Electronic Supplementary Information

Chemoenzymatic synthesis of (2S)-2-arylpropanols through a dynamic kinetic resolution of 2-arylpropanals with alcohol dehydrogenases.

Paola Galletti,* Enrico Emer, Gabriele Gucciardo, Arianna Quintavalla, Matteo Pori, and Daria Giacomini.*

Synthesis and spectroscopic data of 2-arylpropanals 1b-f

Representative procedure for 1b synthesis.

Method 1: racemic 2-(4-isobutylphenyl)-propanoic acid, Ibuprofen, (30 mmol, 6.2 g) was refluxed in EtOH (50 mL) in the presence of a catalytic amount of BF₃.Et₂O (0.5 mL). At disappearance of the starting carboxylic acid, the solvent was concentrated, the crude dissolved in EtOAc (50 mL) and washed with aqueous NaHCO₃, the organic phase was concentrated furnishing ethyl 2-(4-isobutylphenyl)-propanoate¹ in 80% yield. The ethyl ester (25 mmol, 5.9 g) was then dissolved in Et₂O (100 mL) at -78°C, then iBu₂AlH (1M solution in hexane, 36 mL, 36 mmol) was added dropwise. Conversion was followed by GC, at completion the reaction mixture was poured into a 2M aqueous solution of potassium sodium tartrate, diluted with Et₂O (100 mL), vigorously shaken until phase separation and re-extracted with Et₂O (3× 50 mL). The combined organic phases were dried and concentrated under vacuum. **2b** is obtained as over-reduction-by-product in the same reaction. **1b** and **2b** can be easily separated by flash-chromotography and were obtained in 65% and 15% yield respectively.

Method 2: racemic 2-(4-isobutylphenyl)-propanoic acid, Ibuprofen, (10 mmol, 2.06 g) was dissolved in Et₂O (50 mL) at 0°C, then the complex BH₃.Me₂S (49 mmol, 4.6mL) was added dropwise. Conversion was followed by TLC, at completion the BH₃.Me₂S in excess was carefully quenched with H₂O, NaOH 2N (50 mL) was added and the mixture was extracted with EtOAc (3×50 mL) and concentrated affording **2b** in 98% yield. In a flask charged with a solution of oxalyl chloride (12 mmol, 1mL) in CH₂Cl₂ (100 mL) at -78°C, DMSO (22 mmol, 1.56 mL) was added dropwise. After 10 minutes **2b** (10 mmol, 1.9 g) was added and the mixture is stirred at -78°C for 1h then TEA was added (40 mmol, 5.58 mL). Conversion was followed by TLC, the reaction was quenched with a saturated solution of NH₄Cl, extracted with CH₂Cl₂ and washed with NaHCO₃. The organic phase was concentrated and **1b** was obtained after purification by flash-chromatography in 80% yield.

2-(4-isobutylphenyl)-propanal (Ibuprofenal) **1b:** ¹H NMR (300 MHz, CDCl₃): δ 0.94 (d, *J* = 6.6 Hz, 6H, (CH₃)₂CH), 1.46 (d, *J* = 7.2 Hz, 3H, CH₃CH), 1.89 (m, 1H, (CH₃)₂CHCH₂), 2.50 (d, *J* = 6.6 Hz, 2H, CH₂), 3.64 (q, *J* = 7.2 Hz, 1H, CH₃CH), 7.10-7.21 (m, 4H, arom), 9.73 (s, 1H, CHO); ¹³C NMR (50 MHz, CDCl₃): δ 14.3, 22.1, 29.9, 44.8, 52.3, 127.8, 129.5, 134.6, 140.6, 200.8; IR: v = 3433, 2950, 1722; elemental analysis calcd (%) for C₁₃H₁₈O: C 82.06, H 9.53; found: C 82.01, H 9.58.

2-(2-Fluoro-biphenyl-4-yl)-propionaldehyde (Flurbiprofenal) **1c**. Obtained in 70% overall yields following method A. ¹H NMR (200 MHz, CDCl₃): δ 1.51 (d, *J* = 7.4 Hz, 3H, CH₃), 3.70 (dq, *J* = 1.4, 7.4 Hz, 1H, CH), 7.01-7.11 (m, 2H, arom), 7.34-7.59 (m, 6H, arom), 9.73 (d, *J* = 1.4 Hz, 1H, CHO); ¹³C NMR (50 MHz, CDCl₃): 14.2, 51.1, 115.8 (d, *J*(C,F) = 27 Hz), 124.1 (d, *J*(C,F) = 3 Hz), 127.7, 127.9, 128.4, 128.7 (d, *J*(C,F) = 3 Hz), 131.1 (d, *J*(C,F) = 4 Hz), 135.1, 139.9 (d, 1C, *J*(C,F) = 8 Hz), 159.8 (d, 1C, *J*(C,F) = 248 Hz), 200.2; IR: v = 3433, 3080, 3030, 1727; elemental analysis calcd (%) for C₁₅H₁₃FO: C 78.93, H 5.74; found: C 78.92, H 5.81.

2-(3-Phenoxy-phenyl)-propionaldehyde (Fenoprofenal) **1d**. Obtained in 65% overall yields following method A. ¹H NMR (300 MHz, CDCl₃): δ 1.45 (d, *J* = 7.2 Hz, 3H, CH₃), 3.62 (dq, *J* = 1.2, 7.2 Hz, 1H, CH), 6.91-6.98 (m, 3H, arom), 7.03-7.06 (m, 2H, arom), 7.12-7.17 (m, 1H, arom), 7.33-7.40 (m, 3H, arom), 9.69 (d, *J* = 1.2 Hz, 1H, CHO); ¹³C NMR (75 MHz, CDCl₃): δ 14.4, 52.7, 117.5, 118.5, 119.0, 122.9, 123.5, 129.7, 130.2, 139.6, 156.7, 157.9, 200.6; IR: ν = 3430, 3070, 3034, 1726, 1582, 1250; elemental analysis calcd (%) for C₁₅H₁₄O₂: C 79.62, H 6.24; found: C 79.71, H 6.28.

2-(6-Methoxy-naphthalen-2-yl)-propionaldehyde (Naproxenal) **1e**. Obtained in 80% overall yield following method A. ¹H NMR (200 MHz, CDCl₃): δ 1.52 (d, *J* = 7.0 Hz, 3H, CH₃), 3.75 (dq, *J* = 1.0, 7.0 Hz, 1H, CH), 3.92 (s, 3H, OCH₃), 7.14-7.30 (m, 3H, arom), 7.60 (s, 1H, arom), 7.69-7.77 (m, 2H, arom), 9.74 (d, *J* = 1.2 Hz, 1H, CHO); ¹³C NMR (50 MHz, CDCl₃): δ 14.5, 52.8, 55.2, 105.6, 119.2, 126.6, 126.9, 127.6, 129.0, 129.1, 132.7, 133.8, 157.8, 201.0; IR: v = 3350, 1720, 1606; elemental analysis calcd (%) for C₁₄H₁₄O₂: C 78.48, H 6.59; found: C 78.35, H 6.70.

2-(3-Benzoyl-phenyl)-propionaldehyde (Ketoprofenal) **1f**: obtained in overall 50% yield following method B. ¹H NMR (200 MHz, CDCl₃): δ 1.51 (d, *J* = 7.0 Hz, 3H, CH₃), 3.74 (dq, *J* = 1.0, 7.0 Hz, 1H, CH), 7.28-7.84 (m, 9H, arom), 9.74 (d, *J* = 1.0 Hz, 1H, CHO); ¹³C NMR (50 MHz, CDCl₃): δ 14.7, 52.8, 128.4, 128.9, 129.3, 129.7, 130.1, 132.2, 132.7, 137.4, 138.3, 196.4, 200.5; ; IR: v = 3400, 3060, 1730, 1658, 1596 1317, 1281; elemental analysis calcd (%) for C₁₆H₁₄O₂: C 80.65, H 5.92; found: C 80.58, H 5.96.

Oxidation of (2S)-arylpropanols 2c and 2d to (2S)-2-arylpropionic acids

Solid KMnO₄ (0.52 mmol, 82 mg) was added to a solution of (2*S*) - (2-Fluoro-biphenyl-4-yl)-propan-1-ol **2c** obtained from enzymatic reduction (0.13 mmol, 30 mg) in acetone (1.5 mL) and H₂SO₄ 3N (1.5 mL) at 0°C under stirring. The solution was kept at 0° C for 4 more hours and at room temperature for 30 minutes. Conversion was followed by TLC. The reaction was diluted by adding 5 mL of HCl (1N) and solid Na₂SO₃ until the discolouring of the solution. The aqueous phase was extracted twice with EtOAc (2 x 10 mL), the organic phase was then extracted with a 2% NaOH solution (2 x 10 mL). The collected acqueos phase was acidified to pH 1 with HCl (2N) and extracted twice with CH₂Cl₂ (2 x 10 mL). The final organic phase was dried over Na₂SO₄ and concentrated in vacuo obtaining 15 mg of Flurbiprofen as a light yellow oil in 46 % yield. $[\alpha]^{20}{}_{\rm D}$ = +37.2 (c = 1, CHCl₃); lit. data of (*S*)- Flurbiprofen $[\alpha]^{20}{}_{\rm D}$ = +42 (c = 1, CHCl₃).²

Solid KMnO₄ (0.88 mmol, 139 mg) was added to a solution of (2*S*) -2-(3-phenoxy-phenyl)-propan-1ol **2d** obtained from enzymatic reduction (0.22 mmol, 50 mg) in acetone (2 mL) and H₂SO₄ 3N (2 mL) at 0°C under stirring. The solution was kept at 0° C for 4 more hours and at room temperature for 30 minutes. Conversion was followed by TLC. The reaction was diluted by adding 5 mL of HCl (1N) and solid Na₂SO₃ until the discolouring of the solution. The aqueous phase was extracted twice with EtOAc (2 x 10 mL), the organic phase was then extracted with a 2% NaOH solution (2 x 10 mL). The collected aqueous phase was acidified to pH 1 with HCl (2N) and extracted twice with CH₂Cl₂ (2 x 10 mL). The final organic phase was dried over Na₂SO₄ and concentrated in vacuum obtaining 25 mg of Fenoprofen as a light yellow oil in 47 % yield. $[\alpha]^{20}_{D} = +36.5$ (c = 2, CHCl₃); lit. data of (*S*)- Fenoprofen $[\alpha]^{20}_{D} = +46$ (c = 1, CHCl₃).³

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

Determination of enantiomeric ratio and configurational assignment of major stereoisomers.

Enantiomeric ratios were determined by HPLC analysis on chiral columns. In the case of alcohols 2a, 2b, 2e and 2f the (*S*) configuration of the major isomer was established by direct comparison with commercial (*S*) 2-phenylpropanol or (*S*) alcohols, obtained by reduction with BH₃.Me₂S of the commercial (*S*) acids. For 2c and 2d the (*S*) configuration of the major isomer was established by converting the alcohols obtained in the semipreparative procedure into acids by oxidation with KMnO₄ and comparing the optical rotation with reported data.

 Table 6. HPLC conditions and retention times of enantiomers of alcohols

 2a-f on Daicel chiral columns.

	Rt(min)	Rt (min)	Column, hexane/iPrOH (0.5 mL/min)
2a	13.2 (<i>R</i>)	15.6 (<i>S</i>)	OF, 93/7 isocratic analysis
2a	38.2 (<i>R</i>)	39.4 (<i>S</i>)	OD, 99/1 isocratic analysis
2b	10.6 (<i>R</i>)	11.9 (<i>S</i>)	OF, 94/6 isocratic analysis
2c	13.9 <i>(S)</i>	16.5 (<i>R</i>)	OD, 89/11 isocratic analysis
2d	22.1 <i>(S)</i>	23.9 (<i>R</i>)	OF, 95/5 isocratic analysis
2e	16.4 (<i>S</i>)	17.3 (<i>R</i>)	OD, 94/6-80/20 in30 min
2f	43.6 (<i>S</i>)	44.8 (<i>R</i>)	OF, 97/3-93/7 in 20 min then 60/40 in 50 min

2-Phenylpropanol 2a racemic mixture and (S)-2-phenylpropanol (S)-2a obtained as enzymatic reaction product

Ibuprofenol 2b racemic mixture and (S)-Ibuprofenol (S)-2b obtained as enzymatic reaction product

Representative HPLC analysis for Flurbiprofenal 1c enzymatic reduction at different reaction times: t = 1h, t = 24h

Flurbiprofenol 2c racemic mixture and (S)-Flurbiprofenol (S)-2c obtained as enzymatic reaction product

Flurbiprofen racemic mixture and (S)-Flurbiprofen obtained by oxidation of alcohol (S)-2c

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

Representative HPLC analysis for Fenoprofenal (1d) enzymatic reduction at different reaction times: t = 1h, t = 24h

Fenoprofenol 2d racemic mixture and (S)-Fenoprofenol (S)-2d obtained as enzymatic reaction product

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

Naproxenol 2e racemic mixture and (S)-Naproxenol (S)-2e obtained as enzymatic reaction product

Ketoprofenol 2f racemic mixture and (S)-Ketoprofenol (S)-2f obtained as enzymatic reaction product

¹ R. Mueller, J. Yang, C. Duan, E. Pop, O. J. Geoffroy, L. H. Zhang, T. B. Huang, S. Denisenko, B. H. McCosar, D. C. Oniciu, C. L. Bisgaier, J. Med. Chem. 2004, 47, 6082 – 6099.

2 M. Allegretti, R. Bertini, M. C. Cesta, C. Bizzarri, R. Di Bitondo, V. Di Cioccio, E. Galliera, V. Berdini, A. Topai, G. Zampella, V. Russo, N. Di Bello, G. Nano, L. Nicolini, M. Locati, P. Fantucci, S. Florio, F. Colotta, *J. Med. Chem.*, **2005**, *48*, 4312-4331.

3 L. Carde, D. H. Davies, M. R. Stanley, J. Chem. Soc., Perkin Transactions 1: Organic and Bio-Organic Chemistry, 2000, 15, 2455 - 2464.