Electronic Supplementary Information (ESI)

Novel tryptophan metabolites, chromoazepinone A, B and C, produced by a blocked mutant of *Chromobacterium violaceum*, the biosynthetic implications and the biological activity of chromoazepinone A and B

Takaaki Mizuoka, ^a Kazufumi Toume, ^b Masami Ishibashi ^b and Tsutomu Hoshino, ^a *

a Department of Applied Biological Chemistry, Faculty of Agriculture, and Graduate School of Science and Technology, Niigata University, Nishi-ku, Ikarashi 2-8050, Niigata 950-2181, Japan

b Graduate School of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

	Contents	page
1.	Spectroscopic data of the methyl ester of chromoazepinone A (5)	S3-S5
	Figure S1. EIMS	
	Figure S2. ¹ H- NMR in DMSO d_6	
	Figure S3. ¹³ C NMR spectrum in DMSO d_6	
	Figure S4. UV-Visible spectrum in MeOH	
	Figure S5. IR Spectrum (KBr tablet)	
	Figure S6. Analyses and assignments of NMR data and its other physical of	lata
2.	Spectroscopic data of chromoazepinone B (6)	S6-S8
	Figure S7. EIMS spectrum	
	Fig. S8. ¹ H-NMR spectrum in DMSO d_6	
	Figure S9. ¹³ C-NMR spectrum in DMSO d_6	
	Figure S10. UV-visible spectrum and its change as a function of pH.	
	Figure S11. IR spectrum (KBr tablet)	
	Figure S12. Analyses and assignments of NMR data and its other physical	data
3.	Spectroscopic data of the methyl ester of chromoazepinone B (6)	S9-S11
	Figure S13. EIMS spectrum	
	Figure S14. ¹ H NMR spectrum in DMSO d_6	
	Figure S15. ¹³ C NMR spectrum in DMSO d_6	
	Figure S16. UV-visible spectrum dissolved in MeOH	
	Figure S17. Analyses and assignments of NMR data and its physical data	
4.	Spectroscopic data of the methyl ester of chromoazepinone C (7)	S11-S14
	Figure S18. EIMS spectrum	
	Figure S19. ¹ H NMR spectrum in DMSO d_6	
	Figure S20. ¹³ C NMR spectrum in DMSO d_6	
	Figure S21. UV-visible spectrum in MeOH	
	Figure S22. IR spectrum (KBr tablet)	
	Figure S23. Analyses and assignments of NMR data and its physical data	
5.	Spectroscopic data of arcyriarubin A (9)	S14-S17
	Figure S24. EIMS spectrum	
	Figure S25. ¹ H-NMR spectrum in DMSO- d_6	
	Figure S26. ¹³ C-NMR spectrum in DMSO- d_6	
	Figure S27. UV-visible spectrum in MeOH	
	Figure S28. IR spectrum (KBr tablet)	
	Figure S29. Analyses and assignments and its physical data	

1. Spectroscopic data of the methyl ester of chromoazepinone A (5)

Fig. S1. EIMS spectrum

Fig. S2. ¹H NMR spectrum of Me ester of **5** inDMSO-*d*₆

Fig. S3. ¹³C NMR spectrum of Me ester of **5** inDMSO- d_6

Fig. S4. UV-Visible spectrum of Me ester of 5 in MeOH

Fig. S5. IR Spectrum of Me ester of 5

Fig. S6. Analyses and assignments of NMR data and its other physical data

Compound **5** $[\alpha]_D^{20} = + 56.0 (c=0.16, EtOH);$ UV(MeOH) λ_{max} (log ε) 272 (4.30), 289 (4.31), 331 shoulder (3.89), 428 (3.70) nm Me ester of Compound **5** UV (MeOH) λ_{max} (log ε) 270 (4.14), 289 (4.23), 425 (3.66) nm; IR (KBr) ν_{max} 1690, 1640, 1518, 1260, 740 cm⁻¹ HREIMS of Me ester of **5** m/z M⁺ 371.1272 (calcd for C₂₂H₁₇O₃N₃, 371.1270)

Methyl ester of Compound ${\bf 5}$

400 MHz, DMSO-d ₆	The solvent peak: $\delta_{\rm H}$ =2.49, $\delta_{\rm C}$ =39.50
------------------------------	---

Pos	ition	$^{1}\mathrm{H}$	¹³ C	Position	¹ H	¹³ C	Positio	on ¹ H	¹³ C	Position	1 ^I H	¹³ C	Position	$^{1}\mathrm{H}$	¹³ C
1	7	.09 (s)	102.8 (d)	5a	_	133.6(s)	9 7.	14 (t, J=7.9 Hz) 120.2(d)	2'	6.46 (d, J=1.5 Hz)	123.6(d)	6' 7.0	06 (t, J=8.0 Hz)	121.4(d)
2			130.8 (s)	6	11.99 (br s)		10 7.	90 (d, J=7.9 H	z) 120.6(d)	3'	—	108.8(s)	7' 7.2	8 (d, J=8.0 Hz)	111.5(d)
3	7.0	7 (d, J=6.1	Hz) —	6a		137.5(s)	10a		125.4(s)	3'a		125.9(s)	7'a		136.0(s)
4	5.46	(d, J=6.1 l	Hz) 56.97 (d)	7 7.47	(d, J=7.9 Hz	z) 112.5(d)	10b		120.4(s)	4' 7	7.81 (d, J=8.0 Hz)	118.8(d)	11	—	165.4(s)
5			182.5 (s)	8 7.37 ((t, J=7.9 Hz)	126.4(d)	1'	10.75 (brs)		5'	6.99 (t, J=8.0 Hz)	118.8(d)	12	3.75 (3H, s)	52.40(q)

2. Spectroscopic data of chromoazepinone B (6)

Fig. S7. EIMS spectrum

El Mass Spectrum of compound 6

Fig. S8. ¹H-NMR spectrum in DMSO d_6

Fig. S9. ¹³C-NMR spectrum in DMSO d_6

Fig. S10. UV-visible spectrum of **6** and its change as a function of pH.

Fig. S11. IR spectrum (KBr tablet) of 6

COSY

Fig. S12. Analyses and assignments of NMR data and its other physical data

 $\begin{array}{l} \text{UV(MeOH): pH 2.0, } \lambda_{\max} \ (\log \ \varepsilon) \ 282 \ (4.18), \ 322 \ (4.20), \ 422 \ (4.15), \ 550 \ (3.95) \ \text{nm; pH 7 \& 12, } \lambda_{\max} \ (\log \ \varepsilon) \ 282 \ (4.26), \ 322 \ (4.32), \ 405 \ (4.21) \ \text{nm.} \ \text{HREIMS } m/z \ \text{M}^+ \ 355.0930 \ (\text{calcd for } C_2 | H_{13} O_3 N_3, \ 355.0957) \end{array}$ The solvent peak: $\delta_{\rm H}$ =2.49, $\delta_{\rm C}$ =39.50 400 MHz, DMSO-d₆

Positior	¹ H	¹³ C	Position	$^{1}\mathrm{H}$	¹³ C	Position	1 ¹ H	¹³ C	Position	1 ¹ H	¹³ C	Position	$^{1}\mathrm{H}$	¹³ C
1	8.73 (s)	119.0	5a	_	140.0	9 ^{7.4}	0 (t, J=7.6 Hz)	122.2	2'	9.00 (s)	133.1	6'	7.22 (t, J=7.9 Hz)	122.6
2		134.8	6 13.1	17 (very brs)		10 8.3	9 (d, J=7.6 Hz)	121.9	3'	—	115.4	7'	7.48 (d, J=7.9 Hz)	111.6
3		_	6a -		139.0	10a	—	125.2	3'a		126.8	7'a	—	136.3
4	_	153.4	7 7.71	(d, J=7.6 Hz)	113.2	10b		122.4	4'	9.38 (d, J=7.9 Hz)	124.1	11	—	168.5
5	—	170.6	8 7.62	(t, J=7.6 Hz)	128.6	1'	11.80 (s)	—	5'	7.17(t, J=7.9 Hz)	121.1			

3. Spectroscopic data of methyl ester of chromoazepinone B (6)

Fig. S13. EIMS spectrum

Fig. S14. ¹H NMR spectrum in DMSO d_6

Fig. S15. ¹³C NMR spectrum in DMSO d_6

Fig. S16. UV-visible spectrum dissolved in MeOH (8.67x10⁻⁵M)

S10

IR spectrum of compound 6-Me ester; Not Measured

Fig. S17. Analyses and assignments of NMR data and its physical data

4. Spectroscopic data of the methyl ester of chromoazepinone C (7)

Fig. S18. EIMS spectrum

Fig. S20. ¹³C NMR spectrum of compound 7-Me ester in DMSO d_6

Fig. S22. IR spectrum of compound 7- Me ester (KBr tablet)

Fig. S23. Analyses and assignments of NMR data of -Me ester of 7 and its physical data

 $\begin{array}{l} \mbox{Compound 7} \\ \left[\alpha \right]_D{}^{20} = +\ 26.6\ (c{=}0.15,\ EtOH); \\ \mbox{Me ester of Compound 7} \\ \mbox{UV (MeOH)} \ \lambda_{max}\ (\log\ e)\ 280\ (4.04),\ 285 \\ (3.99),\ 347\ (3.93)\ nm;\ IR\ (KBr)\ \nu_{max}\ 1702, \\ 1640,\ 1620,\ 1258,\ 740\ cm^{-1} \end{array}$

HREIMS of Me ester of **7** *m/z* M⁺ 371.1275 (calcd for C₂₂H₁₇O₃N₃, 371.1270)

400 MHz, DMSO- d_6 The solvent peak: $\delta_{\rm H}$ =2.49, $\delta_{\rm C}$ =39.50

Positio	m ¹ H	¹³ C	Position	$^{1}\mathrm{H}$	¹³ C	Positio	n ¹ H	¹³ C	Position	¹ H	¹³ C	Position	$^{1}\mathrm{H}$	¹³ C
1	7.67 (s)	115.5	5a	_	136.3 ^{<i>a</i>}	9 7	.15 (t, J=8.0 Hz)	120.4	2' 6.6	7 (d, <i>J</i> =1.9 Hz)	122.8	6' 7.0	5(t, <i>J</i> =8.0 Hz)	121.4
2	_	119.6	6 11	.86 (brs)		10 7.	75 (d, J=8.0 Hz)	118.1	3'		106.9	7' 7.3	l (d, J=8.0 Hz)	111.5
3	9.11 (s)		6a -		136.3	10a		126.0	3'a	—	125.7	7'a	—	136.2 ^{<i>a</i>}
4	<u> </u>	166.3	7 7.47	(d, J=8.0 Hz)	112.0	10b		107.9	4' 7.5	5 (d, J=8.0 Hz)	118.2	11	—	163.8
5	5.42 (d)	45.51	8 7.21	(t, J=8.0 Hz)	122.4	1'	10.89 (brs)		5' 6.9	97 (t, <i>J</i> =8.0 Hz)	118.7	12 3	.74 (3H, s)	52.37

The chemical shifts of C-5a, C-6a and C-7'a are interchangeable due to the very close values.

5. Spectroscopic data of arcyriarubin A (9)

Fig. S24. EIMS spectrum of compound 10

Fig. S25. ¹H-NMR spectrum of compound **9** dissolved in DMSO- d_6

Fig. S26. ¹³C-NMR spectrum of compound **9** dissolved in DMSO- d_6

Fig. S27. UV-visible spectrum of compound **9** dissolved in MeOH.

Fig. S28. IR spectrum of compound 9 (KBr)

Fig. S29. Analyses and assignments of NMR data of compound 9 and its physical data

UV (MeOH) λ_{max} (log ϵ) 276.5 (4.05), 369.0 (3.71), 458.0 (3.85) nm; IR (KBr) ν_{max} 3390, 1750, 1700, 1530, 1340, 740 cm⁻¹ HREIMS *m/z* M⁺ 327.1020 (calcd for C₂₀H₁₃N₃O₂, 327.1008)

400 MHz, DMSO- <i>d</i> ₆	The solvent peak: $\delta_{\rm H}$ =2.49, $\delta_{\rm C}$ =39.50
100 11112, 211100 46	The solvent peak. of 2.19, of 59.50

Position ¹ H ¹³ C	Position ¹ H	¹³ C	Position ¹ H	¹³ C	Position	$^{1}\mathrm{H}$	¹³ C
1 & 1' 11.65 (s) —	3a & 3'a —	126.0 (s)	6 & 6' 6.99 (t, 8.0 Hz)	122.2 (d)	8 & 8'		128.3 (s)
2 & 2' 7.73 (d, 2.5 Hz) 129.7 (d)	4 & 4' 6.80 (d, 8.0 Hz)	121.5 (d)	7 & 7' 7.36 (d, 8.0 Hz)	112.3 (d)	9 & 9'	—	173.6 (s)
3 & 3' 106.2 (s)	5 & 5' 6.64 (t, 8.0 Hz)	119.9 (d)	7a & 7'a 🛛 ——	136.57 (s)	10	10.89 (s)	