# Organocatalytic Michael addition of unprotected 3-substituted oxindoles to nitroolefins 

Miao Ding, Feng Zhou, Zi-Qing Qian and Jian Zhou*

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China, E-mail: jzhou@chem.ecnu.edu.cn

General: Reactions were monitored by thin layer chromatography using UV light to visualize the course of reaction. Purification of reaction products were carried out by flash chromatography on silica gel. Chemical yields refer to pure isolated substances. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained using a Bruker DPX-300 spectrometer. Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard. The following abbreviations were used to designate chemical shift multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{h}=$ heptet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad.

All reactions were run under air except noted. Anhydrous halogenated solvents were prepared by first distilled over $\mathrm{P}_{2} \mathrm{O}_{5}$ and then from $\mathrm{CaH}_{2}$. Anhydrous acetone was distilled over anhydrous $\mathrm{CaSO}_{4}$ and stored over MS $4 \AA$. Cinchonidine and Quinidine were purchased from Aldrich, and Bifunctional quinidine derived thiourea catalyst $\mathbf{1 0}^{1}$ was prepared using a literature method. 3 -substituted oxindoles $\mathbf{1}^{2}$ and nitroolefins $7^{3}$ were prepared according to literature reports.

## General procedure for the Michael Addition of oxindole 1 to nitroolefin 7.



To a 5 mL vial were added quinidine $\mathbf{Q D}$ ( 0.025 mmol ), 3-substituted oxindoles $\mathbf{1}$ ( 0.25 mmol ) and 2.5 mL of anhydrous acetone, followed by 7 ( 0.275 mmol ). The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ till almost full conversion of $\mathbf{1}$ by TLC analysis. To determine the diastereoselectivity, 0.5 mL of crude mixture was taken for ${ }^{1} \mathrm{H}$ NMR analysis. And then the sample for analysis and the rest of the reaction mixture were

[^0]recombined and concentrated under reduced pressure, and then directly subjected to column chromatography to afford the desired product $\mathbf{8}$, using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent. Of the 14 examples of product 8a-n we obtained, the major diastereomer of nine products 8 could be obtained as pure compound after recrystallization, using a mixed solvent of petroleum and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.


Product 8a was obtained in $96 \%$ yield as white powder, and the pure major diastereomer was obtained after recrystallization: ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.32(\mathrm{~m}$, 5H), 7.26-7.21 (m, 1H), 7.09-6.96 (m, 3H), 6.84-6.82 (m, 2H), 6.73 $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.03-4.95(\mathrm{~m}, 1 \mathrm{H}), 4.83-4.70(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ): $\delta 177.3,141.6,135.7,133.4,129.4,129.2,128.2,128.4,128.1,128.0,127.7$, 127.6, 126.4, 122.4, 110.7, 76.2, 60.0, 50.4; IR (KBr): 3191, 3066, 3032, 1702, 1618, 1554, 1472, 1375, 1233, 699; MS (EI): $358\left(\mathrm{M}^{+}, 5\right), 359\left[(\mathrm{M}+\mathrm{H})^{+}, 1\right], 208$ (100), 91 (30), 209 (28), 77 (18), 43 (17), 180 (14), 55 (12), 104 (11); HRMS (EI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$ : 358.1317, Found: 358.1319.


Product $\mathbf{8 b}$ was obtained in $87 \%$ yield as white powder. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.39-8.28(\mathrm{~m}, 0.21 \mathrm{H}), 7.78-7.73(\mathrm{~m}, 0.79 \mathrm{H})$, 7.62-7.55 (m, 2H), 7.46-7.37 (m, 3H), 7.15-6.90 (m, 5H), 6.89-6.85 $(\mathrm{m}, 2 \mathrm{H}), 6.75-6.67(\mathrm{~m}, 0.79 \mathrm{H}), 6.55-6.52(\mathrm{~m}, 0.21 \mathrm{H}), 5.46-5.37(\mathrm{~m}, 0.21 \mathrm{H}), 5.01-4.93$ $(\mathrm{m}, 0.79 \mathrm{H}), 4.84-4.62(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 179.2,178.0,160.0$, $157.0,137.8,137.2,137.1,135.3,135.0,133.5,133.4,133.2,133.1,133.0,129.6$, $129.2,128.8,128.7,128.6,128.4,128.3,128.2,128.1,128.0,127.3,126.4,126.3$, $116.2,116.0,115.0,114.7,114.3,114.0,112.6,112.5,112.3,111.5,111.4,110.8$, $110.7,75.8,75.4,60.8,60.6,50.0,49.8,49.7$; IR (KBr): 3389, 3231, 2922, 2866, 2362, 1723, 1557, 1488, 1461, 1375; MS (EI): $376\left(\mathrm{M}^{+}, 4\right), 377\left[(\mathrm{M}+\mathrm{H})^{+}, 1\right], 226$ (100), 227 (43), 198 (23), 104 (11), 170 (8), 77 (7), 228 (6), 199 (6); HRMS (EI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~F}: 376.1223$, Found: 376.1223.

Product 8c was obtained in $95 \%$ yield as white powder, and the
 pure major diastereomer was obtained after recrystallization: ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.61-7.55(\mathrm{~m}, 3 \mathrm{H}), ~ 7.49-7.36(\mathrm{~m}, 5 \mathrm{H})$, 7.15-7.03 (m, 3H), 6.89-6.86 (m, 2H), $6.62(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, 5.01-4.93 (m, 1H), 4.83-4.69 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 176.6,140.6$, 134.9, 133.1, 132.4, 130.1, 129.4, 129.3, 128.9, 128.7, 128.4, 128.2, 127.4, 115.0, 112.0, 75.9, 60.2, 50.2; IR (KBr): 3409, 3243, 2923, 2852, 2361, 1721, 1617, 1556, 1476, 698; MS (EI): 436 ( ${ }^{+}$, 4), 288 (100), 286 (93), 207 (52), 287 (42), 289 (42), 179 (29), 178 (27), 104 (24); HRMS (EI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Br}$ : 436.0423, Found: 436.0420.


Product $8 d$ was obtained in $92 \%$ yield as white powder. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 7.95-7.75 (m, 5H), 7.51-7.26 (m, 6H), 7.21-6.82 $(\mathrm{m}, 5 \mathrm{H}), 6.70-6.80(\mathrm{~m}, 0.83 \mathrm{H}), 6.65-6.55(\mathrm{~m}, 0.17 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 177.5,141.7,133.4,133.1,133.0,132.9,129.5$, 129.2, 128.9, 128.2, 128.0, 127.9, 127.7, 127.5, 127.3, 126.8, 126.7, 126.5, 126.4, 124.6, 122.7, 122.5, 110.8, 76.2, 60.1, 50.3; IR (KBr): 3413, 3060, 2362, 1712, 1619, 1554, 1473, 1372, 749, 700; MS (EI): 408 (M ${ }^{+}$, 6), 258 (100), 208 (61), 43 (49), 57 (40), 55 (37), 259 (31). 41 (30), 91 (29); HRMS (EI): Exact mass calcd for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$ : 408.1474, Found: 408.1479.


Product 8 e was obtained in $95 \%$ yield as white powder. ${ }^{1} \mathrm{H}$ NMR
( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.95-7.85(\mathrm{~m}, 0.17 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 1.83 \mathrm{H})$,
7.40-7.24 (m, 5H), 7.17-7.06 (m, 4H), 6.85-6.82 (m, 2H), 6.75-6.72
$(\mathrm{m}, 0.83 \mathrm{H}), 6.62-6.60(\mathrm{~m}, 0.17 \mathrm{H}), 5.40-5.30(\mathrm{~m}, 0.17 \mathrm{H}), 5.02-4.93$ $(\mathrm{m}, 0.83 \mathrm{H}), 4.77-4.59(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 176.7,141.5,134.7$, 134.2, 133.2, 129.7, 129.3, 129.0, 128.9, 128.3, 128.1, 127.2, 126.3, 122.7, 110.8, 76.1, 59.5, 50.6; IR (KBr): 3422, 2361, 1710, 1619, 1553, 1491, 1472, 1377, 1097, 1014; MS (EI): 392 (M ${ }^{+}$5), 242 (100), 207 (34), 243 (32), 244 (29), 43 (23), 104 (21), 57 (18), 41 (17); HRMS (EI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Cl}$ : 392.0928, Found:


Product $\mathbf{8 f}$ was obtained in $95 \%$ yield as white powder, and the pure major diastereomer was obtained after recrystallization: ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.65-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.26(\mathrm{~m}, 8 \mathrm{H}), 7.15(\mathrm{~s}$, $1 \mathrm{H}), ~ 7.02-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.76-6.74(\mathrm{~m}, 1 \mathrm{H}), 5.04-4.87(\mathrm{~m}, 2 \mathrm{H})$, 4.77-4.73 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 176.8,141.4,137.8$, 135.2, 129.8, 129.4, 129.3, 128.7, 127.5, 127.1, 126.4, 125.0, 124.9, 122.7, 110.9, 75.9, 59.6, 50.1; IR (KBr): 3145, 3085, 3037, 2894, 2838, 2361, 1707, 1620, 1594, 1473; MS (EI): 426 (M ${ }^{+}, 1$ ), 208 (100), 209 (21), 180 (19), 57 (15), 43 (15), 149 (10), 71 (10), 41 (9); HRMS (EI): Exact mass calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~F}_{3}$ : 426.1191, Found: 426.1190.


Product $\mathbf{8 g}$ was obtained in $92 \%$ yield as white powder, and the pure major diastereomer was obtained after recrystallization: ${ }^{1} \mathrm{H}$ NMR (300 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 7.64-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.34(\mathrm{~m}, 5 \mathrm{H})$, 7.28-7.23 (m, 2H), 7.05-7.02 (m, 2H), 6.82-6.75 (m, 3H), 4.98-4.90 $(\mathrm{m}, 1 \mathrm{H}), ~ 4.83-4.69(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 176.9$, $141.5,135.4,134.2,132.1,130.3,129.7,129.3,128.6,128.3,127.5,127.3,126.4$, 122.6, 110.8, 76.0, 59.8, 49.8; IR (KBr): 3395, 3254, 3060, 2362, 1721, 1700, 1619, 1551, 1473, 1375; MS (EI): 392 (M ${ }^{+}, 1$ ), 208 (100), 209 (26), 180 (20), 152 (10), 77 (9), 43 (8), 138 (7), 153 (7); HRMS (EI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Cl}$ : 392.0928, Found: 392.0931.


Product $\mathbf{8 h}$ was obtained in $85 \%$ yield as white powder, and the pure major diastereomer was obtained after recrystallization: ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.72-7.65(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.24(\mathrm{~m}, 7 \mathrm{H})$, 6.88-6.83 (m, 2H), 6.33 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 5.56-5.49 (m, 1H), 4.78 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 176.4,141.6,137.2,135.3$, 134.6, 131.2, 120.0, 129.9, 129.1, 128.6, 127.7, 127.4, 126.7, 126.5, 122.7, 110.9,
76.6, 58.9, 44.6; IR (KBr): 3395, 3141, 3087, 3035, 2893, 2841, 2361, 1712, 1620, 1552, 1473; MS (EI): 426 (M ${ }^{+}$2), 208 (100), 209 (23), 43 (20), 180 (17), 91 (16), 59 (15), 69 (14), 74 (14); HRMS (EI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Cl}_{2}$ : 426.0538, Found: 426.0539.


Product $\mathbf{8 i}$ was obtained in $92 \%$ yield as white powder, and the pure major diastereomer was obtained after recrystallization: ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.71-7.69(\mathrm{~m}, 3 \mathrm{H}), 7.59-7.30(\mathrm{~m}, 9 \mathrm{H})$, 6.95-6.87 (m, 2H), 6.64-6.61 (m, 1H), 5.15-4.97 (m, 2H), 4.93-4.72 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 176.5,141.5,135.6,132.8$, $132.7,131.1,129.4,129.2,128.9,128.8$, 128.4, 127.7, 127.6, 127.3, 126.5, 126.2, 126.1, 125.9, 122.4, 110.5, 76.6, 59.9, 50.6; IR (KBr): 3387, 3143, 3059, 3030, 2361, 1705, 1619, 1548, 1471, 1377; MS (EI): 408 ( ${ }^{+}, 2$ ), 208 (100), 209 (76), 154 (40), 180 (32), 152 (30), 153 (22), 77 (11), 57 (11); HRMS (EI): Exact mass calcd for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$ : 408.1474, Found: 408.1471.


Product $\mathbf{8 j}$ was obtained in $95 \%$ yield as white powder, and the pure major diastereomer was obtained after recrystallization: ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.63-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.24(\mathrm{~m}, 7 \mathrm{H})$, 7.03-7.01 (m, 1H), $6.83(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.74(\mathrm{~m}, 2 \mathrm{H})$, 5.21-5.16(m, 1H), 4.91-4.83 (m, 1H), 4.73-4.68 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 177.0,142.1,136.1,135.4,129.7,129.2,128.5,128.4,127.6,127.4,126.6,126.2$, 125.9, 122.6, 110.7, 78.0, 59.8, 46.5; IR (KBr): 3248, 3063, 3028, 2960, 2361, 1715, 1681, 1619, 1551, 1471; MS (EI): $364\left(\mathrm{M}^{+}, 0.3\right), 365\left[(\mathrm{M}+\mathrm{H})^{+}, 0.2\right], 208$ (100), 209 (53), 180 (23), 110 (13), 152 (12), 77 (8), 210 (7), 181 (6); HRMS (EI): Exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}: 364.0882$, Found: 364.0886.


Product $\mathbf{8 k}$ was obtained in $75 \%$ yield as white powder. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.92-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.15(\mathrm{~m}, 6 \mathrm{H})$, 7.08-7.05 (m, 1H), 6.84-6.80 (m, 1H), 6.10-6.09 (m, 1H), 5.98-5.87
$(\mathrm{m}, 1 \mathrm{H}), 5.16-4.4 .85(\mathrm{~m}, 2 \mathrm{H}), 4.69-4.40(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta$ $179.0,178.2,148.6,148.4,142.4,142.2,141.3,140.1,137.0,135.3,129.8,129.3$, $129.2,129.1,128.8,128.5,128.1,128.0,127.4,126.7,126.2,125.4,122.8,122.5$, $110.7,110.4,110.3,110.2,109.4,108.8,76.6,74.6,74.3,59.3,59.1,44.3,44.0$; IR (KBr): 3399, 3234, 3063, 2922, 2361, 1715, 1681, 1620, 1554, 1473; MS (EI): 348 $\left(\mathrm{M}^{+}, 0.3\right), 208$ (100), 209 (39), 180 (18), 152 (10), 94 (9), 181 (6), 77 (5), 153 (5); HRMS (EI): Exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}: 348.1110$, Found: 348.1109.


Product 81 was obtained in $95 \%$ yield as white powder, and the pure major diastereomer was obtained after recrystallization: ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ 8.49-8.44 ( $\mathrm{s}, \mathrm{br}, 1 \mathrm{H}$ ), 7.48-7.45 (m, 2H), 7.37-7.29 (m, 4H), 7.19-7.12 (m, 2H), 7.02-6.99 (m, 1H), 4.47-4.36 $(\mathrm{m}, 2 \mathrm{H}), 3.75-3.69(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.03(\mathrm{~m}, 4 \mathrm{H}), 0.79-0.74(\mathrm{~m}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 179.2,141.3,137.1,129.1,129.0,128.8,128.3,127.4,125.5,122.8$, $110.9,77.8,59.9,43.5,32.8,20.4,14.1$; IR (KBr): 3422, 3207, 2961, 2930, 2872, 2361, 2336, 1707, 1618, 1554, 1471; MS (EI): $324\left(\mathrm{M}^{+}, 10\right), 325\left[(\mathrm{M}+\mathrm{H})^{+}, 2\right], 208$ (100), 209 (21), 180 (15), 152 (7), 181 (4), 77 (4); HRMS (EI): Exact mass calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}: 324.1474$, Found: 324.1472.


Product $\mathbf{8 m}$ was obtained in $78 \%$ yield as white powder, and the pure major diastereomer was obtained after recrystallization: ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.72(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.29(\mathrm{~m}$, $4 \mathrm{H}), 7.16-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.99(\mathrm{~m}, 1 \mathrm{H}), 4.49-4.33(\mathrm{~m}, 2 \mathrm{H})$, 3.81-3.75 (m, 1H), 1.42-1.40(m, 1H), 1.12-0.98(m, 2H), $0.87(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$, $0.76(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 179.4,141.3,137.1,129.1$, $129.0,128.7,128.2,127.4,125.4,122.7,111.0,78.3,60.0,41.6,40.0,25.6,23.7,21.6 ;$ IR (KBr): 3391, 3201, 3064, 2958, 2926, 2361, 1706, 1618, 1553, 1471; MS (EI): 338 $\left(\mathrm{M}^{+}, 8\right), 339\left[(\mathrm{M}+\mathrm{H})^{+}, 2\right], 208$ (100), 209 (25), 180 (16), 152 (7), 41 (5), 91 (5), 181 (4); HRMS (EI): Exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$ : 338.1630, Found: 338.1630.


Product 8 n was obtained in $61 \%$ yield as white powder. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.92(\mathrm{~m}, 0.4 \mathrm{H}), 7.62(\mathrm{~m}, 0.6 \mathrm{H}), 7.24-6.94(\mathrm{~m}$, $12 \mathrm{H}), 6.79-6.76(\mathrm{~m}, 2 \mathrm{H}), 6.55-6.48(\mathrm{~m}, 1 \mathrm{H}), 5.07-4.84(\mathrm{~m}, 2 \mathrm{H})$, 4.22-4.09 (m, 1H), 3.36-2.93 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 179.9,178.7,141.0,140.5,134.7,134.6,134.5,134.4,129.8,129.3,129.1, .129 .0$, $128.9,128.6,128.3,128.2,128.1,127.7,127.6,126.7,125.4,124.4,122.3,122.1$, 110.0, 109.9, 76.2, 75.5, 57.0, 56.9, 50.2, 49.7, 42.0, 40.1; IR (KBr): 3191, 3086, 2920, 2361, 1899, 1727, 1620, 1558, 1470, 1378; MS (EI): $372\left(\mathrm{M}^{+}, 6\right), 373\left[(\mathrm{M}+\mathrm{H})^{+}\right.$, 3], 43 (100), 91 (78), 83 (42), 149 (38), 44 (36), 55 (35), 57 (33), 41 (33); HRMS (EI): Exact mass calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}: 372.1474$, Found: 372.1475.

## The determination of the relative configuration.



Under an atmosphere of nitrogen, to a Schlenk tube were added the pure major diastereomer of Michael adduct 8a obtained after recrystallization ( $47 \mathrm{mg}, 0.13$ $\mathrm{mmol})$, ( Boc$)_{2} \mathrm{O}(1.1 \mathrm{eq})$, and DMAP ( $10 \mathrm{~mol} \%$ ), followed by 2 mL of anhydrous dichloromethane. The reaction was stirred at room temperature till TLC analysis indicated complete conversion of the $\mathbf{8 a}$. Then 5 mL of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added, the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5.0 \mathrm{~mL})$. The combined organic phases were washed with water and brine, and then concentrated, followed by purification on a short $\mathrm{SiO}_{2}$ column (petroleum ether/EtOAc, 6/1) to afford the N -Boc protected oxindole 9 in $87 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.72-7.69(\mathrm{~m}, 1 \mathrm{H})$, 7.63-7.61 (m, 2H), 7.45-7.33 (m, 6H), 7.18-7.04 (m, 3H), 6.80-6.77 (m, 2H), 5.00-4.87 (m, 2H), 4.77-4.74 (m, 1H), $1.45(\mathrm{~s}, 9 \mathrm{H})$; The ${ }^{1} \mathrm{H}$ NMR data is in accordance with the reported NMR data for N -Boc protected oxindole $\mathbf{9}^{4}$.

[^1]
## The catalytic asymmetric Michael Addition of oxindole 1b to nitroolefin 7d.



To a $5-\mathrm{mL}$ vial were added catalyst $\mathbf{1 0}(6.0 \mathrm{mg}, 0.01 \mathrm{mmol})$, oxindole $\mathbf{1 b}(21.0 \mathrm{mg}$, 0.10 mmol ) and 1.0 mL of anhydrous dichloromethane. After the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for half an hour, nitroolefin $7 \mathbf{d}(24.0 \mathrm{mg}, 0.11 \mathrm{mmol})$ was added. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ till almost full conversion of $\mathbf{1}$ by TLC analysis. The reaction mixture was directly subjected to column chromatography to afford the desired product $\mathbf{8 h} 41 \mathrm{mg}$ in $95 \%$ yield, using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent. HPLC analysis (Chiralcel OD-H/OD-H, $5 \%{ }^{i} \mathrm{PrOH} /$ hexane, $0.8 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$; for major diastereomer: $\mathrm{t}_{\mathrm{r}}$ (minor) $=27.64 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}$ (major) $=35.31 \mathrm{~min}$; for minor diastereomer: $\mathrm{t}_{\mathrm{r}}$ (minor) $=39.75 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}$ (major) $=24.03 \mathrm{~min}$ ) gave the diastereoselectivity of the product: 2.2:1.0, and isomeric composition of the major diastereomer: $85 \%$ ee.

## The results of other chiral catalysts




dr: 2.0/1.0, ee: 14\%/8\%

dr: 1.0/1.0, ee: $7 \% / 22 \%$

dr: 1.0/1.0, ee: $27 \% / 46 \%$

dr: 2.0/1.0, ee: 38\%/16\%

dr: 1.6/1.0, ee: 10\%/50\%

dr: 1.0/1.0, ee: $38 \% / 0$

1.5/1.0, ee: $34 \% / 19 \%$














11111



| 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


















































Operator:dell Timebase:U-3000 Sequence:dm $\quad 2010-3-6$| Page 1-1 |
| :--- |
| 7:17 |

| 143 DIM-DA-88-RAC-ODH(Z)-ODH(J)-90/10-230 |  |  |  |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
| Sample Name: | DIM-DA-88-RAC-ODH(Z)-ODH(J)-90/10-230 | Injection Volume: | 20.0 |
| Vial Number: | 153 | Channel: | UV_VIS_1 |
| Sample Type: | unknown | Wavelength: | 230 |
| Control Program: | dm | Bandwidth: | n.a. |
| Quantif. Method: | dm | Dilution Factor: | 1.0000 |
| Recording Time: | $2010-3-616: 21$ | Sample Weight: | 1.0000 |
| Run Time (min): | 48.53 | Sample Amount: | 1.0000 |



| No. | Ret.Time min | Peak Name | $\begin{gathered} \text { Height } \\ \text { mAU } \end{gathered}$ | $\begin{gathered} \text { Area } \\ \mathrm{mAU} \mathrm{U}^{*} \mathrm{~min} \end{gathered}$ | $\begin{gathered} \hline \text { Rel.Area } \\ \% \end{gathered}$ | Amount | Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 24.18 | n.a. | 274.888 | 296.611 | 15.27 | n.a. | BM * |
| 2 | 27.35 | n.a. | 436.156 | 662.249 | 34.10 | n.a. | M * |
| 3 | 35.14 | n.a. | 331.125 | 650.326 | 33.49 | n.a. | M * |
| 4 | 39.80 | n.a. | 146.900 | 332.926 | 17.14 | n.a. | MB* |
| Total: |  |  | 1189.069 | 1942.113 | 100.00 | 0.000 |  |

```
Operator:dell Timebase:U-3000 Sequence:dm \(\quad 2\)\begin{tabular}{l} 
Page 1-1
\end{tabular}
```

| 144 DIM-DB-26-A-ODH(Z)-ODH(J)-90/10-230 |  |  |  |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
| Sample Name: | DIM-DB-26-A-ODH(Z)-ODH(J)-90/10-230 | Injection Volume: | 20.0 |
| Vial Number: | 154 | Channel: | UV_VIS_1 |
| Sample Type: | unknown | Wavelength: | 230 |
| Control Program: | dm | Bandwidth: | n.a. |
| Quantif. Method: | dm | Dilution Factor: | 1.0000 |
| Recording Time: | $2010-3-617: 11$ | Sample Weight: | 1.0000 |
| Run Time (min): | 46.45 | Sample Amount: | 1.0000 |



| No. | Ret.Time min | Peak Name | Height mAU | Area mAU *min | $\begin{gathered} \hline \text { Rel.Area } \\ \% \end{gathered}$ | Amount | Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 24.03 | n.a. | 76.180 | 82.502 | 18.56 | n.a. | BMB |
| 2 | 27.64 | n.a. | 14.968 | 21.677 | 4.88 | n.a. | Rd |
| 3 | 35.31 | n.a. | 146.266 | 285.001 | 64.13 | n.a. | BM * |
| 4 | 39.75 | n.a. | 27.356 | 55.230 | 12.43 | n.a. | MB* |
| Total: |  |  | 264.769 | 444.410 | 100.00 | 0.000 |  |


[^0]:    ${ }^{1}$ B. Vakulya, S. Varga, A. Csámpai and T. Soós, Org. Lett., 2005, 7, 1967.
    ${ }^{2}$ a) P. Galzerano, G. Bencivenni, F. Pesciaioli, A. Mazzanti, B. Giannichi, L. Sambri, G. Bartoli and P. Melchiorre, Chem. Eur. J., 2009, 15, 7846; b) G. Lakshmaiah, T. Kawabata, M. Shang and K. Fuji, J. Org. Chem., 1999, 64, 1699; c) Y. Hamashima, T. Suzuki, H. Takano, Y. Shimura and M. Sodeoka, J. Am. Chem. Soc., 2005, 127, 10164.
    ${ }^{3}$ D. Lucet, S. Sabelle, O. Kostelitz, T. 1. Gall and C. Mioskowski, Eur. J. Org. Chem., 1999, 2583.

[^1]:    ${ }^{4}$ R. He, S. Shirakawa and K. Maruoka, J. Am. Chem. Soc., 2009, 131, 16620.

