ (75.5 MHz; CDCl₃) 14.1 (q), 14.2 (q), 14.6 (q), 26.1 (t), 43.8 (t), 50.7 (t), 53.8 (d), 61.5 (t), 61.7 (t), 62.6 (s), 137.3 (s), 146.1 (s), 169.8 (s), 171.0 (s), 201.0 (s).

Diethyl 6-oxo-4-methylenebicyclo[3.3.0]octane-2,2-dicarboxylate (2e-b)

 υ_{max} /cm⁻¹ (neat) 2981, 1726; $\delta_{\text{H}}(300 \text{ MHz}; \text{CDCl}_3)$ 1.19-1.28 (6 H, m), 1.37-1.67 (2 H, m), 2.12-2.39 (2 H, m), 2.79 (1 H, d, *J* 17.6), 3.20 (1 H, ddd, *J* 17.6, 5.5 and 2.7), 3.26-3.35 (2 H, m), 4.03-4.28 (4 H, m), 5.06 (1 H, br d, *J* 1.6), 5.17 (1 H, td, *J* 2.7 and 1.6); $\delta_{\text{C}}(75.5 \text{ MHz}; \text{CDCl}_3)$ 13.9 (q), 14.1 (q), 23.1 (t), 38.2

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

(t), 38.3 (t), 46.9 (d), 56.6 (d), 61.5 (t), 61.6 (t), 62.5 (s), 111.3 (t), 142.9 (s), 169.2 (s), 171.2 (s), 215.2 (s); MS(ES) 303.0 (M^+ + Na. $C_{15}H_{20}O_5Na$). **2e-b** is a known compound and the data is identical to that reported in the literature.⁸

3-Methyl-4-oxo-4,5,6,6a-tetrahydro-3aH-pentalene-1,1-dicarboxylic acid diethyl ester (2e-c)

 v_{max} /cm⁻¹ (neat) 2981, 1726; $\delta_{\text{H}}(300 \text{ MHz}; \text{CDCl}_3)$ 1.19-1.28 (6 H, m), 1.79 (3 H, s), 1.96-2.10 (2 H, m), 2.12-2.39 (2 H, m), 3.39 (1 H, dt, *J* 10.1 and 7.7), 3.62 (1 H, dt, *J* 10.1 and 7.7), 4.03-4.28 (4 H, m), 5.51 (1 H, m); $\delta_{\text{C}}(75.5 \text{ MHz};$ **2e-c** CDCl₃) 13.9 (q), 14.1 (q), 14.6 (q), 23.8 (t), 38.4 (t), 44.7 (d), 61.2 (s), 61.3 (d),

61.5 (t), 61.6 (t), 124.3 (d), 142.0 (s), 169.5 (s), 170.0 (s), 215.2 (s); MS(ES) 303.0 (M^+ + Na. $C_{15}H_{20}O_5Na$).

3-Methyl-4-oxo-4,5,6,7,8,8a-hexahydro-2H-azulene-1,1-dicarboxylic acid diethyl ester (2f)

EtO₂C

Using **1f** (134 mg, 0.4 mmol), **2f** was obtained as a yellow oil (86 mg, 64%); v_{max} /cm⁻¹ (neat) 2929, 1729, 1675, 1618; $\delta_{H}(300 \text{ MHz}; \text{CDCl}_{3})$ 1.24 (3 H, t, J 7.1, CH₂CH₃), 1.25 (3 H, t, J 7.1, CH₂CH₃), 1.28-1.47 (2 H, m, 5-H, 3-H), 1.46-1.67 (1 H, m, 4-H), 1.76-2.01 (3 H, m, 5-H, 4-H, 3-H), 2.03-2.08 (3 H, m,

11-H), 2.44-2.62 (2 H, m, 2-H), 2.79 (1 H, dq, *J* 18.7 and 1.4, 7-H), 3.32 (1 H, dq, *J* 18.7 and 1.4, 7-H), 3.72 (1 H, br d, *J* 11.9, 10-H), 4.08-4.29 (4 H, m, $2 \times CH_2CH_3$); $\delta_C(75.5 \text{ MHz}; CDCl_3)$ 13.9 (q), 14.0 (q), 16.2 (q), 24.6 (t), 30.4 (t), 31.6 (t), 45.3 (2t), 51.4 (d), 61.4 (t), 61.6 (t), 62.7 (s), 137.2 (s), 150.8 (s), 169.7 (s), 171.2 (s), 201.5 (s); HR-MS (ES-TOF): *m/z*: calcd for C₁₇H₂₄O₅Na: 331.1029, found 331.1042 [M⁺ + Na].

Diethyl 2-oxo-11-methylenebicyclo[6.3.0]undecane-9,9-dicarboxylate (3g)

Using 1g (77 mg, 0.24 mmol), a number of fractions were collected including recovered 1g (13 mg, 17%) and a mixture of cyclized isomeric products with 3g as the major constituent (20 mg, 26%); $\delta_{\rm H}(300 \text{ MHz}; \text{CDCl}_3)$ 1.12-1.21 (1

 $^{\text{EtO}_2\text{C}}$ $^{\text{CO}_2\text{ET}}$ H, m), 1.26 (3 H, t, *J* 7.1), 1.27 (3 H, t, *J* 7.1), 1.31-1.54 (2 H, m), 1.62-2.08 (5 H, m), 2.22-2.37 (1 H, m), 2.58-2.70 (1 H, m), 2.73-2.85 (1 H, m), 3.06 (1 H, dt, *J* 12.6 and 3.3), 3.21 (1 H, bd, *J* 17.4), 3.36 (1 H, dd, *J* 12.9 and 1.9), 4.06-4.32 (4 H, m), 4.76 (1 H, dd, *J* 5.0, 2.4), 5.00 (1 H, dd, *J* 4.8, 2.4); HR-MS (ES-TOF): *m/z*: calcd for C₁₈H₂₆O₅Na: 345.1678, found 345.1676 [M⁺ + Na]. Spectroscopic data were identical to those reported in the literature.⁸

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

1-Acetyl-3-methyl-4-oxo-2,4,5,6,7,7a-hexahydro-1H-indene-1-carboxylic acid ethyl ester (2h)

Using **1h** (106 mg, 0.4 mmol), **2h** was obtained as a pale yellow oil (47 mg, 44%), in 1.9:1 mixture of two diastereoisomers; v_{max} /cm⁻¹ (neat) 2941, 1709, 1682, 1623; $\delta_{H}(300 \text{ MHz}; \text{CDCl}_{3})$ minor diastereoisomer 1.09-1.25 (1 H, m, 4-H), 1.28 (3 H, t, J 7.1, CH₂CH₃), 1.67-1.87 (1 H, m, 3-H), 1.95-2.28 (6 H, m, 3-H, 4-H, 2-H, OCH₃), 2.18 (3 H, s, 10-H), 2.40-2.51 (1 H, m, 2-H), 2.60 (1 H, br d, J 18.3, 6-H), 3.12 (1 H, br d, J 18.3, 6-H), 3.66-3.83 (1 H, m, 9-H), 4.14-4.31 (2 H, m, CH₂CH₃); $\delta_{H}(300 \text{ MHz}; \text{CDCl}_{3})$ major diastereoisomer 1.09-1.25 (1 H, m, 4-H), 1.29 (3 H, t, J 7.1, CH₂CH₃), 1.67-1.87 (1 H, m, 3-H), 1.95-2.28 (6 H, m, 3-H, 4-H, 2-H, OCH₃), 2.17 (3 H, s, 10-H), 2.40-2.51 (1 H, m, 2-H), 2.73 (1 H, br d, J 18.4, 6-H), 3.0.2 (1 H, br d, J 18.4, 6-H), 3.66-3.83 (1 H, m, 9-H), 4.14-4.31 (2 H, m, CH₂CH₃); δ_{C} (75.5 MHz; CDCl₃) minor diastereoisomer: 14.1 (q), 15.7 (q), 23.5 (t), 27.2 (q), 27.6 (t), 40.6 (t), 45.1 (t), 49.6 (d), 61.4 (t), 68.4 (s), 132.4 (s), 147.8 (s), 170.8 (s), 199.3 (s), 202.0 (s); major diastereoisomer: 14.0 (q), 15.7 (q), 23.7 (t), 27.1 (t), 28.6 (q), 40.5 (t), 45.3 (t), 51.8 (d), 61.6 (t), 67.5 (s), 131.7 (s), 149.9 (s), 172.5 (s), 199.0 (s), 203.0 (s); HR-MS (ES-TOF): m/z: calcd for C₁₅H₂₀O₄Na: 287.1259, found 287.1246 [M⁺ + Na].

Diethyl 3-benzoyl-4-methylcyclopent-3-ene-1,1-dicarboxylate (2i-a); Diethyl 3-benzoyl-4methylenecyclopentane-1,1-dicarboxylate (2i-b); and Diethyl 4-benzoyl-3-methylcyclopent-2-ene-1,1-dicarboxylate (2i-c)

Using **1i** (215 mg, 0.65 mmol), **2i** as isolated as a light yellow oil (109 mg, 51%), in 10:3:1 mixture of three isomers (**2i-a**: **2i-b**: **2i-c**); These isomers were inseparable by flash column chromatography. Analytically pure samples of each isomer were obtained by preparative HPLC ($t = 0 \rightarrow 65$ min

CH₃OH/H₂O 60:40).

Diethyl 3-benzoyl-4-methylcyclopent-3-ene-1,1-dicarboxylate (2i-a)

HPLC: $t_R = 53.2 \text{ min}; v_{max} \text{ (film)/cm}^{-1} 2982 \text{ (CH, CH}_2, \text{CH}_3), 1728 \text{ (CO}_2\text{Et} and CO), 1641 (C=C), 1597, 1579 (C=C Ar); <math>\delta_H(300 \text{ MHz}; \text{CDCI}_3) 1.26$ (6 H, t, J 7.1, 2 × CH₂CH₃), 1.66 (3 H, s, 7-H), 3.16-3.21 (2 H, m, CH₂), 3.36-3.43 (2 H, m, CH₂), 4.22 (4 H, q, J 7.1, 2 × CH₂CH₃), 7.40-7.48 (2 H,

m, Ar-H), 7.50-7.57 (1 H, m, Ar-H), 7.72-7.78 (2 H, m, Ar-H); $\delta_{C}(75.5 \text{ MHz}; \text{CDCl}_3)$ 14.0 (2 q, CH₂CH₃), 16.3 (q, 7-C), 42.9 (t, 3 or 5-C), 47.1 (t, 3 or 5-C), 57.3 (s, 4-C), 61.8 (2 t,

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

CH₂CH₃), 128.5 (2 d, Ar-C), 128.9 (2 d, Ar-C), 132.6 (d, Ar-C), 133.1 (s, 6-C), 138.6 (s, 2-C), 146.0 (s, Ar-C), 171.5 (2 s, CO_2Et), 195.3 (s, 1-C); m/z (TOF ES+) 353.1 ([M⁺ + Na], 100%).

Diethyl 3-benzoyl-4-methylenecyclopentane-1,1-dicarboxylate (2i-b)

HPLC: $t_R = 60.3 \text{ min}; v_{max}(\text{film})/\text{cm}^{-1} 2983 \text{ (CH, CH}_2, \text{CH}_3), 1728 \text{ (CO}_2\text{Et}$ and CO), 1683 (C=C), 1597, 1580 (C=C Ar); $\delta_{\rm H}(300 \ {\rm MHz}; {\rm CDCl}_3)$ 1.27 (3 H, t, J 7.1, CH₂CH₃), 1.27 (3 H, t, J 7.1, CH₂CH₃), 2.71 (2 H, d, J 8.7, 3-H), 2.96 (1 H, d, J 16.5, 5-H), 3.16 (1 H, ddt, J 16.5, 2.5, 2.5, 5-H), 4.17-4.29 (4 H, m, 2 × CH₂CH₃), 4.54-4.63 (1 H, m, 2-H), 4.73 (1 H, dd, J 4.0, 2.5, 7-H), 5.05 (1 H,

dd, J 4.0, 2.5, 7-H), 7.41-7.54 (2 H, m, Ar-H), 7.56-7.62 (1 H, m, Ar-H), 7.97-8.03 (2 H, m, Ar-H); $\delta_C(75.5 \text{ MHz}; \text{CDCl}_3)$ 14.0 (2 g, CH₂CH₃), 36.5 (t, 3-C), 41.3 (t, 5-C), 49.4 (d, 2-C), 58.9 (s, 4-C), 61.6 (t, CH₂CH₃), 61.7 (t, CH₂CH₃), 110.5 (t, 7-C), 128.7 (2 d, Ar-C), 129.1 (2 d, Ar-C), 133.2 (d, Ar-C), 136.9 (s, 6-C), 147.3 (s, Ar-C), 170.7 (s, CO₂Et), 171.7 (s, CO₂Et), 198.7 (s, 1-C); m/z (TOF ES+) 353.1 ([M⁺ + Na], 100%). Data were identical to those previously reported. Error! Bookmark not defined.

Diethyl 4-benzoyl-3-methyl-cyclopent-2-ene-1,1-dicarboxylate (2i-c)

HPLC: $t_R = 43.4 \text{ min}; v_{max}(\text{film})/\text{cm}^{-1} 2921 \text{ (CH, CH}_2, \text{CH}_3), 1730 \text{ (CO}_2\text{Et}$ and CO), 1682 (C=C), 1597 (C=C Ar); $\delta_{\rm H}(300 \text{ MHz}; \text{CDCl}_3)$ 1.20-1.30 (6 H, m, 2 × CH₂CH₃), 1.75-1.78 (3 H, m, 7-C), 2.63 (1 H, dd, J_{AB} 13.6, 6.2, 3-H),

2.94 (1 H, dd, J_{AB} 13.6, 9.1, 3-H), 4.12-4.29 (4 H, m, 2 × CH₂CH₃), 4.50-4.59 (1 H, m, 2-H), 5.71-5.75 (1 H, m, 5-H), 7.45-7.52 (2 H, m, Ar-H), 7.55-7.62 (1 H, m, Ar-H), 7.95-8.02 (2 H, m, Ar-H); $\delta_{C}(75.5 \text{ MHz}; \text{CDCl}_{3})$ 14.0 (2 q, CH₂CH₃), 16.0 (q, 7-C), 36.7 (t, 3-C), 54.9 (d, 2-C), 61.5 (t, CH₂CH₃), 61.7 (t, CH₂CH₃), 65.7 (s, 4-C), 126.5 (d, 5-C), 128.6 (2 d, Ar-C), 128.7 (2 d, Ar-C), 133.3 (d, Ar-C), 136.6 (s, 6-C), 144.1 (s, Ar-C), 170.5 (s, CO_2Et), 171.2 (s, CO_2Et), 199.8 (s, 1-C); m/z (TOF ES+) 353.1 ([M⁺ + Na], 100%).

4-Methylspiro[4.5]dec-3-ene-6-one (5a)

Using 4a (66 mg, 0.4 mmol), cyclized product 5a was obtained as a light brown liquid (40 mg, 61%); v_{max} /cm⁻¹ (neat) 2928, 2853, 1704; $\delta_{H}(300 \text{ MHz}; \text{CDCl}_3)$ 1.60-1.94 (8 H, m), 1.95-2.08 (3 H, m), 2.19-2.27 (2 H, m), 2.31-2.53 (2 H, m), 5a 5.48-5.53 (1 H, m); $\delta_{\rm C}$ (75.5 MHz; CDCl₃) 13.7 (q), 22.1 (t), 26.4 (t), 29.5 (t), 35.7 (t), 36.0 (t), 39.8 (t), 64.3 (s), 126.9 (d), 141.8 (s), 213.7 (s); HR-MS (EI): m/z: calcd for C₁₁H₁₆ONa: 164.1201, found 164.1203 [M⁺ + Na].

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

1-Methylspiro[4.7]dodec-1-en-6-one (5b)

Using **4b** (77 mg, 0.4 mmol), cyclized product **5b** was obtained as a brown liquid (45 mg, 58%); v_{max} /cm⁻¹ (neat) 2924, 2854, 1693; $\delta_{H}(300 \text{ MHz}; \text{CDCl}_{3})$ 0.93-1.11 (1 H, m), 1.28-1.43 (1 H, m), 1.43-1.74 (7 H, m), 1.74-1.77 (3 H, m), 1.81-1.94 (1 H, m), 2.13-2.28 (2 H, m), 2.32-2.59 (3 H, m), 2.78 (1 H, dt, *J* 11.4, 3.5), 5.41-5.46 (1 H, m); $\delta_{C}(75.5 \text{ MHz}; \text{CDCl}_{3})$ 14.3 (q), 24.6 (t), 25.8 (t), 26.3 (t), 30.2 (t), 30.5 (t), 32.6 (t), 32.6 (t), 39.2 (t), 66.0 (s), 128.6 (d), 141.3 (s), 218.4 (s); HR-MS (EI): *m/z*: calcd for C₁₃H₂₀O: 192.1514, found 192.1508 [M⁺].

6-Acetyl-2,3,4,5-tetrahydro-1H-pentalene-3a-carboxylic acid ethyl ester (7a)

Using **6a** (59.1 mg, 0.2 mmol), cyclized product **7a** was obtained as a clear yellow liquid (29.8 mg, 50%); v_{max} /cm⁻¹ (neat) 2929, 2857, 1723, 1684, 1662; $\delta_{H}(300 \text{ MHz}; \text{CDCl}_{3})$ 1.23 (3 H, t, J 7.1), 1.39-1.53 (1 H, m), 1.68-1.81 (1 H, m), 2.04-2.45 (4 H, m), 2.29 (3 H, s), 2.48-2.74 (2 H, m), 2.73-2.90 (1 H, m), 2.90-3.05 (1 H, m), 4.13 (2 H, q, J 7.1); $\delta_{C}(75.5 \text{ MHz}; \text{CDCl}_{3})$ 14.1 (q), 26.3 (t), 27.8 (t), 29.5 (q), 35.3 (t), 35.6 (t), 36.7 (t), 60.9 (t), 69.1 (s), 135.2 (s), 164.9 (s), 174.6 (s), 196.7 (s); HR-MS (ES): m/z: calcd for C₁₃H₁₈O₃Na: 245.1154, found 245.1156 [M⁺ + Na].

1-Acetyl-2,3,4,5,6,7-hexahydro-3aH-indene-3a-carboxylic acid ethyl ester (7b)

Using **6b** (55.0 mg, 0.2 mmol), cyclised product **7b** was obtained as a clear yellow liquid (26.6 mg, 48%); v_{max} /cm⁻¹ (neat) 2935, 2857, 1725, 1682, 1657, 1621; $\delta_{H}(300 \text{ MHz}; \text{CDCl}_{3})$ 1.22 (3 H, t, *J* 7.1), 1.28-1.50 (3 H, m), 1.59-1.76 (2 H, m), 1.77-1.89 (1 H, m), 1.94-2.10 (1 H, m), 2.12-2.22 (1 H, m), 2.25 (3 H, s), 2.44-2.74 (3 H, m), 3.32-3.44 (1 H, m), 4.13 (2 H, q, *J* 7.1); $\delta_{C}(75.5 \text{ MHz}; \text{CDCl}_{3})$ 14.2 (q), 23.4 (t), 26.7 (t), 26.9 (t), 30.6 (q), 32.2 (t), 35.5 (t), 38.3 (t), 60.4 (s), 60.7 (t), 135.7 (s), 155.0 (s), 175.0 (s), 198.8 (s); HR-MS (ES): *m/z*: calcd for C₁₄H₂₀O₃Na: 259.1310, found 259.1306 [M⁺ + Na].

Ethyl 2-oxo-1-(4-oxopentyl)cyclohexanecarboxylate (8b)

Product **8b** was obtained in small quantities as a side-product in the cyclisation of **6b** to **7b**; v_{max} /cm⁻¹ (neat) 2962, 2940, 2864, 1739, 1706; $\delta_{H}(300 \text{ MHz};$ CDCl₃) 1.24 (3 H, t, *J* 7.1), 1.36-1.83 (8 H, m), 1.91-2.04 (1 H, m), 2.10 (3 H, s), 2.32-2.54 (5 H, m), 4.18 (2 H, q, *J* 7.1); $\delta_{C}(75.5 \text{ MHz}; \text{CDCl}_{3})$ 14.1 (q), 18.6 (t), 22.5 (2t), 27.5 (t), 29.8 (q), 33.9 (t), 41.0 (t), 43.7 (t), 60.7 (s), 61.2 (t), 171.8 (s), 207.9 (s), 208.3 (s); HR-MS (ES): *m/z*: calcd for C₁₄H₂₂O₄Na: 277.1416, found 277.1411 [M⁺ + Na].

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

2-(3-Oxocyclohexyl)-2-(2-oxopropyl)malonic acid diethyl ester (10)¹⁰

A mixture of 2-(3-oxocyclohexyl)-2-prop-2-ynylmalonic acid diethyl ester (100 mg, 0.34 mmol), NaAuCl₄.2H₂O (4 mg, 0.01 mmol) in 1.36 mL of MeOH-H₂O (10:1) was irradiated by ultrasound at rt for 5 h. Saturated NH₄Cl_(aq) (20 mL) was then added, followed by diethyl ether (20 mL). The two layers were

separated. The organic layer was washed with saturated aqueous NaCl (20 mL), dried over Na₂SO₄, filtered, and the solvent removed under reduced pressure. The residue was purified by flash chromatography (hexane/ethyl acetate: 8/2) to afford **10** as a light yellow oil (30 mg, 28%); $\delta_{\rm H}(300 \text{ MHz}; \text{CDCl}_3)$ 1.25 (6 H, t, *J* 7.1), 1.32-1.50 (2 H, m), 1.50-1.72 (1 H, m), 1.89-2.53 (6 H, m), 2.17 (3 H, s), 3.04 (1 H, d, *J* 17.8), 3.11 (1 H, d, *J* 17.8), 4.20 (4 H, q, *J* 7.1); $\delta_{\rm C}(75.5 \text{ MHz}; \text{CDCl}_3)$ 13.9 (2q), 24.6 (t), 27.3 (t), 30.0 (q), 41.0 (t), 42.7 (d), 43.8 (t), 46.0 (t), 58.4 (s), 61.6 (2t), 169.6 (s), 169.7 (s), 204.4 (s), 209.5 (s); *m/z* (ES) 335.1483 (calc. for [M⁺ + Na] C₁₆H₂₄O₆Na: 335.1471).

¹⁰ Imi, K.; Imai, K.; Utimoto, K. *Tetrahedron Lett.* **1987**, 28, 3127.

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

¹H and ¹³C NMR Spectra of Cyclisation Precursors

¹H and ¹³C NMR spectra of (1a)

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

¹H and ¹³C NMR spectra of (1b)

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

¹H and ¹³C NMR spectra of (1c)

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

¹H and ¹³C NMR spectra of (1d)

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

¹H and ¹³C NMR spectra of (1e)

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

¹H and ¹³C NMR spectra of (1f)

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

¹H and ¹³C NMR spectra of (1g)

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

¹H and ¹³C NMR spectra of (1h)

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

¹H and ¹³C NMR spectra of (6a)

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

¹H and ¹³C NMR spectra of (6b)

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

¹H and ¹³C NMR spectra of (4a)

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

¹H and ¹³C NMR spectra of (4b)

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

¹H and ¹³C NMR Spectra of Cyclisation Products

¹H and ¹³C NMR spectra of (2a)

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

¹H and ¹³C NMR spectra of (2b)

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

¹H and ¹³C NMR spectra of (2c)

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

¹H and ¹³C NMR spectra of (2d)

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

¹H and ¹³C NMR spectra of (2e-a)

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

¹H and ¹³C NMR spectra of (2e-b) and (2e-c)

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

¹H and ¹³C NMR spectra of (2f)

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

¹H spectra of (3g)

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

¹H and ¹³C NMR spectra of (2h)

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

¹H and ¹³C NMR spectra of (2i-c)

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

¹H and ¹³C NMR spectra of (5a)

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

¹H and ¹³C NMR spectra of (5b)

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

¹H and ¹³C NMR spectra of (7a)

- S42 -

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

¹H and ¹³C NMR spectra of (7b)

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

¹H and ¹³C NMR spectra of (8b)

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

¹H and ¹³C NMR spectra of (10)

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

Aldol dehydration of diketone 10

AgOTf (2.6 mg, 0.012 mmol) and Ph₃PAuCl (5.9 mg, 0.012 mmol) were added into a dried Schlenk tube under an argon atmosphere followed by the addition of CH₂Cl₂ (2 mL). The reaction mixture was stirred for 1 min, before a solution of diketone **10** (4.3 mg, 13.7 µmol) diluted in CH₂Cl₂ (14 µL) was added. After 2 h, no consumption of diketone was observed. Ketoalkyne **1a** (2.7 mg, 9.1 µmol) was added to the reaction mixture and after 1 min the formation of cyclised product could be observed by TLC. The reaction was then stirred for 24 h and the solution filtered through a short pad of silica gel (hexane/EtOAc: 6/4). The solvent was removed under reduced pressure [Mass of residue 7.9 mg]. 1,2,4,5-tetramethyl benzene (2.8 mg, 20.8 µmol) was added as internal standard. NMR analysis shows formation of **2a** (13.1 µmol) and unreacted **10** (0.31 µmol).

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

Catalysis reaction of 1a monitored by ¹H NMR

Gold-Catalysed Room-Temperature Cycloisomerisation of Alkynes and Unactivated Enolisable Ketones

P. W. Davies and C. Detty-Mambo

AgOTf (2.6 mg, 0.012 mmol) was added into a dried Schlenk under argon atmosphere followed by the addition of Ph₃PAuCl (5.9 mg, 0.012 mmol). Immediately after this addition, a solution of the **1a** (58.7 mg, 0.2 mmol) in CD₂Cl₂ (0.8 mL) was added by syringe. The mixture was stirred at rt for 2 min and then was transferred via a pipette into the NMR tube under argon, filtering through a piece of cotton wool. The Schlenk and the cotton were washed with CD₂Cl₂ (0.2 ml) and this was added to the NMR tube. The NMR tube was capped and the first NMR acquisition was made 15 min after the beginning of the reaction. The reaction was monitored by NMR. After 4.5h, a solution of diketone **10** (0.1 mL, 0.1 M in CD₂Cl₂) was added into the NMR tube. A second addition of **10** (0.05 mL, 0.2 M in CD₂Cl₂) was made after 18.5h. The reaction was monitored until consumption of both **1a** and **10**.

