Supplementary Information

Computer simulation of reactions in β -cyclodextrin molecular reactors: transition state recognition.

Violeta Yeguas,^{a,b} Ramón López,^a Alexandrine Lambert,^b Gérald Monard^b and Manuel F. Ruiz-López^{b*}

^a Departamento de Química Física y Analítica, Universidad de Oviedo, C/Julián Clavería, 8, 33006 Oviedo, Spain.

^b Equipe de Chimie et Biochimie Théoriques, SRSMC, Nancy-University, CNRS, BP 70239, 54506 Vandoeuvre-lès-Nancy, Cedex, France

Manuel.Ruiz@cbt.uhp-nancy.fr

Table of Contents

Details on computations	Page 2
Table 1S. Cartesian coordinates of optimized structures in bulk water using the implicit solvent model.	Page 3
Table 2S. B3LYP/6-31G(d) energetics in bulk water using the implicit solvent model.	Page 6
Table 3S. B3LYP/6-31G(d) energetics using the implicit solvent model to represent the β -CD environment.	Page 7
Table 4S. Binding energy analysis (kcal mol ⁻¹) for <i>head-first</i> (H-F) and <i>tail-first</i> (T-F) modes of complexation of the ester reactant with the β -CD.	Page 8

Details on computations

Details on MM force-field and MD simulations

MD simulations have been run in the constant isothermal-isobaric (NPT) ensemble at 298 K and 1 atm with an integration step of 1 fs. The chemical system was placed in a cubic box with a side length of 36.34 Å containing between 1400 and 1600 TIP3P¹ water molecules, the exact number depending on system and environment (bulk water or aqueous β -CD). The SHAKE algorithm² was used to keep the water molecules rigid. Periodic boundary conditions with a cutoff of 9 Å both for electrostatic and van der Waals interactions have been applied. The AMBER force field has been used to describe the β -CD and the Generalized AMBER one (GAFF) for the guest molecules³ due to the lack of suitable parameters for the nitrogen and oxygen atoms of the ester nitro group. Atomic charges for β -CD were chosen according to Bonnet et $al_{,}^{4}$ while for the guest species, they were obtained from the restrained electrostatic potential (RESP) model at the HF/6-31G(d) level of theory.⁵ In the case of transition states, a flat-welled harmonic potential was used to freeze the relative positions of atoms in the six-member ring that define the reaction coordinate. The geometry defining the energy minimum of the ring was taken from calculations using the implicit model. The initial geometry of the host-guest complexes was obtained by inserting at random the B3LYP/6-31G(d) optimized guest molecules into the β -CD cavity through the PyMOL program⁶ followed by MM energy minimization. The trial β -CD structure was taken from the Protein Data Bank. After an equilibration period of 500 ps, simulations have been carried out for another 500 ps saving snapshots every 1 ps. Atomic charges for guests and force constants used for TS constraints are provided as a separate file of the Supporting Information.

1. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey and M. L. Klein, J. Chem. Phys., 1983, 79, 926.

2. S. Miyamoto and P. A. Kollman, J. Comput. Chem., 1992, 13, 952.

3. W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell and P. A. Kollman, J.

Am. Chem. Soc., 1995, 117, 5179; J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman and D. A. Case, J. Comput. Chem., 2004, 25, 1157.

4. P. Bonnet, C. Jaime and L. Morin-Allory, J. Org. Chem, 2002, 67, 8602.

5. J. Wang, P. Cieplak and P. A. Kollman, J. Comput. Chem., 2000, 21, 1049.

6. W. L. DeLano, The PyMOL Molecular Graphics System, Delano Scientific, San Carlos, CA, USA, 2002.

Details on QM/MM computations

Total QM/MM energies are computed as follows:

 $E = E_{QM} + E_{MM} + E_{QM/MM}$

 $E_{QM/MM} = E_{elec} + E_{Lennard-Jones}$

where E_{QM} and E_{MM} correspond to the QM and MM system energies, respectively, and $E_{QM/MM}$ is the interaction energy, with:

$$E_{QM} = \langle \psi | H^o | \psi \rangle$$
$$E_{elec} = \langle \psi | V | \psi \rangle$$

Here, ψ corresponds to the polarized wavefunction of the chemical system and H^0 and V hold, respectively, for the unperturbated Hamiltonian of the chemical system and the electrostatic potential created by the MM environment

Table 1S. B3LYP/6-31G(d) calculations of species involved in neutral ester hydrolysis mechanisms. Cartesian coordinates of optimized structures in bulk water using the implicit solvent model.

R (H ₂)	O) ₂		
С	0.020055	-0.179639	-0.248112
С	-0.082528	-1.571929	-0.111864
С	1.067100	-2.353683	-0.056485
С	2.307904	-1.722738	-0.139207
С	2.436578	-0.340537	-0.274976
С	1.280309	0.429607	-0.329205
Ν	3.525171	-2.545002	-0.081607
0	3.395320	-3.763944	0.040107
С	-1.188716	0.697409	-0.311399
0	-1.119681	1.912356	-0.442084
0	4.613698	-1.973470	-0.158108
0	-2.328488	0.014149	-0.214757
С	-3.560785	0.772268	-0.273699
0	-4.073895	3.212425	2.101114
Н	1.009139	-3.430928	0.048201
Н	3.419179	0.112920	-0.335861
Н	1.344558	1.507792	-0.434428
н	-1.057682	-2.042466	-0.049437
н	-4 352140	0 022116	-0 274960
н	-3 648355	1 426673	0.598650
н	-3 591887	1 361451	-1 194265
н	-5 011870	3 233360	1 837117
и ц	-3 618895	3 6550/3	1 3/657/
и П	-2.193223	3 111576	_0 298905
0	-2.729599	1 244196	-0.110600
U U	-2.720399	4.244190	-0.110088
11	-2.070074	4.004000	0.207000
TS,			
C	-0.106564	-0.150043	0.144581
С	0.040274	-0.061535	1.532229
С	1.318913	0.107124	2.083615
С	2.437343	0.184015	1.262570
С	2.261015	0.091358	-0.121114
C	1.001352	-0.074649	-0.695748
C	-1.218693	-0.152310	2.395885
0	-0 874350	-1 230124	3 495757
N	3 433440	0 171979	-0 992108
0	3 262663	0 092586	-2 211963
0	4 541970	0.315732	-0 468546
0	-2 330280	-0 314241	1 868456
0	-1 114435	1 104675	3 367912
C	_1 699100	2 272336	2 786589
0	-1.863730	_0 0/9967	5 364405
U U	-1.003730	0 212150	1 674557
п u	0 000006	0.313139	1 772002
п тт	0.899286	-0.142004	-1.//2002
п	-1.103159	-0.2/9/26	-0.265253
п т	1.434526 0.710766	0.1/899	3.160105
H TT	-2./13/66	2.0650/4	2.431607
н т	-1./22/38	3.043826	3.561318
н	-1.084809	2.023150	1.948528
H	-1.631428	0.703217	4.619935
H	-1.454173	-0.810284	4.683556
H	-1.241002	0.059761	6.117825
TT	-1 358226	-2 019742	3 170581

СССССИОСООСННННННОНОНННН	-0.288466	0.090636	-0.147106
	0.441391	1.202109	0.296120
	1.829830	1.152424	0.363045
	2.477434	-0.024381	-0.017240
	1.773818	-1.143980	-0.462816
	0.385691	-1.075719	-0.525365
	3.938060	-0.084110	0.050664
	4.545705	0.914306	0.446527
	-1.808943	0.105110	-0.214507
	-2.370073	-0.805971	-0.946148
	4.496325	-1.130330	-0.290528
	-2.236159	1.421933	-0.356227
	-3.605690	1.594823	-0.739449
	2.407219	2.005266	0.701114
	2.307788	-2.041202	-0.754351
	-0.191305	-1.924735	-0.876199
	-0.077737	2.110522	0.582794
	-3.746228	2.671527	-0.853069
	-3.813362	1.084868	-1.684215
	-4.286701	1.218953	0.033644
	-2.202162	-0.259400	1.381101
	-3.249477	-0.979891	1.229789
	-4.021664	-1.595166	0.617965
	-3.396910	-1.356738	-0.279683
	-2.391611	0.590786	1.831158
	-3.895769	-2.544323	0.826912
I СССССССОNОООСОННННННННН	0.399657	-1.130431	-0.224953
	-0.235376	0.108346	-0.061872
	0.538269	1.259518	0.134024
	1.928224	1.182295	0.161871
	2.533675	-0.062787	-0.006275
	1.786464	-1.226101	-0.200476
	-1.766403	0.154775	-0.021379
	-2.230212	-0.202542	1.274306
	3.993994	-0.152161	0.019590
	4.513890	-1.260357	-0.136938
	4.639765	0.884107	0.198585
	-2.282657	-0.776708	-0.899786
	-2.137625	1.479759	-0.334278
	-3.543922	1.716321	-0.430136
	-4.624798	-1.612034	0.214548
	2.536522	2.067465	0.308594
	2.287410	-2.178745	-0.329490
	-0.202439	-2.019412	-0.379893
	0.050760	2.220117	0.257040
	-3.653719	2.765390	-0.714271
	-3.999366	1.080519	-1.197321
	-4.046486	1.543969	0.528611
	-4.347670	-1.366775	1.119169
	-3.152305	-1.104513	-0.542809
	-1.969830	0.512807	1.898288
	-4.650435	-2.589948	0.235114
TS ₂	-2.192411	-2.408734	1.684688
C	-2.085961	-1.067816	2.081204
C	-0.828271	-0.518527	2.345695
C	0.323542	-1.290746	2.211670
C	0.191166	-2.619960	1.814618

С	-1.054705	-3.194735	1.550228
С	-3.321950	-0.198665	2.239675
0	-3.190796	1.008131	2.710682
N	1.395470	-3.441335	1.671987
0	1 261084	-4 617213	1 324246
0	2 488542	-2 919666	1 905664
0	-4 355241	-0 928713	2 749558
0	-3 683001	-0.020613	0 534844
C	-5 075944	0.020015	0.267837
с u	1 205129	-0.977609	2 /12775
п U	_1 120142		1 2//701
п U	-1.120143	-4.232710	1 /70220
п U	-0.754592	-2.034055	2 665942
п тт	-0.754585 E 102772	0.32333	2.005942
п	-5.195772 E (17072	0.323274	-0.000544
п	-5.61/8/3	-0.766536	0.540227
п	-5.501633	0.994120	0.820244
H	-5.003891	-0.28/585	3.12/986
Н	-2.763606	1.760275	1.764403
0	-2.550125	2.087513	0.672070
H	-3.128707	2.848076	0.461145
Н	-3.089613	1.109476	0.360257
D (U	()		
F (I	1 22(22)	0 001704	2 247004
C	-1.330235	0.021704	-2.24/904
C	-1.314450	-0.009473	-0.050090
C	1 110000	-0.099900	-0.170024
C	1 102602	-0.100298	
C	1.103602	-0.129992	-2.2/3300
C	-0.122122	-0.030070	1 227700
	-0.122556	-0.126717	1 052222
N	-1.180750	-0.065985	1.952223
IN O	-0.135340	-0.004552	-4.401304
0	0.944600	-0.055094	-4.992201
0	1.075319	-0.220062	1.8/56/9
0	-1.225936	0.073556	-4.9692/3
0	1.108510	-0.185937	4.482655
C	1.641112	1.055259	4.959660
0	-1.549702	-0.177466	4.733380
H	1.033885	-0.221983	2.898374
H	2.025685	-0.175007	-2.841304
H	-2.268667	0.091841	-2.796042
H	-2.240160	0.036611	-0.293769
H	2.051079	-0.230039	-0.347300
H	-1.581768	-0.135695	3.751641
H	-1.887527	-1.069499	4.948715
H	1.632150	1.082881	6.056121
H	2.675997	1.124821	4.613852
H	1.078174	1.916654	4.575797
Н	0.147596	-0.232579	4.746926

Table 2S. B3LYP/6-31G(d) calculations of species involved in neutral ester hydrolysis mechanisms. Energetics in bulk water using the implicit adal Matation and maits

SULVEILL IIIOUEL. INUL	anon and units are.
Esol	Total energies (hartree)
$\mathrm{H}_{\mathrm{gas}}$ and $\mathrm{TS}_{\mathrm{gas}}$	Thermal and entropy corrections, from frequency calculations in gas phase (hartree)
G and ΔG	Total and relative free energies (hartree and kcal mol ⁻¹ , respectively)
$\Delta { m G}_{solv}$	Free energies of solvation (kcal mol ⁻¹)
Components of the free	α energies of solvation, $\Delta G_{soh} = \Delta G^{\text{non-elec}}_{soh} + \Delta G^{\text{elec}}_{soh}$ (with $\Delta G^{\text{elec}}_{soh} = 1/2 E_s^{sl} + E_s^{pol}$)
$\Delta G^{\mathrm{non-elec}}_{solv}$	non-electrostatic solvation free energy (kcal mol ⁻¹)
$\Delta { m G}^{ m elec}{}_{solv}$	electrostatic solvation free energy (kcal mol ⁻¹)
$E_s^{pol} = \left\langle \boldsymbol{\psi}_s \middle H^{\mathrm{o}} \middle \boldsymbol{\psi}_s \right\rangle - \left\langle \boldsymbol{\psi}$	$_{o} H^{o} \psi_{o} angle$ solute polarization (kcal mol ⁻¹)
${E_s^{el} = \left< oldsymbol{\psi}_s ight V \left oldsymbol{\psi}_s ight>}$	electrostatic solute-solvent interaction (kcal mol ⁻¹)
where ψ_o and ψ_s correases). <i>V</i> represents the	respond, respectively, to the chemical system wave function in gas phase and in the continuum (with the optimized geometry reaction field potential and H° the Hamiltonian for the isolated chemical system.

E_{s}^{el}	-27.8	-38.4	-28.8	-36.6	-31.4	-21.0
E_s^{pol}	1.2	2.2	1.5	2.0	1.7	0.9
$\Delta { m G}^{ m elec}_{solv}$	-12.7	-17.0	-12.9	-16.3	-14.0	-9.6
$\Delta { m G}^{ m non-elec}{}_{solv}$	7.8	6.1	5.6	6.0	5.9	7.0
$\Delta { m G}_{solv}$	-4.9	-10.9	-7.3	-10.3	-8.1	-2.6
ΔG	0.0	39.3	32.3	13.1	32.0	-6.7
IJ	-817.335375	-817.272685	-817.283826	-817.314425	-817.284359	-817.346054
$\mathrm{TS}_{\mathrm{gas}}$	0.066620	0.059807	0.057924	0.060816	0.058627	0.064487
Hgas	0.214443	0.206991	0.207308	0.214955	0.207311	0.215015
E_{sol}	-817.483198	-817.419869	-817.433210	-817.468564	-817.433043	-817.496582
Species	$\mathbf{R}(\mathrm{H}_{2}\mathrm{O})_{2}$	TS_c	TS ₁	Ι	TS_2	$P(H_2O)_2$

in the continuum, in both

e implicit solvent model	
s. Energetics using th	s, see Table 2S.
drolysis mechanism	nt. Notation and units
d in neutral ester hy	ne β -CD environmer
ns of species involve	electric constant in the
5-31G(d) calculation	ting the effective die
Table 3S. B3LYP/	for $\varepsilon = 10$, represen

$\begin{array}{c} H_{gas} \\ 0.214443 \\ 0.206991 \\ 0.207308 \\ 0.214955 \\ 0.214955 \\ 0.207311 \\ 0.207311 \\ 0.215015 \end{array}$
$\begin{array}{c c} H_{gas} & T \\ \hline 0.214443 & 0.06 \\ 0.206991 & 0.06 \\ 0.207308 & 0.06 \\ 0.214955 & 0.06 \\ 0.214955 & 0.06 \\ 0.207311 & 0.06 \\ 0.215015 & 0.06 \end{array}$

Table 4S. Binding energy analysis (kcal mol⁻¹) for *head-first* (H-F) and *tail-first* (T-F) modes of complexation of the ester reactant with the β -CD. Energies are calculated from the expression $\langle E_{CD-ester} \rangle - \langle E_{CD} \rangle - E_{ester}$, where E_S refers to the MM energy of system S in water solution (a continuum model is employed to account for solvation energy. Averages are computed over 250 structures that have been optimized starting from snapshots of the MD simulations in water solution.

	H-F	T-F
ΔE_{vdw}	-23.0	-22.1
ΔE_{elec}	-1.2	-1.3
ΔE_{solv}	5.8	5.5
$\Delta E_{stretch}$	-0.9	-0.8
ΔE_{bend}	-0.9	-1.0
$\Delta E_{torsion}$	-4.4	-3.7
ΔE_{bind}	-24.6	-23.4