ELECTRONIC SUPPORTING INFORMATION

A New Tool for Photoaffinity Labeling Studies: a Conformationally Rigidified, Benzophenone Based, α-Amino Acid

Karen Wright, Alessandro Moretto, Marco Crisma, Michel Wakselman, Jean-Paul Mazaleyrat, Fernando Formaggio, and Claudio Toniolo

TLC of Z-(RS)-BpAib-(S)-Phe-NHChx separation.	S1
¹ H and ¹³ C NMR spectra	S2
X-Ray diffraction data of Z-(R)-BpAib-(S)-Phe-NHChx 8a	S11
Mass spectrum of the photoreaction products	S12

TLC of Z-(*RS*)-BpAib-(*S*)-Phe-NHChx separation. (Kieselgel F 254, Merck). Eluent : Cyclohexane : Ethyl acetate 1 : 1. Left lane : Z-(*S*)-BpAib-(*S*)-Phe-NHChx **7a** Rf 0.45 Middle lane : Z-(*RS*)-BpAib-(*S*)-Phe-NHChx (artificial mixture) Right lane : Z-(*R*)-BpAib-(*S*)-Phe-NHChx **8a** Rf 0.37

¹H and ¹³C NMR spectra

3,4-bis-(bromomethy)lbenzophenone 3

H-(RS)-BpAib-OEt 4

Z-(RS)-BpAib-OH 5

Z-(S)-BpAib-(S)-Phe-NHChx 7a

Z-(R)-BpAib-(S)-Phe-NHChx 8a

Bz-(RS)-BpAib-OH 6

Bz-(S)-BpAib-(S)-Phe-NHChx 7b

Bz-(R)-BpAib-(S)-Phe-NHChx 8b

Boc-(S)-BpAib-OMe 9

X-Ray diffraction data of 8a

S11

Single crystals of Z-(R)-BpAib-(S)-Phe-NHChx were grown by slow evaporation from a dichloromethane – methanol solution. Diffraction data were collected at T = 293(2) K with CuK α radiation ($\lambda = 1.54178$ Å) using a Philips PW 1100 diffractometer in the $\theta - 2\theta$ scan mode up to $\theta =$ 55°. The crystal did not significantly diffract at higher resolution. Cell parameters were obtained by least-squares refinement of the angular settings of 48 carefully centered reflections in the $12 - 18^{\circ} \theta$ range. Three standard reflections, periodically monitored, showed an intensity decay that reached 15% at the end of data collection. Intensities were re-scaled accordingly. Intensities were corrected for Lorentz and polarization effects, but not for absorption. The structure was solved by direct methods with the SIR 2002 program [S1]. The asymmetric unit is composed of one peptide molecule and one co-crystallized dichloromethane molecule. Refinement was carried out by fullmatrix block least-squares procedures on F^2 , using all data, by application of the SHELXL 97 program [S2], and allowing the positional parameters and the anisotropic displacement parameters of the non-hydrogen atoms to refine at alternate cycles. All non-hydrogen atoms were refined anisotropically. A common population parameter for the atoms of the co-crystallized dichloromethane molecule refined to the value of 0.712(7). Hydrogen atoms were calculated at idealized positions and refined using a riding model.

Formula: $C_{40}H_{41}N_3O_5 \times 0.71$ CH₂Cl₂; formula weight: 703.2; orthorhombic, space group P2₁2₁2₁; unit cell parameters: a = 10.949(3), b = 14.354(3), c = 24.633(5) Å; V = 3871.4(15) Å³; Z = 4; $D_{calcd} = 1.207$ Mg m⁻³; crystal size: $0.50 \times 0.20 \times 0.10$ mm³; 3104 reflections collected, of which 3061 independent ($R_{int} = 0.045$); index ranges: $-1 \le h \le 11$, $0 \le k \le 15$, $0 \le l \le 26$; data / parameters: 3061/414; $R_1 = 0.0678$ [on $F \ge 4\sigma(F)$]; $wR_2 = 0.2070$ (on F^2 , all data); goodness of fit on F^2 : 1.019; Flack parameter 0.95(7); largest peak and hole in the final difference Fourier map: 0.413 and -0.222 e Å⁻³.

Crystallographic data (including atomic coordinates, bond distances, bond angles, torsion angles, intra- and intermolecular H-bonds parameters) have been deposited at The Cambridge Crystallographic Data Centre with deposition number CCDC-746110, and may be found in the Supporting Information as a CIF file.

Supporting references

- [S1] Burla, M. C.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; Giacovazzo, C.; Polidori, G.; Spagna, R. J. Appl. Crystallogr. 2003, 36, 1103.
- [S2] Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112-122.

Mass spectrum of the mixture of the two diastereomeric products (11A and 11B) isolated after the photoreaction.

