Electronic Supplementary Information "A colorimetric and fluorescent turn-on chemosensor operative in aqueous media for Zn²⁺ based on a multifunctionalized spirobenzopyran derivative"

Jian-Fa Zhu, Han Yuan, Wing-Hong Chan^{*} and Albert W. M. Lee Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China

Fax: +852 3411 7348; Tel: +852 3411 7076; Email: whchan@hkbu.edu.hk

Figure S1	UV-vis spectra of SPQN (10 μ M) upon the titration of	S3
	Cu^{2+} (0 – 10 equiv) in buffer solution (50 mM HEPES, 50% ethanol, pH = 7.4)	
Figure S2	Fluorescence intensity of SPQN (10 μ M) at various pH	S3
	values in ethanol/water (2:8, v/v) solution in the absence and presence of Zn^{2+} (5 equiv)	
Figure S3	Job's plot by fluorescence method of the complex between SPQN and Zn^{2+}	S4
Figure S4	Fluorescence spectra (λ_{ex} = 515 nm) of 10 µM SPQN	S4
	upon the titration of Pb^{2+} (0 – 10.0 equiv) in buffer solution (50 mM, HEPES, 50% ethanol, pH = 7.4); inset: fluorescence intensity ratio as a function of Pb^{2+} concentration	
Figure S5	Plot of fluorescence intensity changes of SPQN(10µM) by	S5
	adding (a) 1 equiv of Zn^{2+} ; (b) (a) + 1 equiv of EDTA; (c) (b) + 1 equiv of Zn^{2+}	
Figure S6	MADLI-TOF HRMS spectrum of SPQN- Zn^{2+} showing [M + $Zn - H$] ⁺ peak at 609.2233	S5
Figure S7	The overlapping of the emissive peak of the quinoline moiety of SPQN ($\lambda_{ex} = 326$ nm) and the absorption peak of SPQN-Zn ²⁺ complex	S6

Figure S8	Fluorescence spectra ($\lambda_{ex} = 326 \text{ nm}$) of SPQN (10 µM) in	S6
	buffer solution (50 mM, HEPES, 50% ethanol, pH = 7.4) in the presence of different concentration of Zn^{2+} (exceeding 1 equiv)	
Figure S9-11	Spectral data of compound 3 (¹ H NMR; ¹³ C NMR; HRMS)	S7
Figure S12-14	Spectral data of compound 4 (¹ H NMR; ¹³ C NMR; HRMS)	S 8
Figure S15-17	Spectral data of compound 5 (¹ H NMR; ¹³ C NMR; HRMS)	S9
Figure S18-20	Spectral data of compound 7 (¹ H NMR; ¹³ C NMR; HRMS)	S10
Figure S21-23	Spectral data of SPQN (¹ H NMR; ¹³ C NMR; HRMS)	S 11

Fig. S1 UV-vis spectra of **SPQN** (10 μ M) upon the titration of Cu²⁺ (0 – 2 equiv) in buffer solution (50 mM HEPES, 50% ethanol, pH = 7.4)

Fig. S2 Fluorescence intensity of SPQN (10 μ M) at various pH values in ethanol/water (2:8, v/v) solution in the absence and presence of Zn²⁺ (5 equiv).

Fig. S3 Job's plot by fluorescence method of the complex between SPQN and

 Zn^{2+} .

Fig. S4 Fluorescence spectra ($\lambda_{ex} = 515$ nm) of 10 µM **SPQN** upon the titration of Pb²⁺ (0 – 10.0 equiv) in buffer solution (50 mM, HEPES, 50% ethanol, pH = 7.4); inset: fluorescence intensity ratio as a function of Pb²⁺ concentration

Fig. S5 Plot of fluorescence intensity changes of **SPQN**(10 μ M) by adding (a) 1 equiv of Zn²⁺; (b) (a) + 1 equiv of EDTA; (c) (b) + 1 equiv of Zn²⁺

Fig. S6 MADLI-TOF HRMS spectrum of SPQN- Zn^{2+} showing $[M + Zn - H]^+$ peak at 609.2233

Fig. S7 The overlapping of the emissive peak of the quinoline moiety of **SPQN** ($\lambda_{ex} = 326$ nm) and the absorption peak of SPQN-Zn²⁺ complex

Fig. S8 Fluorescence spectra (λ_{ex} = 326 nm) of SPQN (10 µM) in buffer solution (50

mM, HEPES, 50% ethanol, pH = 7.4) in the presence of different concentration of Zn^{2+} (exceeding 1 equiv)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

Fig. S12-14 Spectral data of compound **4** (¹H NMR; ¹³C NMR; HRMS)

HONG KONG BAPTIST UNIVERSITY, DEPARTMENT OF CHEMISTRY (MALDI-TOF)

Fig. S15-17 Spectral data of compound 5 (¹H NMR; ¹³C NMR; HRMS)

Fig. S18-20 Spectral data of compound **7** (¹H NMR; ¹³C NMR; HRMS)

Fig. S21-23 Spectral data of compound 5 (¹H NMR; ¹³C NMR; HRMS)