Supplementary Material

	A TD				A A
	AIP	Ap₅A	Ap₄A	Ap ₃ A	Ap ₂ A
H2	8.24	8.12	8.10	8.06	8.00
H8	8.51	8.40	8.34	8.25	8.14
H1'	6.12	6.02	5.99	5.97	5.92
H2'	4.78	~4.73	4.69	4.56	4.53
H3'	4.58	4.56	4.53	4.45	4.41
H4'	4.37	4.35	4.33	4.31	4.33
H5'	4.26	4.26	4.27	4.29	4.31
H5"	4.18	4.19	4.21	4.25	4.21
Ρα	-10.45	-10.44	-10.42	-10.75	-10.39
Ρβ	-21.86	-22.19	-22.20	-22.20	1
Ργ	-8.10	-22.13	/	/	/
C2	153.60	153.38	153.42	153.35	153.16
C8	140.66	140.48	140.34	139.84	139.81
C6	156.41	155.98	155.93	155.71	155.59
C4	149.96	149.58	149.47	148.96	148.87
C5	119.38	118.93	118.87	118.65	118.52
	87.31	87.22	87.45	87.95	87.78
C2 ⁻	74.96	75.00	75.20	75.59	75.48
	71.07	71.13	71.04	70.39	70.62
64 CE	04.0Z	04.74	04.00	03.0Z	04.U/
	88.CU	05.99	5.91	05.42	05.65
J _{1'2'}	6.1	6.0	5.8	4./	5.2
J _{2'3'}	5.2	5.0	5.1	4.8	5.0
J _{3'4'}	3.5	3.2	3.6	4.8	4.4±0.5
$J_{4'5'}$	2.8	2.8	2.8	2.5±0.4	2.1±1
$J_{4'5''}$	3.0	3.3	3.3	3.1	2.7±1
$J_{4'P}$	2.3	1.9	2.1	2.6±0.4	n.d.
J₅ _{"P}	6.2	6.2	6.0	6.2±0.4	4.2±2
$J_{5"P}$	4.5	4.2	4.6	4.3	5.4±2
$J_{5'5''}$	11.7	11.6	11.7	11.6	11.6
J _{C4'P}	9.2	9.0	9.2	8.5	9.0
J _{C5'P}	5.1	5.5	4.8	4.0	4.0
Jββ	/	/	16.5	/	/
Jαβ	19.5	16.0	18.1	19.3	/
J αβ'	/	/	0.3	/	/
J _{C6H2}	11.0	11.0	11.0	11.0	11.0
JCALLO	12 0	12.3	12.3	12.0	12 0
	5.0	53	4.8	5.0	52
-04H8	1.0	1.8	<1	n d	1.8
	11.0	11.0	 11 0	11.0.	11.5
JC5H8	202.0	11.0	11.0	11.0	11.0
J _{C2H2}	202.8	202.2	203.7	202.2	202.2
J _{C8H8}	216.3	215.8	215.8	215.8	215.8
Ј_{С8Н1'}	4.0	4.6	4.5	3.7	4.2

Table S1. Chemical shifts and coupling constants of dinucleotides and mononucleotides used as references

	GTP	Gp₅G	Gp₄G	Gp ₃ G	Gp ₂ G
H8	8.10	8.04	8.02	7.96	7.90
H1'	5.90	5.84	5.82	5.79	5.75
H2'	4.80	4.79	4.75	4.63	4.59
H3'	4.57	4.55	4.52	4.44	4.41
H4'	4.33	4.32	4.29	4.26	4.25
H5'	4.24	4.25	4.24	4.23	4.23
H5''	4.18	4.20	4.20	4.23	4.15
Ρα	-10.40	-10.58	-10.62	-10.83	-10.44
Ρβ	-21.65	-22.20	-22.42	-22.44	/
Ργ	-7.45	-22.14	1	1	1
C2	154.70	153.23	153.17	153.08	154.31
C8	138.56	137.34	137.19	136.74	137.94
C6	159.80	158.29	158.17	157.97	159.27
C4	152.62	151.21	151.09	150.73	151.90
C5	117.03	115.56	115.49	115.34	116.65
C1'	87.36	86.22	86.29	86.70	87.97
C2'	74.20	72.86	72.97	73.31	74.64
C3'	71.06	69.93	69.84	69.29	70.65
C4'	84.73	83.55	83.35	82.68	83.92
C5'	65.90	64.84	64.69	64.22	65.71
J _{1'2'}	6.4	6.5	6.2	5.4	5.2
J _{2'3'}	5.2	5.2	5.0	4.8	5.1
J _{3'4'}	3.3	3.0	3.1	4.2	4.0±0.5
$J_{4'5'}$	3.5	3.5	3.5	n.d.	2.7±1
$J_{4'5''}$	3.5	3.5	3.8	n.d.	2.7±1
$J_{4'P}$	1.6	n.d.	n.d.	n.d.	n.d.
J₅ _{"P}	6.5	6.2	6.0	n.d.	5.4±2
$J_{5"P}$	4.5	5.0	5.0	n.d.	5.4±2
J _{5'5"}	11.5	11.5	11.5	n.d.	10.8
J _{C4'P}	9.1	8.9	9.4	9.0	9.5
J _{C5'P}	5.5	5.4	5.3	5.3	5.5
Jββ	/	n.d.	16.4	/	/
Jαβ	19.5	15.0	18.3	19.3	/
Jαβ'	1	n.d.	0.1	1	/
J _{C4H8}	5.5	5.2	4.8	5.1	5.1
J _{C4H1}	2.5	2.8	2.4	2.4	2.3
Ј_{С5Н8}	11.5	11.1	11.1	11.2	11.0
J _{с8н8}	215.8	216.1	216.1	217	215.8
Ј_{С8Н1'}	4.7	4.3	4.1	4.1	4.1

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

	<u>A</u> p₂U	<u>A</u> p₃U	<u>A</u> p₄U	<u>Gp₂</u> C'	<u>G</u> p₂C	<u>G</u> p₃C
H2	8.18	8.20	8.21	/	/	/
H8	8.41	8.48	8.50	7.95	8.01	8.07
H1'	6.05	6.08	6.09	5.97	5.84	5.86
H2'	4.72	4.71	~4.76	4.71	~4.78	~4.80
H3'	4.48	4.51	4.56	4.45	4.46	4.49
H4'	4.35	4.35	4.36	4.29	4.31	4.31
H5'	4.23	4.25	4.26	4.28	4.24	4.20
H5''	4.18	4.19	4.19	4.18	4.15	4.20
D	-10.55or	10.77	-10.51or	10.49	10.61	-10.90 or
Ρα	49	-10.77	59 22.27	-10.48	-10.01	/ð 22.42
rp Bw	,	-22.21	-22.21		/	-22.42
	153 55	153.68	153.67	151 37	153.24	154 52
C8	140.40	140.42	140.60	139.57	137.00	129.02
C6	156 21	156.28	156.36	159 29	158.24	159.42
C4	149.78	149.85	149.99	152.22	151.13	152.37
C5	119.18	119.22	119.32	116.81	115.68	116.78
C1'	87.44	87.36	87.21	87.75	86.40	87.22
C2'	74.92	75.42	75.10	74.22	72.87	74.50
C3'	71.07	71.27	71.28	70.97	69.88	71.32
C4'	84.52	84.64	84.93	84.21	83.21	84.58
C5'	65.99	65.98	66.05	66.05	64.83	65.95
J _{1'2'}	6.0	6.0	6.2	5.7	6.0	6.5
J _{2'3'}	5.3	5.0	5.2	5.3	5.3±0.5	5.0
J _{3'4'}	3.5	3.4	3.1	3.7±0.5	3.3±0.5	3.0
J _{4'5'}	n.d.	2.6±0.5	2.8±0.5	n.d.	n.d.	n.d.
J _{4'5"}	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
J _{4'P}	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
J₅ _{'P}	n.d.	6.4±0.5	6.3±0.5	n.d.	n.d.	n.d.
J₅ _{"P}	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
J _{5'5"}	n.d.	11.3±0.5	11.4±0.5	n.d.	n.d.	n.d.
J _{C4'P}	8.2	9.1	10.0±1	8.7	9.0	8.7
J _{C5'P}	4.6	5.0	5.0±1	5.0	4.0	4.5
Jββ	/	/	~18	/	/	1
Jαβ	20.5	19.0	~18	/	/	19.7/18.7
Jαβ'	/	/	/	/	/	1
J _{C6H2}	11.0	11.0	11.0	/	/	/
J _{C4H2}	12.2	11.6	12.0±0.4	/	/	1
J _{C4H8}	5.3	4.8	5.2±0.7	n.d.	5.0	5.0
J _{C4H1'}	2.3	2.3	2.3±1	n.d.	3.0	2.5
J _{C5H8}	11.5	11.5	11.5	11.0	11.0	11.0
J _{C2H2}	202.2	202.2	202.7	/	/	/
JC8H8	215.8	215.8	215.8	216.8	215.7	216.1
	4.3	4.3	4.1	3.4	4.0	4.1

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

	UTP	Up₂U	Up₄U	Up₅U	Ap ₂ <u>U</u>	Ap <u>₃U</u>	Ap₄ <u>U</u>
H5	5.95	5.91	5.96	5.95	5.64	5.70	5.81
H6	7.96	7.89	7.94	7.94	7.62	7.75	7.82
H1'	5.97	5.92	5.96	5.98	5.78	5.82	5.89
H2'	4.38	4.32	4.36	4.37	4.18	4.25	4.31
H3'	4.42	4.32	4.40	4.42	4.23	4.28	4.36
H4'	4.26	4.23	4.25	4.27	4.18	4.18	4.20
H5'	4.24	4.23	4.22	4.24	4.23	4.21	4.20
H5''	4.21	4.15	4.22	4.21	4.12	4.21	4.20
					-10.55or		-10.51or
Ρα	-10.51	-10.59	-10.66	-10.57	49	-10.72	59
Ρβ	-21.72	/	-22.40	-22.09	/	-22.27	-22.27
Ργ	-7.41	/	/	-22.09	/	/	/
C2	152.62	152.44	152.61	152.68	152.06	152.17	152.51
C6	142.46	142.32	142.41	142.44	141.62	141.77	142.12
C4	167.00	166.84	166.93	166.98	166.36	166.42	166.76
C5	103.40	103.36	103.49	103.51	102.91	102.97	103.27
C1'	88.85	89.04	88.70	88.69	88.91	89.03	88.77
C2'	74.45	74.49	74.47	74.41	74.68	74.72	74.51
C3'	70.28	70.32	70.49	70.53	70.19	69.97	70.35
C4'	84.12	83.86	84.28	84.38	83.74	83.60	84.07
C5'	65.56	65.60	65.79	65.89	65.56	65.34	65.71
J _{1'2'}	5.3	4.5±0.5	5.4	5.6	5.0	4.5	5.1
J _{2'3'}	5.2	5.0±1	5.2	5.2	n.d.	4.8±0.5	5.1±0.5
J _{3'4'}	4.3	4.5±1	3.8	3.8	n.d.	4.8±0.5	n.d.
J _{4'5'}	n.d.	2.5±1	n.d.	n.d.	n.d.	n.d.	n.d.
J _{4'5"}	n.d.	2.5±1	n.d.	2.8±1	2.5±1	n.d.	n.d.
$J_{4'P}$	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
J₅'₽	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
J₅ _{"P}	n.d.	5.0±2	n.d.	4.5±1	5.0±2	n.d.	n.d.
J _{5'5"}	n.d.	12.0	n.d.	11.1±1	11.7	n.d.	n.d.
J _{C4'P}	9.5	9.4	9.0	9.2	7.6	9.0	10.0±1
J _{C5'P}	5.0	5.2	5.0	5.2	4.3	5.0	4.2±1
Jββ	/	/	16.8	/	/	/	~18
Jαβ	20.0	/	18.4	16.3±1	20.5	19.0	~18
J αβ'	/	/	0.15	/	/	/	/
J _{C2H6}	8.0	8.1	8.0	8.3	8.0	8.3	8.1
Ј _{С2Н1'}	2.0	2.0	2.0	2.1	2.0	1.8	2.0
J _{C4H5}	1.6	1.6	1.4	1.7	1.5	1.8	1.3
J _{C4H6}	11.0	10.8	11.0	10.8	10.5	11.0	10.5
J _{C5H5}	179.0	178.8	178.8	178.9	178.1	178.1	179.0
Ј_{С5Н6}	2.0	2.3	2.0	2.1	2.3	2.1	1.8
Ј_{С6Н1'}	4.0	4.0	4.0	4.0	4.0	4.1	4.1
J _{C6H6}	185.0	184.7	184.9	185.6	185.6	185.6	184.9
Ј_{С6Н5}	4.0	4.0	4.0	4.0	4.0	4.1	4.1
J _{H6-H5}	8.2	8.0	8.1	8.0	8.0	8.2	8.2

	Gp ₂ C'	Gp₂ <u>C</u>	Gp₃ <u>C</u>	СМР
H5	6.92	5.88	5.91	6.11
H6	8.08	7.72	7.80	8.07
H1'	5.82	5.82	5.87	5.98
H2'	4.21	4.16	4.21	4.31
H3'	4.24	4.22	4.25	4.31
H4'	4.24	4.18	4.18	4.22
H5'	4.34	4.23	4.24	4.03
H5"	4.17	4.12	4.24	3.96
			-10.90 or	
Ρα	-10.48	-10.61	78	4.11
Ρβ	/	/	-22.42	/
Ργ	/	/	/	/
C2	157.24	156.81	158.00	158.55
C6	145.07	140.27	141.51	142.57
C4	163.53	165.27	166.46	166.92
C5	97.37	95.55	96.79	97.33
C1'	91.15	88.81	89.91	89.79
C2'	75.50	73.99	75.08	75.08
C3'	68.98	68.31	69.33	70.33
C4'	83.01	81.74	82.82	84.21
C5'	64.76	63.84	64.87	63.64
J _{1'2'}	2.7	4.0	3.5	3.6±0.5
J _{2'3'}	n.d.	n.d.	n.d.	n.d.
J _{3'4'}	n.d.	n.d.	n.d.	n.d.
J _{4'5'}	n.d.	n.d.	n.d.	2.7
J _{4'5"}	n.d.	n.d.	n.d.	2.9
J _{4'P}	n.d.	n.d.	n.d.	n.d.
J₅ _{'P}	n.d.	n.d.	n.d.	3.7
J₅ _{"P}	n.d.	n.d.	n.d.	5.1
J _{5'5"}	n.d.	n.d.	n.d.	11.9
J _{C4'P}	8.7	9.0	9.3	8.5
J _{C5'P}	3.7	4.0	4.5	4.0
Jββ	/	/	/	/
Jαβ	/	/	19.7/18.7	1
]αβ'	/	/	/	/
J _{C2H6}	n.d.	6.0	6.3	6.5
Ј _{С2Н1'}	n.d.	n.d.	1.3	1.8
J _{C4H5}	n.d.	1.6	1.8	2.0
J _{C4H6}	10.0	9.0	9.0	9.0
J _{C5H5}	182.0	177.7	173.9	175.6
J _{C5H6}	3.0	n.d.	2.2	3.0
Ј_{С6Н1'}	2.5	3.6/3.8	3.5	4.0
J _{с6н6}	185.5	184.5	183.8	184.9
J _{C6H5}	5.5±1	3.6/3.8	3.5	4.0
Ј _{Н6-Н5}	7.6	7.6	7.8	7.6

n.m. not measured; n.d. not determined

If not mentioned otherwise, J_{HH} , $J_{HP}\pm0.2$ Hz, J_{CH} , J_{CP} , $J_{PP}\pm0.5$ Hz. ~ H2' overlap with HOD signal. The chemical shift is estimated.

Table S2. Differences in chemical shifts (in ppm) between dinucleoside

polyphosphates and the corresponding mononucleotide. ($\Delta \delta = \delta_{mononucleotide}$

No.	Dinucleotide	Δδ _{H2'(pu)}	Δδ _{H3'(pu)}	Δδ _{H2'(py)}	Δδ _{H3'(py)}
1	Ap ₂ A	0.25	0.17	/	/
2	Ap ₃ A	0.22	0.13	/	/
3	Ap ₄ A	0.09	0.05	/	/
4	Ap ₅ A	~0.05	0.02	/	/
5	Ap ₂ U	0.06	0.10	0.20	0.19
6	Ap ₃ U	0.07	0.07	0.13	0.14
7	Ap ₄ U	~0.02	0.02	0.07	0.06
8	Up ₂ U	/	/	0.06	0.10
9	Up ₄ U	/	/	0.02	0.02
10	Up ₅ U	/	/	0.01	0
11	Gp ₂ G	0.21	0.16	/	/
12	Gp ₃ G	0.17	0.13	/	/
13	Gp₄G	0.05	0.05	/	/
14	Gp5G	0.01	0.02	/	/
15	Gp ₂ C	~0.02	0.11	0.15	0.09
16	Gp ₃ C	~0	0.08	0.10	0.06
17	Gp ₂ C'	0.09	0.12	0.10	0.07

 $-\delta_{dinucleotide}$)

	$Ap_2A(\alpha-\alpha)^a$	Ap ₂ A $(\beta - \beta)^a$	$Ap_4A(\alpha-\alpha)^a$	Ap ₄ A $(\beta - \beta)^a$
α1	188.3 ± 20.7	222.2 ± 75.1	234.1 ± 87.3	229.8 ± 87.6
α2	188.6 ± 21.7	195.1 ± 81.0	-7.9 ± 62.6	274.7 ± 61.0
β1	182.4 ± 27.2	182.0 ± 30.6	180.7 ± 25.8	175.6 ± 36.0
β2	184.9 ± 25.9	190.2 ± 38.0	181.6 ± 81.1	130.1 ± 31.2
γ1	62.6±13.9	57.4 ± 18.8	66.7 ± 46.4	50.4 ± 28.0
γ2	62.7 ± 14.3	57.3 ± 22.7	70.2 ± 19.9	43.7 ± 31.6
χ1	227.1 ± 17.0	258.7 ± 39.4	-74.0 ± 36.3	239.0 ± 42.5
χ2	227.1 ± 16.6	233.5 ± 56.0	-2.3 ± 47.5	241.2 ± 59.5

Table S3. Torsion angles of Ap₂A and Ap₄A (including standard deviation)

^a The simulations started with a certain stacking mode (β - β or α - α), but this changed during the simulation (to an extended conformation or another mode of stacking), so the data is not an average for only one stacked conformation, but all the stacked forms and the extended form.

Fig. S1. The change of the lattice parameters a, b, c of the Ap₄A unit cell during a 1

ns MD simulation.

Fig. S2. The change of the angle β of the Ap₄A unit cell during a 1 ns MD simulation.

Fig. S3. The inter-base distance (N9-N92) (Fig. 9) as a function of time during 10 ns

simualtions for (a) Ap₂A (b) Ap₄A

Fig. S4 . Distances N62-O2' and N6-O22' (Fig. 11) for Ap_2A in the $\beta-\beta$ stacking

Fig. S5 . Distances N62-O2' and N6-O22' (Fig. 11) for Ap_4A in the $\beta-\beta$ stacking

Fig. S6 . Distances N62-O2' and N6-O22' (Fig. 11) for Ap₂A in the α - α stacking

form, during 1 ns simulation.

Fig. S7. Distances N62-O2' and N6-O22' (Fig. 11) for Ap₄A in the α - α stacking

Fig. S8. Distances N62-O2' and N6-O22' (Fig. 11) for Ap₂A in the α - β stacking form, during 1 ns simulation.

Fig. S9. Distances N62-O2' and N6-O22' (Fig. 11) for Ap₄A in the α - β stacking

Assignment of Ap_nAs coupling constants as compared to literature

The conformation of Ap_nAs n = 2-6 in solution was investigated by Mayo et al before.¹ We confirmed that there are upfield shifts ($\Delta\delta$) of H8, H2, H1', H2' and H3' chemical shifts compared to the corresponding mononucleotides. These $\Delta\delta$ values become smaller for longer phosphate chains. We also confirmed that Ap₂A and Ap₃A have smaller J_{1'2'} and larger J_{3'4'} values as compared to longer Ap_nAs, *i.e.*, n = 4, 5. However, we found differences in the measured coupling constants of up to *ca*. 5 Hz as compared to literature values (Table S4). We disagree with the reported assignment of the coupling constants ³J_{4'5'}, ³J_{4'5'} and ³J_{P5'}, ³J_{P5''}.¹ The coupling constants ³J_{P5'} and ³J_{P5'} are actually larger than ³J_{4'5'}, ³J_{4'5''} based on Ap₄A J-resolved spectrum (Fig. S10) and ¹H-coupled ³¹P NMR spectrum for Ap₃A (Fig. S11). This finding is consistent with literature assignment for mononucleotides.²

Table S4. Comparison of the J values (Hz) determined in this study (in bold) with

literature data

	J_4	'5'	J_4	'5"	$\mathbf{J}_{\underline{\beta}}$	5'P	J_5	5"P
Ap ₂ A	2.5	2.1	2.5	2.7	1.3	4.2	1.9	5.4
Ap ₃ A	7.5	2.5	3.8	3.1	2.5	6.2	4.4	4.3
Ap ₄ A	6.9	2.8	5.0	3.3	3.1	6.0	3.8	4.6
Ap ₅ A	6.3	2.8	3.8	3.3	3.1	6.2	3.8	4.2

Fig. S10. 600 MHz J-resolved spectrum of Ap₄A. Sample concentration 7.4 mM in D_2O , pD 7.5, 300 K.

Fig. S11. 243 MHz 31 P NMR spectrum without decoupling of Ap₃A .Sample concentration 7.3 mM in D₂O, pD 7.48, 300 K. constants that were obtained: J_{PP}, J_{P5'}, J_{P5''}, J_{P5''}, J_{P4'}.

- .1 K. H. Mayo, O. M. Mvele and R. N. Puri, FEBS Lett., 1990, 265, 97-100.
- .2 C. R. Cremo, Methods Enzymol., 2003, 360, 128-177.

Fig. S12. Progressive PMF profiles of Ap_2A - $\alpha\alpha$.

Fig. S13. Progressive PMF profiles of Ap_2A - $\beta\beta$.

Fig. S14. Progressive PMF profiles of Ap_2A - $\alpha\beta$.

Fig. S15. Progressive PMF profiles of Ap_4A - $\alpha\alpha$.

Fig. S16. Progressive PMF profiles of $Ap_4A-\beta\beta$.

Fig. S17. Progressive PMF profiles of $Ap_4A-\alpha\beta$.

reference (3.5-3.8 ppm).

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

