Electronic Supplementary Information

Enantioselective total synthesis of Plakotenin, a cytotoxic metabolite from *Plakortis sp*.

Stephanie Arzt, Emmanuel Bourcet, Thierry Muller and Stefan Bräse*

Institut für Organische Chemie, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany; Fax: +49 721 608 8581; E-Mail: braese@kit.edu

Contents:

General experimental details	p. 2
Experimental procedures and characterisation data for new compounds S1, S2	p. 3
Comparison of natural and synthetic Plakotenin	p. 5
Copies of ¹ H-, ¹³ C- and DEPT135-NMR spectra of 13	p. 7
Copies of ¹ H-, ¹³ C- and DEPT135-NMR spectra of 14a	p. 10
Copies of ¹ H-, ¹³ C- and DEPT135-NMR spectra of 15a	p. 13
Copies of ¹ H-, ¹³ C-, DEPT135- and NOESY-NMR spectra of 16a	p. 16
Copies of ¹ H-, ¹³ C-, DEPT135- and NOESY-NMR spectra of 16b	p. 20
Copies of ¹ H-, ¹³ C-, DEPT135- and NOESY-NMR spectra of 17	p. 24
Copies of ¹ H-, ¹³ C- and DEPT135-NMR spectra of 18	p. 28
Copies of ¹ H-, ¹³ C- and DEPT135-NMR spectra of 19	p. 31
Copies of ¹ H-, ¹³ C-, DEPT135- and NOESY-NMR spectra of 1	p. 34
Copies of ¹ H- and ¹³ C NMR spectra of natural Plakotenin ^[2]	p. 38
References	р. 43

General experimental details

¹H- and ¹³C NMR spectra were recorded on a *Bruker* AM 400 (400 MHz/100 MHz), *Bruker* DRX 500 (500 MHz/125 MHz) or Bruker Avance 600 (600 MHz/150 MHz) instrument using CDCl₃ as solvent. Chemical shifts are expressed in parts per million (ppm, δ) downfield from tetramethylsilane (TMS) and are referenced to CHCl₃ (7.26 ppm) as internal standard. All coupling constants are absolute values and J values are expressed in Hertz (Hz). For assigning signal separation of ¹H NMR spectra the following abbreviations were used: s = singlet, bs = broad singlet, d = doublet, t = triplet, q = quartet, sext = sextet, m = multiplet, dd = doublet of doublets, dq = doublet of quartets, ddq = doublet of dq and H_{arom} = aromatic proton. For assigning signals of ¹³C NMR spectra the following abbreviations were used: p = primary (RCH₃), s = secondary (R₂CH₂), t = tertiary (R₃CH), q = quaternary (R₄C). The assignment was supported by analysis of DEPT90 and DEPT135 spectra. MS (EI) (electron impact mass spectrometry), MS (FAB) (fast atom bombardment mass spectrometry) and HRMS: Finnigan MAT 90. The molecular fragments are quoted as the relation between mass and charge (m/z), the intensities as a percentage value relative to the intensity of the base signal (100%). The molecular ion obtains the abbreviation $[M^+]$. IR (infrared spectroscopy): FT-IR Bruker IFS 88. IR spectra of oils were recorded as thin films on KBr, in case of solids the neat substance was used. The deposit of the absorption band is given in wave numbers in cm⁻¹. Solvents and chemicals used for reactions were purchased from commercial suppliers. Solvents were dried under standard conditions; chemicals were used without further purification. All the reactions were performed in standard glassware. All reactions were carried out under Argon in flame-dried glassware. Evaporation of solvents and concentration of reaction mixtures were performed in vacuo on a Büchi rotary evaporator. Column chromatography was performed using silica gel 60 (purchased from Merck) under flash conditions. For thin layer chromatography, aluminum foils layered with silica gel with fluorescence indicator (silica gel 60 F₂₅₄) produced by *Merck* were employed. The detection was carried out with an UV-lamp from Heraeus, model Fluotest. Seebach-reagent [molybdophosphoric acid (2.5 w %), cerium(IV) sulfate tetrahydrate (1.0 w %), H₂SO₄ conc. (6.0 w %), water (90.5 w %)] was used as dipping reagent. Specific rotations were determined using the polarimeter Perkin Elmer 241. Melting points were registered on a Mel-Temp II melting point microscope from Laboratory Devices Inc. and are not corrected.

Experimental procedures and characterisation data for new compounds

(4R,6R,E)-Methyl 2,4,6-trimethyl-7-(trityloxy)hept-2-enoate (S1)

To a solution of alcohol 9a (2.03 g, 5.42 mmol) in DMSO (20 mL) was added 2-iodobenzoic acid (3.79 g, 13.6 mmol). The reaction mixture was stirred at rt for 2.5 h, after which it was diluted with

 H_2O (100 mL) and the resulting precipitate filtered off. The aqueous layer was extracted with Et_2O (3 × 40 mL). The combined organic extracts were dried (MgSO₄) and evaporated under reduced pressure to yield the crude aldehyde 10 (2.02 g, 5.42 mmol, assumed to be quantitative) as colourless oil, which was used without further purification for the following olefination reaction.

To a solution of the crude aldehyde 10 (2.02 g, 5.42 mmol) in toluene (20 mL) was added methyl 2-(triphenylphosphoranylidene)propanoate (2.83 g, 8.13 mmol) at rt. The reaction mixture was heated under reflux for 17 h. The crude product was purified by column chromatography on silica using cyclohexane/ethyl acetate 50:1 to give ester S1 (2.11 g, 88%) as colourless oil. A 14:1 ratio of E/Z products was obtained which was measured from the ¹H NMR spectrum of the crude reaction mixture. $R_{\rm f} = 0.31$ (cyclohexane/EtOAc 18:1). – $[\alpha]_D^{20} = -41.2$ (0.26 g/100 mL, CHCl₃). - ¹H NMR (400 MHz, CDCl₃): $\delta = 0.91$ (d, J = 6.6 Hz, 3 H, TrtOCH₂CHCH₃), 1.02 (d, J = 6.7 Hz, 3 H, C=CHCHCH₃), 1.11–1.18 (m, 1 H, CHCH_AH_BCH), 1.46–1.53 (m, 1 H, CHCH_AH_BCH), 1.60 (d, J = 1.4 Hz, 3 H, MeCO₂CCH₃), 1.64–1.75 (m, 1 H, TrtOCH₂CH), 2.29–2.40 (m, 1 H, C=CHCH), 2.81 (dd, J = 8.7 Hz, J = 6.4 Hz, 1 H, TrtOCH_AH_B), 3.00 (dd, J = 8.7 Hz, J = 4.7 Hz, 1 H, TrtOCH_A H_B), 3.71 (s, 3 H, CO₂CH₃), 6.50 (dd, J = 10.1 Hz, J = 1.4 Hz, 1 H, C=CH), 7.19–7.30 (m, 9 H, H_{arom}), 7.42–7.45 (m, 6 H, H_{arom}). $-^{13}$ C NMR (100 MHz, CDCl₃): $\delta = 12.3$ (p), 18.3 (p), 20.0 (p), 30.6 (t), 31.8 (t), 40.8 (s), 51.6 (p), 67.3 (s), 86.0 (q), 125.8 (q), 126.8 (t), 127.6 (t), 128.7 (t), 144.4 (q), 148.3 (t), 168.8 (q), - IR (film): $\tilde{v} = 3058, 3023, 2956,$ 2926, 2869, 1715, 1649, 1597, 1490, 1448, 1386, 1315, 1271, 1212, 1154, 1092, 1070, 1032, 989, 898, 813, 764, 748, 707, 648, 632 cm⁻¹. – MS (EI, 70 eV) m/z (%): 442 (0.02) [M⁺], 243 (100), 183 (9), 165 (15), 105 (15), 77 (4). – HRMS ($C_{30}H_{34}O_3$): calc. 442.2508, found 442.2505.

(4R,6R,E)-2,4,6-Trimethyl-7-(trityloxy)hept-2-en-1-ol (S2)

HOOTrt

To a solution of ester S1 (1.92 g, 4.34 mmol) in THF (80 mL) at 0 $^{\circ}$ C was slowly added lithium aluminium hydride (168 mg,

4.43 mmol). The reaction mixture was stirred at rt for 19 h, after which it was cooled to 0 °C and quenched with H₂O (50 mL) followed by Rochelle's salt solution (50 mL) and the reaction mixture stirred at rt for 15 h. The aqueous layer was extracted with EtOAc $(3 \times 50 \text{ mL})$. The combined organic extracts were dried (MgSO₄) and evaporated under reduced pressure. The crude product was purified by column chromatography on silica using cyclohexane/ethyl acetate 9:1 to give alcohol S2 (1.62 g, 90%) as colourless oil. $R_{\rm f} = 0.06$ (cyclohexane/EtOAc 12:1). $- [\alpha]_D^{20} = -25.1$ (1.08 g/100 mL, CHCl₃). $- {}^{1}$ H NMR (400 MHz, CDCl₃): $\delta = 0.86$ (d, J = 6.6 Hz, 3 H, TrtOCH₂CHCH₃), 1.01 (d, J = 6.7 Hz, 3 H, C=CHCHCH₃), 1.03–1.09 (m, 1 H, CHCH_AH_BCH), 1.28 (t, J = 6.1 Hz, 1 H, OH), 1.36–1.41 (m, 1 H, CHCH_A H_B CH), 1.44 (d, J = 1.3 Hz, 3 H, HOCH₂CCH₃), 1.69–1.77 (m, 1 H, TrtOCH₂CH), 2.20–2.31 (m, 1 H, C=CHCH), 2.81 (dd, J = 8.6 Hz, J = 6.7 Hz, 1 H, TrtOCH_AH_B), 2.99 (dd, J = 8.6 Hz, J = 4.8 Hz, 1 H, TrtOCH_AH_B), 3.92 (d, J = 5.6 Hz, 2 H, HOCH₂), 5.12 (dd, J = 9.5 Hz, J = 1.2 Hz, 1 H, C=CH), 7.19–7.30 (m, 9 H, H_{arom}), 7.43–7.46 (m, 6 H, H_{aron}). $-^{13}$ C NMR (100 MHz, CDCl₃): $\delta = 13.6$ (p), 18.3 (p), 20.9 (p), 29.4 (t), 31.6 (t), 41.5 (s), 67.7 (s), 69.0 (s), 86.0 (q), 126.8 (t), 127.6 (t), 128.8 (t), 132.9 (t), 133.0 (q), 144.5 (q). – IR (film): $\tilde{v} = 3331$, 3086, 3058, 3032, 2955, 2920, 2867, 1597, 1490, 1448, 1385, 1317, 1265, 1220, 1182, 1154, 1068, 1032, 1003, 926, 899, 849, 801, 774, 764, 746, 707, 648, 633, 618, 482 cm⁻¹. – MS (EI, 70 eV) m/z (%): 414 (0.03) [M⁺], 243 (100), 183 (3), 165 (12), 105 (3). - HRMS (C₂₉H₃₄O₂): calc. 414.2559, found 414.2561.

Comparison of natural and synthetic Plakotenin^[1]

¹ H NMR data of natural Plakotenin	¹ H NMR data of synthetic Plakotenin				
0.78 (t, <i>J</i> = 7.4 Hz, 3 H, 18-H)	0.78 (t, <i>J</i> = 7.0 Hz, 3 H, 18-H)				
0.98 (d, J = 6.0 Hz, 3 H, 15-H)	0.98 (d, J = 6.5 Hz, 3 H, 15-H)				
1.08 (m, 1 H, 17-H)	1.03–1.12 (m, 1 H, 17-H)				
1.15 (d, J = 6.0 Hz, 3 H, 14-H)	1.16 (d, J = 6.5 Hz, 3 H, 14-H)				
1.55 (m, 2 H, 7-H)	1.56 (t, J = 8.5 Hz, 3 H, 7-H)				
1.77 (m, 1 H, 17-H)					
1.78 (m, 1 H, 5-H)	1.73–1.80 (m, 3 H, 5-H, 9-H and 17-H)				
1.80 (m, 1 H, 9-H)					
1.81 (bs, 3 H, 16-H)	1.83 (s, 3 H, 16-H)				
1.86 (m, 1 H, 6-H)					
1.89 (m, 1 H, 8-H)	1.86–1.95 (m, 2 H, 6-H and 8-H)				
2.06 (s, 3 H, 13-H)	2.07 (s, 3 H, 13-H)				
3.69 (bs. 1 H. 12-H)	3.71 (d, J = 4.0 Hz, 1 H, 12-H)				
5.22 (bs. 1 H. 11-H)	5.23 (s. 1 H. 11-H)				
7.00 (s, 1 H, 3-H)	7.03 (s, 1 H, 3-H)				
$7.22 (m, 1 H, H_{arom})$	$7.21-7.25 (m, 1 H, H_{arom})$				
7.28 (m, 4 H, Harom)	$7.29-7.30 (m, 4 H, H_{arom})$				
¹³ C NMR data of natural Plakotenin	¹³ C NMR data of synthetic Plakotenin				
9.3 (p)	9.4 (p)				
9.3 (p) 13.9 (p)	9.4 (p) 14.0 (p)				
9.3 (p) 13.9 (p) 21.7 (p)	9.4 (p) 14.0 (p) 21.9 (p)				
9.3 (p) 13.9 (p) 21.7 (p) 22.3 (p)	9.4 (p) 14.0 (p) 21.9 (p) 22.5 (p)				
9.3 (p) 13.9 (p) 21.7 (p) 22.3 (p) 23.1 (p)	9.4 (p) 14.0 (p) 21.9 (p) 22.5 (p) 23.3 (p)				
9.3 (p) 13.9 (p) 21.7 (p) 22.3 (p) 23.1 (p) 27.0 (s)	9.4 (p) 14.0 (p) 21.9 (p) 22.5 (p) 23.3 (p) 27.1 (s)				
9.3 (p) 13.9 (p) 21.7 (p) 22.3 (p) 23.1 (p) 27.0 (s) 31.6 (t)	9.4 (p) 14.0 (p) 21.9 (p) 22.5 (p) 23.3 (p) 27.1 (s) 31.7 (t)				
9.3 (p) 13.9 (p) 21.7 (p) 22.3 (p) 23.1 (p) 27.0 (s) 31.6 (t) 34.6 (t)	9.4 (p) 14.0 (p) 21.9 (p) 22.5 (p) 23.3 (p) 27.1 (s) 31.7 (t) 34.7 (t)				
$\begin{array}{r} 9.3 (p) \\ \hline 13.9 (p) \\ \hline 21.7 (p) \\ \hline 22.3 (p) \\ \hline 23.1 (p) \\ \hline 27.0 (s) \\ \hline 31.6 (t) \\ \hline 34.6 (t) \\ \hline 45.0 (s) \\ \hline 48.1 (c) \\ \hline \end{array}$	9.4 (p) $14.0 (p)$ $21.9 (p)$ $22.5 (p)$ $23.3 (p)$ $27.1 (s)$ $31.7 (t)$ $34.7 (t)$ $45.1 (s)$ $48.2 (p)$				
$\begin{array}{r} 9.3 (p) \\ \hline 13.9 (p) \\ \hline 21.7 (p) \\ \hline 22.3 (p) \\ \hline 23.1 (p) \\ \hline 27.0 (s) \\ \hline 31.6 (t) \\ \hline 34.6 (t) \\ \hline 45.0 (s) \\ \hline 48.1 (q) \\ \hline 52.0 (t) \end{array}$	$\begin{array}{c} 9.4 (p) \\ 14.0 (p) \\ 21.9 (p) \\ 22.5 (p) \\ 23.3 (p) \\ 27.1 (s) \\ 31.7 (t) \\ 34.7 (t) \\ 45.1 (s) \\ 48.2 (q) \\ 52.2 (t) \end{array}$				
$\begin{array}{r} 9.3 (p) \\ \hline 13.9 (p) \\ \hline 21.7 (p) \\ \hline 22.3 (p) \\ \hline 23.1 (p) \\ \hline 27.0 (s) \\ \hline 31.6 (t) \\ \hline 34.6 (t) \\ \hline 45.0 (s) \\ \hline 48.1 (q) \\ \hline 52.0 (t) \\ \hline 52.4 (t) \end{array}$	9.4 (p) $14.0 (p)$ $21.9 (p)$ $22.5 (p)$ $23.3 (p)$ $27.1 (s)$ $31.7 (t)$ $34.7 (t)$ $45.1 (s)$ $48.2 (q)$ $52.2 (t)$				
$\begin{array}{r} 9.3 (p) \\ \hline 13.9 (p) \\ \hline 21.7 (p) \\ \hline 22.3 (p) \\ \hline 23.1 (p) \\ \hline 27.0 (s) \\ \hline 31.6 (t) \\ \hline 34.6 (t) \\ \hline 45.0 (s) \\ \hline 48.1 (q) \\ \hline 52.0 (t) \\ \hline 52.4 (t) \\ \hline 55.3 (t) \end{array}$	$\begin{array}{c} 9.4 (p) \\ \hline 14.0 (p) \\ 21.9 (p) \\ \hline 22.5 (p) \\ \hline 23.3 (p) \\ \hline 27.1 (s) \\ \hline 31.7 (t) \\ \hline 34.7 (t) \\ \hline 45.1 (s) \\ \hline 48.2 (q) \\ \hline 52.2 (t) \\ \hline 52.5 (t) \\ \hline 55.4 (t) \end{array}$				
$\begin{array}{r} 9.3 (p) \\ \hline 13.9 (p) \\ \hline 21.7 (p) \\ \hline 22.3 (p) \\ \hline 23.1 (p) \\ \hline 27.0 (s) \\ \hline 31.6 (t) \\ \hline 34.6 (t) \\ \hline 45.0 (s) \\ \hline 48.1 (q) \\ \hline 52.0 (t) \\ \hline 52.4 (t) \\ \hline 55.3 (t) \\ \hline 125.2 (t) \end{array}$	$\begin{array}{c} 9.4 (p) \\ \hline 14.0 (p) \\ \hline 21.9 (p) \\ \hline 22.5 (p) \\ \hline 23.3 (p) \\ \hline 27.1 (s) \\ \hline 31.7 (t) \\ \hline 34.7 (t) \\ \hline 45.1 (s) \\ \hline 48.2 (q) \\ \hline 52.2 (t) \\ \hline 52.5 (t) \\ \hline 55.4 (t) \\ \hline 125.3 (t) \end{array}$				
$\begin{array}{r} 9.3 (p) \\ \hline 13.9 (p) \\ \hline 21.7 (p) \\ \hline 22.3 (p) \\ \hline 23.1 (p) \\ \hline 27.0 (s) \\ \hline 31.6 (t) \\ \hline 34.6 (t) \\ \hline 45.0 (s) \\ \hline 45.0 (s) \\ \hline 48.1 (q) \\ \hline 52.0 (t) \\ \hline 52.4 (t) \\ \hline 55.3 (t) \\ \hline 125.2 (t) \\ \hline 126 5 (t) \end{array}$	$\begin{array}{c} 9.4 (p) \\ \hline 14.0 (p) \\ \hline 21.9 (p) \\ \hline 22.5 (p) \\ \hline 23.3 (p) \\ \hline 27.1 (s) \\ \hline 31.7 (t) \\ \hline 34.7 (t) \\ \hline 45.1 (s) \\ \hline 48.2 (q) \\ \hline 52.2 (t) \\ \hline 52.5 (t) \\ \hline 52.5 (t) \\ \hline 125.3 (t) \\ \hline 126.6 (t) \\ \hline \end{array}$				
$\begin{array}{r} 9.3 (p) \\ \hline 13.9 (p) \\ \hline 21.7 (p) \\ \hline 22.3 (p) \\ \hline 23.1 (p) \\ \hline 27.0 (s) \\ \hline 31.6 (t) \\ \hline 34.6 (t) \\ \hline 45.0 (s) \\ \hline 45.0 (s) \\ \hline 48.1 (q) \\ \hline 52.0 (t) \\ \hline 52.4 (t) \\ \hline 55.3 (t) \\ \hline 125.2 (t) \\ \hline 126.5 (t) \\ \hline 127.0 (q) \end{array}$	$\begin{array}{c} 9.4 (p) \\ \hline 14.0 (p) \\ \hline 21.9 (p) \\ \hline 22.5 (p) \\ \hline 23.3 (p) \\ \hline 27.1 (s) \\ \hline 31.7 (t) \\ \hline 34.7 (t) \\ \hline 45.1 (s) \\ \hline 48.2 (q) \\ \hline 52.2 (t) \\ \hline 52.5 (t) \\ \hline 55.4 (t) \\ \hline 125.3 (t) \\ \hline 126.6 (t) \\ \hline 127.3 (q) \end{array}$				
$\begin{array}{r} 9.3 (p) \\ \hline 13.9 (p) \\ \hline 21.7 (p) \\ \hline 22.3 (p) \\ \hline 23.1 (p) \\ \hline 27.0 (s) \\ \hline 31.6 (t) \\ \hline 34.6 (t) \\ \hline 45.0 (s) \\ \hline 45.0 (s) \\ \hline 48.1 (q) \\ \hline 52.0 (t) \\ \hline 52.4 (t) \\ \hline 55.3 (t) \\ \hline 125.2 (t) \\ \hline 126.5 (t) \\ \hline 127.0 (q) \\ \hline 127.8 (2 t) \end{array}$	$\begin{array}{c} 9.4 (p) \\ \hline 14.0 (p) \\ \hline 21.9 (p) \\ \hline 22.5 (p) \\ \hline 23.3 (p) \\ \hline 27.1 (s) \\ \hline 31.7 (t) \\ \hline 34.7 (t) \\ \hline 45.1 (s) \\ \hline 48.2 (q) \\ \hline 52.2 (t) \\ \hline 52.5 (t) \\ \hline 55.4 (t) \\ \hline 125.3 (t) \\ \hline 126.6 (t) \\ \hline 127.9 (2 t) \end{array}$				
$\begin{array}{r} 9.3 (p) \\ \hline 13.9 (p) \\ \hline 21.7 (p) \\ \hline 22.3 (p) \\ \hline 23.1 (p) \\ \hline 27.0 (s) \\ \hline 31.6 (t) \\ \hline 34.6 (t) \\ \hline 45.0 (s) \\ \hline 48.1 (q) \\ \hline 52.0 (t) \\ \hline 52.4 (t) \\ \hline 55.3 (t) \\ \hline 125.2 (t) \\ \hline 126.5 (t) \\ \hline 127.0 (q) \\ \hline 127.8 (2 t) \\ \hline 130.9 (2 t) \end{array}$	$\begin{array}{c} 9.4 (p) \\ \hline 14.0 (p) \\ \hline 21.9 (p) \\ \hline 22.5 (p) \\ \hline 23.3 (p) \\ \hline 27.1 (s) \\ \hline 31.7 (t) \\ \hline 34.7 (t) \\ \hline 45.1 (s) \\ \hline 48.2 (q) \\ \hline 52.2 (t) \\ \hline 52.5 (t) \\ \hline 52.5 (t) \\ \hline 125.3 (t) \\ \hline 126.6 (t) \\ \hline 127.3 (q) \\ \hline 127.9 (2 t) \\ \hline 131.0 (2 t) \end{array}$				
$\begin{array}{r} 9.3 (p) \\ \hline 13.9 (p) \\ \hline 21.7 (p) \\ \hline 22.3 (p) \\ \hline 23.1 (p) \\ \hline 23.1 (p) \\ \hline 31.6 (t) \\ \hline 34.6 (t) \\ \hline 45.0 (s) \\ \hline 45.0 (s) \\ \hline 48.1 (q) \\ \hline 52.0 (t) \\ \hline 52.4 (t) \\ \hline 55.3 (t) \\ \hline 125.2 (t) \\ \hline 126.5 (t) \\ \hline 127.0 (q) \\ \hline 127.8 (2 t) \\ \hline 130.9 (2 t) \\ \hline 137.1 (q) \end{array}$	$\begin{array}{c} 9.4 (p) \\ \hline 14.0 (p) \\ \hline 21.9 (p) \\ \hline 22.5 (p) \\ \hline 23.3 (p) \\ \hline 23.3 (p) \\ \hline 27.1 (s) \\ \hline 31.7 (t) \\ \hline 34.7 (t) \\ \hline 45.1 (s) \\ \hline 45.1 (s) \\ \hline 48.2 (q) \\ \hline 52.2 (t) \\ \hline 52.5 (t) \\ \hline 55.4 (t) \\ \hline 125.3 (t) \\ \hline 126.6 (t) \\ \hline 127.9 (2 t) \\ \hline 131.0 (2 t) \\ \hline 137.2 (q) \end{array}$				
$\begin{array}{r} 9.3 (p) \\ \hline 13.9 (p) \\ \hline 21.7 (p) \\ \hline 22.3 (p) \\ \hline 23.1 (p) \\ \hline 23.1 (p) \\ \hline 27.0 (s) \\ \hline 31.6 (t) \\ \hline 34.6 (t) \\ \hline 45.0 (s) \\ \hline 48.1 (q) \\ \hline 52.0 (t) \\ \hline 52.4 (t) \\ \hline 55.3 (t) \\ \hline 125.2 (t) \\ \hline 126.5 (t) \\ \hline 127.0 (q) \\ \hline 127.8 (2 t) \\ \hline 130.9 (2 t) \\ \hline 137.1 (q) \\ \hline 141.9 (q) \end{array}$	$\begin{array}{c} 9.4 (p) \\ \hline 14.0 (p) \\ \hline 21.9 (p) \\ \hline 22.5 (p) \\ \hline 23.3 (p) \\ \hline 27.1 (s) \\ \hline 31.7 (t) \\ \hline 34.7 (t) \\ \hline 45.1 (s) \\ \hline 48.2 (q) \\ \hline 52.2 (t) \\ \hline 52.5 (t) \\ \hline 55.4 (t) \\ \hline 125.3 (t) \\ \hline 126.6 (t) \\ \hline 127.9 (2 t) \\ \hline 131.0 (2 t) \\ \hline 137.2 (q) \\ \hline 142.1 (q) \end{array}$				
$\begin{array}{r} 9.3 (p) \\ \hline 13.9 (p) \\ \hline 21.7 (p) \\ \hline 22.3 (p) \\ \hline 23.1 (p) \\ \hline 23.1 (p) \\ \hline 27.0 (s) \\ \hline 31.6 (t) \\ \hline 34.6 (t) \\ \hline 45.0 (s) \\ \hline 45.0 (s) \\ \hline 48.1 (q) \\ \hline 52.0 (t) \\ \hline 52.4 (t) \\ \hline 55.3 (t) \\ \hline 125.2 (t) \\ \hline 126.5 (t) \\ \hline 127.0 (q) \\ \hline 127.8 (2 t) \\ \hline 130.9 (2 t) \\ \hline 137.1 (q) \\ \hline 141.9 (q) \\ \hline 149.4 (t) \end{array}$	$\begin{array}{c} 9.4 (p) \\ \hline 14.0 (p) \\ \hline 21.9 (p) \\ \hline 22.5 (p) \\ \hline 23.3 (p) \\ \hline 27.1 (s) \\ \hline 31.7 (t) \\ \hline 34.7 (t) \\ \hline 45.1 (s) \\ \hline 48.2 (q) \\ \hline 52.2 (t) \\ \hline 52.5 (t) \\ \hline 52.5 (t) \\ \hline 125.3 (t) \\ \hline 126.6 (t) \\ \hline 127.9 (2 t) \\ \hline 131.0 (2 t) \\ \hline 137.2 (q) \\ \hline 149.7 (t) \\ \end{array}$				

Synthetic Plakotenin contains traces of grease (cf. ¹³C spectrum on page 35).

 $[\alpha]_D^{20}$ natural = +204 (0.2 g/100 mL, CHCl₃).

 $[\alpha]_{D}^{20}$ synthetic = +212 (0.24 g/100 mL, CHCl₃).

MS natural (EI) *m/z* (%): 352 (30) [M⁺], 261 (25), 225 (60), 171 (80), 91 (100).

MS synthetic (EI, 70 eV) *m/z* (%): 352 (100) [M⁺], 261 (48), 225 (84), 171 (70).

Compound 13

										Current NAME EXPNO PROCNO F2 - Acq Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 d11 DELTA MCREST MCWRK ======= NUC1 P1 PL1 SFO1 ====== CPDPRG2 NUC2 PCPD2 PL2 PL12 PL12 SFO2 F2 - Pro SI SF	Data Parameters Feb17-2009 23 1 puisition Parameters 20090217 10.59 spect 5 mm DUL 1H-13 zgpg30 65536 CDC13 433 4 23980.814 Hz 0.365918 Hz 1.3664756 sec 32768 20.850 usec 6.00 usec 0.0 K 2.00000000 sec 0.03000000 sec 1.89999998 sec 0.0000000 sec 1.89999998 sec 0.0000000 sec 1.89999998 sec 0.0000000 sec 1.89999998 sec 0.0000000 sec 1.89999998 sec 0.0000000 sec 1.89999998 sec 0.0000000 sec 1.89999998 sec 0.000 usec 0.01500000 sec 1.8999998 sec 0.000 usec 0.01500000 sec 1.8999998 sec 0.000 usec 0.000 dB 100.6228298 MHz CHANNEL f2 ===================================
200	180	160	140	120	100	80	60	40	20	DB GB PC ppm	1.00 Hz 0 1.40

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

		Current Data Parameters NAME Feb17-2009 EXPNO 22 PROCNO 1
		F2 - Acquisition Parameters Date_ 20090217 Time 10.34 INSTRUM spect PROBHD 5 mm DUL 1H-13 PULPROG dept135 TD 65536 SOLVENT CDC13 NS 182 DS 4 SWH 23980.814 AQ 1.3664756 SE 26008 DW 20.850 usec DE 6.00 usec TE 0.0 K CNST2 145.0000000 D1 2 0.00344828 sec d12 0.00002000 sec DELTA 0.0001273 sec MCREST 0.001500000 sec
		====== CHANNEL f1 =======
		P1 10.00 usec
		PL1 0.00 dB
		SF01 100.6228298 MHz
		CHANNEL f2 f2 CPDPRG2 waltz16 NUC2 1H P3 19.00 usec p4 38.00 usec PCPD2 70.00 usec PL2 -2.00 dB PL12 9.33 dB SF02 400.1316005 MHz
		F2 - Processing parameters SI 32768
		SF 100.6127690 MHz
		SSB 0
		LB 1.00 Hz —GB 0
200 100 160 140 120 100 00 60	40 20	PC 1.40
	40 20 ppr	u –

Compound 14a

Compound 14a

	Current Data Parameters NAME Jan05-2010 EXPNO 22 PROCNO 1 F2 - Acquisition Parameters Date_ Date_ 20100107 Time 11.40 INSTRUM spect PROBHD 5 mm DUL 1H-13 PULPROG dept135 TD 65536 SOLVENT CDC13 NS 768 DS 4 SWH 23980.814 FIDRES 0.365918 AQ 1.3664756 RG 29193 DW 20.850 DE 6.00 E 0.00 DE 6.00 DE 6.00 DE 0.00 DI 2.00000000 DI 2.00000000 SCT2 145.0000000 DE 0.0002000 DELTA 0.00000000 DELTA 0.00000000 MCREST 0.00000000
	PL1 0.00 dB SF01 100.6228298 MHz ====== CPDPRG2 waltz16 NUC2 1H P3 19.00 usec p4 38.00 usec PCPD2 70.00 usec PL12 9.33 dB SFO2 400.1316005 MHz F2 - Processing parameters' SI 32768 SF 100.6127690 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40

Compound 15a

111

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

Compound 15a

					9					Current NAME EXPNO PROCNO F2 - Acq Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 d11	Data Parameters Oct29-2009 63 1 uisition Parameters 20091029 23.37 spect 5 mm DUL 1H-13 zgpg30 65536 CDC13 2048 4 23980.814 Hz 0.365918 Hz 1.3664756 sec 5792.6 20.850 usec 6.00 usec 0.0 K 2.0000000 sec
										DELTA MCREST MCWRK 	1.89999998 sec 0.0000000 sec 0.01500000 sec CHANNEL f1 ======= 13C 10.00 usec 0.00 dB 100.6228298 MHz CHANNEL f2 ===== waltz16 1H 70.00 usec -2.00 dB 9.33 dB 9.30 dB 400.1316005 MHz cessing parameters 32768 100.6127714 MHz EM 0 1.00 Hz 0 1.00 Hz 0 1.40
200	180	160	140	120	100	80	60	40	20	ppm	1.40

Compound 15a

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

3.0 2.5 2.0 1.5 1.0 5.0 4.5 3.5 0.5 ppm 7.5 6.5 6.0 5.5 4.0 7.0 9.0 8.5 8.0

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

	Current NAME	Data Parameters
	EXPNO PROCNO	23 1
	F2 - Ac Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ - RG DW DE TE D1 d11 DELTA MCREST MCWRK	quisition Parameters 20091107 9.12 spect 5 mm DUL 1H-13 2gpg30 65536 CDC13 10240 4 23980.814 Hz 0.365918 Hz 1.3664756 sec 11585.2 20.850 usec 6.00 usec 0.0 K 2.00000000 sec 1.89999998 sec 0.0000000 sec 0.01500000 sec
	NUC1 P1 PL1 SF01	= CHANNEL fl ====== 13C 10.00 usec 0.00 dB 100.6228298 MHz
	CPDPRG2 NUC2 PCPD2 PL2 PL12 PL13 SF02	= CHANNEL f2 waltz16 1H 70.00 usec -2.00 dB 9.33 dB 9.30 dB 400.1316005 MHz
	F2 - Pr SI SF WDW	ocessing parameters 32768 100.6128732 MHz EM
	SSB LB GB	0 1.00 Hz 0
20	ppm	1.40

T.

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

							Current Data Parameters NAME arztmz17 EXPNO 4 PROCNO 1
2 2 2 2 2 2 2							F2 - Acquisition Parameters Date20090318 Time 3.02 INSTRUM spect PROBHDS_mm_Multinuc1 PULPROG zgpg30 TD 65536 SOLVENT CDC13 NS 10240 DS 4 SWH 30120.482 HZ FIDRES D.459602 Hz PIDRES 0.459602 DW 16 600 DE 6.00 DE 1.8999998 DELTA 1.8999998 MCREST 0.0000000 MCWRK 0.01500000
							NUC1 13C P1 9,60 usec PL1 3.00 dB SE01 125.7200692 MHz
							SPO1 125.7200692 RM2 CPDPRG2 waltz16 NUC2 1H PCPD2 100.00 usec PL2 0.00 dB PL12 16.54 dB SFO2 499.9319997 MHz
			~				$\begin{array}{cccc} F2 & - & Processing parameters\\ SI & & 32768\\ SF & & 125.7074980 & MHz\\ WDW & & EM\\ SSB & & 0\\ LB & & & 1.00 & Hz\\ GB & & & 0\\ PC & & & 1.40 \end{array}$
200	180 160	140 120	100	80 60	40	20 ppm	

200

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

Current	Data Parameters								
NAME	ar21m21/								
EXPNO	.3								
PROCNO	1								
F2 - Act	P2 - Acquisition Parameters								
Date.	20090317								
Time	18.04								
INSTRUM	SDect								
PROBHD	3 mm Multinucl								
PULPROG	dept135								
TD	65536								
SOLVENT	CDC13								
NS	1024								
DS	4								
SWH	30120 482	14.2							
FIDRES	0 459602	11 2							
A()	1 0879476	Car Car Ca							
1273	11585 7	and the second							
TYM	16 609	near							
DF.	6 00	110.000							
1912	00.00 0000 0	aber-							
1 L.	145 0000000	<i>2</i> .							
111	2 00000000	10.00.00							
-913	0.00144939	C3 C7 C							
24:5 (5)	0.00044020	25 424							
111.1. 13137 - MA	0.00002000	2/48(26)							
APENAL PA	0.000012222	19 6510							
PROPERTY 1	0.00000000	20 COC.							
PR. WICK	0.01000000	in RPC.							
******	- CHANNEL fl ====	anan a							
NUC1	130								
b 1	9.60	usec.							
p2	19.20	0860							
PL1	3,00	dB							
SFO1	125.7200692	MHZ							
10 317 COX 20 310 COX 310 -	- CHANNEL f2	a na ua na ua							
CPDPRG2	waltz16								
NUC2	111								
P3	14.90	usec							
154	29.80	usec							
PCPD2	100,00	usec							
PL2	0.00	dB							
PL12	16.64	618							
SP02	499,9319997	MHz							
52 - Dr	nnacting naramer.	24.37 63							
C1 - 11	Andreas Furguese	A							
23 3. (7 E)	106 7034000								
1.11.11.1	163.7074980	19112							
WLW .	h.Pi								
23 23 23	U	11							
1.43	100	112							
CiH	U								
P.C.	1.40								

ppm

180 160 140 120 100 80 60 40 20

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

Current Data Parameters NAME arztmz23 EXPNO 2 1 PROCNO F2 - Acquisition Parameters Date_ 20090323 Time 13.57 INSTRUM spect PROBHD 5 mm TBI 1H/13 PULPROG noesyph 2048 TD SOLVENT CDC13 NS 24 DS 4 5387.931 Hz SWH 2.630826 Hz FIDRES AQ 0.1901044 sec RG 28.5 92.800 usec DW DE 6.00 usec 296.0 K TE dO 0.00007882 sec 2.00000000 sec 1.20000005 sec D1 D8 0.00018515 sec IN0 0.00000000 sec 1.00000000 sec MCREST MCWRK ST1CNT 256 ====== CHANNEL f1 ======= NUC1 1H P1 10.80 usec -1.00 dB PL1 SF01 600.1327625 MHz F1 - Acquisition parameters ND0 1 512 TD 600.1328 MHz SF01 10.548880 Hz FIDRES mqq 000.0 SW States-TPPI FnMODE F2 - Processing parameters SI 2048 600.1300000 MHz SF WDW QSINE SSB 2 LB 0.00 Hz GB 0 1.00 PC F1 - Processing parameters 2048 SI MC2 States-TPPI SF 600.1300000 MHz QSINE WDW SSB 2

0.00 Hz

0

LB

GB

Compound 17

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ppm

Compound 17

Supplementary Mater	ial (ESI) for Organic & Biomolecular Chemistry
This journal is	c) The Royal Society of Chemistry 2010

				Current Da NAME EXPNO PROCNO	ta Parameters bourdz04 4 1
				F2 - Acqui Date_ Time INSTRUM PROBHD 5 PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 d11 DELTA MCREST MCWEK	sition Parameters 20091204 11.07 spect mm Multinucl zgpg30 65536 CDC13 1983 4 30120.482 Hz 0.459602 Hz 1.0879476 sec 2896.3 16.600 usec 6.00 usec 299.0 K 2.00000000 sec 0.03000000 sec 0.01500000 sec
				======= (NUC1 PL SF01 ======= (CPDPRG2 NUC2 PCPD2 PL2 PL12 PL12 PL13	CHANNEL f1 ====== 13C 9.60 usec 3.00 dB 125.7200692 MHz CHANNEL f2 ====== waltz16 1H 100.00 usec 0.00 dB 16.54 dB 16.54 dB
60	40	20	0 pp	SF02 F2 - Proce SI SF WDW SSB LB GB PC	499.9319997 MHz essing parameters 32768 125.7074980 MHz EM 0 1.00 Hz 0 1.40

					Curren NAME EXPNO PROCNO	t Data Parameters bourdz04 3 1
					F2 - A Date_ Time INSTRU PROBHD PULPRO TD SOLVEN NS DS SWH FIDRES AQ RG DW	cquisition Parameters 20091204 9.23 M spect 5 mm Multinucl G dept135 65536 F CDC13 512 4 30120.482 Hz 0.459602 Hz 1.0879476 sec 10321.3 16.600 usec
					DE TE CNST2 D1 d2 d12 DELTA MCREST MCWRK	6.00 usec 298.8 K 145.0000000 2.00000000 sec 0.00344828 sec 0.00002000 sec 0.00001222 sec 0.00000000 sec 0.01500000 sec
		.85			====== NUC1 P1 p2 PL1 SF01	== CHANNEL f1 ====== 13C 9.60 usec 19.20 usec 3.00 dB 125.7200692 MHz
z					===== CPDPRG NUC2 P3 p4 PCPD2 PL2 PL12 SF02	== CHANNEL f2 ====== 2 waltz16 1H 14.90 usec 29.80 usec 100.00 usec 0.00 dB 16.54 dB 499.9319997 MHz
200 180	160 140	120 100	80 60	40 2	20 ppmsf WDW SSB LB GB PC	rocessing parameters 32768 125.7074980 MHz EM 0 1.00 Hz 0 1.40

Compound 18

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

			Current 1 NAME EXPNO PROCNO	Data Parameters Nov24-2009 73 1
			F2 - Acq Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH	uisition Parameters 20091125 0.07 spect 5 mm DUL 1H-13 zgpg30 65536 CDC13 3072 4 22000 814 Hz
			SWH FIDRES AQ RG DW DE TE D1 d11 DELTA MCREST MCWRK	23980.814 Hz 0.365918 Hz 1.3664756 sec 9195.2 20.850 usec 6.00 usec 0.00 K 2.00000000 sec 1.8999998 sec 0.0000000 sec 0.01500000 sec
			====== NUC1 P1 PL1 SF01	CHANNEL f1 ======= 13C 10.00 usec 0.00 dB 100.6228298 MHz
Ĩ	T II		CPDPRG2 NUC2 PCPD2 PL2 PL12 PL13 SFO2	CHANNEL f2 ====== waltz16 1H 70.00 usec -2.00 dB 9.33 dB 9.30 dB 400.1316005 MHz
الارمين المراجع		ميسمياسمي	F2 - Proc SI SF WDW SSB LB	cessing parameters 32768 100.6128731 MHz EM 0 1.00 Hz
2	20	ppm	PC	0 1.40

Compound 18

Compound 19

											Current D NAME EXPNO PROCNO F2 - Acqu Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 d11 DELTA MCREST MCWRK ======= CPDPRG2 NUC1 PL1 SF01 ======= CPDPRG2 NUC2 PCPD2 PL2 PL12 SF02 F2 - Pro SI SF ***	ata Parameters Jan05-2010 13 1 isition Parameters 20100105 22.19 spect 5 mm DUL 1H-13 zgpg30 65536 CDC13 4096 4 23980.814 Hz 0.365918 Hz 1.3664756 sec 9195.2 20.850 usec 6.00 usec 0.03000000 sec 0.03000000 sec 0.03000000 sec 0.03000000 sec 0.03000000 sec 0.03000000 sec 0.01500000 sec 0.01500000 sec CHANNEL f1 ======= 13C 10.00 usec 0.00 dB 100.6228298 MHz CHANNEL f2 ======= waltz16 1H 70.00 usec -2.00 dB 9.33 dB 9.30 dB 400.1316005 MHz cessing parameters 32768 100.6127690 MHz EM
200	180	160	140	120	100	80	60	40	20	ppn	LB GB PC 1	1.00 Hz 0 1.40

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

9

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

The additional peak at 29.8 ppm is due to residiual grease [3] which could not be removed by any attempted purification methods.

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

	1.		Current Data Parameters NAME bourno30 EXPNO 3 PROCNO 1 F2 - Acquisition Parameters Date_ 20091130 Time 15.08 INSTRUM spect PROBHD 5 mm Multinucl PULPROG dept135 TD 65536 SOLVENT CDC13 NS 329 DS 4 SWH 30120.482 Hz FIDRES 0.459602 Hz AQ 1.0879476 sec RG 8192 DW 16.600 usec DE 6.00 usec TE 298.7 K CNST2 145.0000000 D1 2.00002000 sec DELTA 0.0001222 sec DELTA 0.000000 sec MCREST 0.0000000 sec MCREST 0.000000 sec MCWRK 0.01500000 sec
	100 20	 	P19.60 usedp219.20 usedPL1 3.00 dB SF01125.7200692 MHz======CHANNEL f2CPDPRG2waltz16NUC21HP314.90 usedp429.80 usedPCPD2100.00 usedPL1216.54 dBSF02499.9319997 MHzF2Processing parametersSI 32768 SF125.7074980 MHzWDWEMSSB0LB 3.00 Hz GB0PC1.40

36

.

contains traces of Homo-Plakotenin as both compounds could not be completely separated Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

-1 ppm

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

-1 ppm

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

1

References

- J. Kobayashi, S. Takeuchi, M. Ishibashi, H. Shigemori and T. Sasaki *Tetrahedron Lett*. 1992, **33**, 2579–2580.
- [2] Spectra of natural Plakotenin kindly provided by Dr. A. Quereshi.
- [3] H. E. Gottlieb, V. Kotlyar and A. Nudelman J. Org. Chem. 1997, 62, 7512–7515.