Electronic Supplementary Information

The gas phase Smiles rearrangement of anions $PhO(CH_2)_nO^-$ (n = 2-4).

A joint theoretical and experimental approach.

Tianfeng Wang,^a Nico M. M. Nibbering^b and John H. Bowie,^{a,*}

- a. Department of Chemistry, The University of Adelaide, South Australia, 5005
- b. Department of Physical Chemistry, Vrije University, Amsterdam, NL-1081.

* Corresponding author. e-mail: john.bowie@adelaide.edu.au

Tables S1-S5 contain data concerning the geometries [B3LYP/6-31++G(d,p)] level of theory] and single point energies [calculated at CCSD(T)/6-31++G(d,p)] of all minima and transition states shown in the appropriate Figures in the text. Relative energies with zero-point corrections are recorded in kJ mol⁻¹ units in all tables.

Table S1 The Smiles and S_N i Reaction Pathways of the Singlet PhO(CH2)2O⁻ Anion. Energies and Selected Geometries of Anion Minimaand Transition States. Level of theory used - CCSD(T)/6-31++G(d,p)//B3LYP/6-31++G(d,p).Relative energies in kJ mol⁻¹ with respect to 1 (0 kJ mol⁻¹)

	, Ō _b		¢∼ <mark>₀</mark> ⊱	C −C			
	 C	C _d –C _e	δ_{-} C_{d}	$O_a^{/}$ $O_b^{\wedge} \delta^-$	C _d -C _e	O _b	
	O _a ou	$O_a O_b$	O _a	C, C, C,	$O_a \ O_b$	_ H ₆ ℃d∼C O ₂	e O _b
	Cc [,] ^{Cb} ,C ^a	Cc ^{Cb} Ca ^H a	C _c C _b C _a		$C_c C_b C_a$		НС _а ́—С _е Н₂ н.∕
				δ-		$C_c \land C_a$	ыр
	1	2	TS 1/4	TS 2/3	3	× 4	P ₁
State	^{1}A	^{1}A	^{1}A	^{1}A	^{1}A	^{1}A	^{1}A
Symmetry	C_1	C_1	C_1	C_1	C_1	C_1	C_1
Energy (Hartree)	-459.31722	-459.32230	-459.29483	-459.30401	-459.30467	-459.32170	-153.32851
Energy Relative to 1 (kJ mol ⁻¹)	0	-13	59	35	33	-12	23 [P ₁ +PhO ⁻]
Gibbs Free Energy (Hartree, 298 K)	-459.35221	-459.35640	-459.33166	-459.33693	-459.33899	-459.36327	-153.35260
Gibbs Free Energy Relative to 1 (kJ mol ⁻¹)	0	-11	54	40	35	-29	-24 [P ₁ +PhO ⁻]
Dipole Moment (Debye)	15.57	8.62	7.26	3.19	4.13	3.31	2.49
Bond Length (Å)							
$C_a C_b$	1.410	1.402	1.431	1.448	1.458	1.442	_
$C_b O_a$	1.342	1.357	1.303	1.476	1.537	1.276	_
$\mathbf{O}_{a}\mathbf{C}_{d}$	1.467	1.460	2.006	1.408	1.402	_	_
$C_d C_e$	1.548	1.552	1.463	1.532	1.528	1.465	1.467
$C_e O_b$	1.344	1.338	1.390	1.390	1.402	1.432	1.431
H_aO_b		1.917	—	—			—
$C_d O_b$	2.374	2.464	1.907	1.665	1.547		—
$O_a H_b$		—	2.333			2.059	—
$\mathbf{H}_{b}\mathbf{C}_{d}$	1.098	1.097	1.080	1.096	1.098	1.089	1.087
Bond Angle (°)							
$C_a C_b O_a$	124.8	123.5	124.3	111.6	109.8	123.0	_
$\mathbf{C}_b\mathbf{O}_a\mathbf{C}_d$	120.1	120.3	121.9	111.1	110.4	_	_
$O_a C_d C_e$	111.7	117.4	109.5	103.6	103.2	_	_
$C_d C_e O_b$	110.2	116.8	83.8	103.9	103.3	60.1	59.2
$C_b O_b C_e$		—		109.1	110.5		—
$O_aH_bC_d$	—	—	59.1	—	—	154.5	—

Table S1 Continued.

Dihedral Angle (°)							
$O_a C_b C_a C_c$	-180.0	-178.6	-180.0	-132.0	-126.6	179.9	—
$C_d O_a C_b C_a$	0.0	-27.0	1.0	-139.0	-131.9	_	—
$C_e C_d O_a C_b$	180.0	84.1	179.2	39.2	32.2	_	_
$\mathbf{O}_b \mathbf{C}_e \mathbf{C}_d \mathbf{O}_a$	-180.0	-76.7	-180.0	-37.0	-37.6	_	_
$H_bO_aC_bC_a$	_		-23.6	_	_	-23.3	_
$C_d H_b O_a C_b$	_		130.1	_	_	-131.9	_
$C_e C_d H_b O_a$	122.1	125.5	114.0	114.9	114.7	95.4	_

0_a

^{, C}^b≥Ca

, State ¹A, Symmetry C₁, Dipole Moment 5.31 Debye, Energy -305.97980 Hartree, Gibbs Free Energy (298 K) -306.00871 Hartree, C_aC_b 1.447 Å, C_bO_a

1.270 Å, $C_a C_b O_a$ 123.1°, $O_a C_b C_a C_c$ 180.0°.

Table S2 The Smiles and S_N Reaction Pathways of the Singlet PhO(CH₂)₄O⁻ Anion. Energies and Selected Geometries of Anion Minima and Transition States. Level of theory used – CCSD(T)/6-31++G(d,p)//B3LYP/6-31++G(d,p). Relative energies in kJ mol⁻¹ with respect to 5 (0 kJ mol⁻¹)

	$C_{f} - C_{g}$ $C_{e} - O_{b}$ $C_{c} - C_{d}$ $C_{c} - C_{b}$ $C_{c} - C_{b}$	$C_{d} C_{f} C_{g}$ $C_{d} C_{f} C_{g}$ $C_{b} C_{b} C_{a} H_{a}$	$C_{e} - C_{g}$ $C_{e} - O_{b}$ $C_{d} - O_{b}$ $C_{c} - C_{d}$ $C_{c} - C_{b}$ $C_{c} - C_{b}$	$C_{a} C_{g}$ $C_{a} C_{b} C_{a}$ $C_{c} C_{b} C_{a}$ δ^{-}	$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ $	$\begin{array}{c} H_2C_{\sigma} & O_b \\ H_2C_{\sigma} & C_gH_2 \\ HC_e & C_fH \\ H_b & H_c \\ -O_a \\ C_c & C_b \\ C_c & C_b \\ C_a \end{array}$	$\begin{array}{c} H_2C_d & O_b \\ H_2C_d & C_gH_2 \\ HC_b & C_fH \\ H_b & H_c \end{array}$
	5	6	TS 5/8	TS 6/7	7	8	P ₂
State	^{1}A	^{1}A	^{1}A	^{1}A	$^{1}\mathbf{A}$	1 A	^{1}A
Symmetry	C ₁	C ₁	C ₁	C ₁	C ₁	C ₁	C ₁
Energy (Hartree)	-537.66536	-537.66156	-537.64546	-537.64096	-537.64338	-537.70094	-231.70556
Energy Relative to 5 (kJ mol ⁻¹)	0	10	52	68	62	-93	-53 [P ₂ +PhO ⁻]
Gibbs Free Energy (Hartree, 298 K)	-537.70428	-537.69898	-537.68427	-537.67626	-537.67974	-537.74741	-231.73399
Gibbs Free Energy Relative to 5 (kJ mol ⁻)	0	14	53	/4	64	-113	$-101 [P_2 + PhO]$
Dipole Moment (Debye)	12.19	9.09	5.32	4./3	6.06	3.34	2.16
Bond Length (Å)							
$C_a C_b$	1.408	1.399	1.425	1.451	1.469	1.444	_
$C_b O_a$	1.349	1.382	1.314	1.435	1.503	1.282	_
$\mathbf{O}_{a}\mathbf{C}_{d}$	1.462	1.442	1.876	1.417	1.412		—
$C_d C_e$	1.520	1.529	1.511	1.535	1.540	1.529	1.533
$C_e C_f$	1.540	1.536	1.537	1.534	1.534	1.547	1.536
$C_f C_g$	1.562	1.565	1.541	1.562	1.560	1.551	1.531
$C_g O_b$	1.346	1.351	1.368	1.392	1.412	1.436	1.435
H_aO_b	—	1.852	_	—	—	—	—
$C_b O_b$	—	—	—	1.728	1.525	—	—
$O_a H_b$	—	—		—	—	2.526	—
$O_a H_c$	—	—		—	—	2.408	—
H_bC_e	1.101	1.101	1.095	1.102	1.098	1.092	1.094
H_cC_f	1.106	1.104	1.103	1.102	1.100	1.093	1.096
Bond Angle (°)							
$C_a C_b O_a$	124.6	121.0	124.6	118.8	115.3	122.8	

Table S2 Continued.

$C_b O_a C_d$	118.6	117.1	120.4	119.1	117.9		
$O_a C_d C_e$	107.9	117.0	95.5	115.3	114.4	—	—
$C_d C_e C_f$	112.5	116.9	111.2	113.6	112.3	102.0	101.9
$C_e C_f C_g$	113.8	113.8	106.4	111.2	111.7	104.0	101.6
$C_f C_g O_b$	114.6	113.3	108.3	112.7	113.0	107.1	106.1
$C_b O_b C_g$	—	—	—	115.5	116.7	—	—
$O_a H_b C_e$	—	_	_	_	_	115.7	—
$H_bO_aC_b$	—	—	—	—	—	150.4	—
$O_a H_c C_f$	_	—	_	—	—	128.3	—
$H_cO_aC_b$		—		—	—	139.8	
Dihedral Angle (°)							
$O_a C_b C_a C_c$	180.0	176.3	179.7	-131.5	-122.6	179.9	_
$C_d O_a C_b C_a$	-2.6	85.9	5.9	-42.0	-49.4	94.7	—
$C_e C_d O_a C_b$	177.4	-74.4	174.3	-61.6	-63.5	155.3	—
$C_f C_e C_d O_a$	176.5	-67.1	154.7	-41.2	-34.7	77.1	_
$C_g C_f C_e C_d$	64.6	80.9	47.0	59.7	61.6	19.6	36.4
$O_b C_g C_f C_e$	-60.2	51.3	-44.9	22.3	14.1	3.5	-32.1
$H_b O_a C_b C_a$	—	_	-81.1	_	_	-159.8	—
$H_bC_eC_dO_b$	—	_	-148.9	_	_	-155.2	-153.8
$H_cO_aC_bC_a$	—	_	_	_	_	-51.2	_
$H_c C_f C_g O_b$	178.1	176.1	-167.2	146.9	137.5	119.8	87.9

O_a ∣ C_c⊂^Cb_≥C_a , See the structure Table S1.

Table S3 The Smiles and S _N i Reaction Pathways of the Singlet PhO(CH ₂) ₃ O ⁻ Anion.	Energies and Selected Geometries of Anion Minima
and Transition States. Level of theory used – CCSD(T)/6-31++G(d,p)//B3LYP/6-31++G(d,p).	Relative energies in kJ mol ⁻¹ with respect to 9 (0 kJ mol ⁻¹)

						Ob	
			Cf	_C		C_{d} C_{f}	
	C _e * O _b				C Ce	-e 	
	C C d	$O_a' C_e''$	O Cd	$O_a O_b^{\delta}$			H ₂ C _d
	U _a	$C_{a}^{C_{b}}C_{a}^{-H_{a}^{-}}$	0 _a	$C_c C_b C_a$	$O_a \ O_b$	O _a	C_{a}^{\prime}
	C ^C ^b C		C ^C ^b C	Į J	$C_c C_b C_a$	C _ C _ C _	
	l j	\checkmark		δ-	ĻJ		п ₂
	\checkmark		\checkmark	-	~		
	9	10	TS 9/12	TS 10/11	11	12	P ₃
State	^{1}A	^{1}A	^{1}A	^{1}A	^{1}A	^{1}A	^{1}A
Symmetry	C_1	C_1	C_1	C_1	C_1	C_1	C_1
Energy (Hartree)	-498.49110	-498.49580	-498.46333	-498.47090	-498.47421	-498.49704	-192.50282
Energy Relative to 9 (kJ mol ⁻¹)	0	-12	73	53	44	-16	22 [P ₃ + PhO ⁻]
Gibbs Free Energy (Hartree, 298 K)	-498.52808	-498.53156	-498.50172	-498.50471	-498.50837	-498.54109	-192.52969
Gibbs Free Energy Relative to 9 (kJ mol ⁻¹)	0	-9	69	61	52	-34	-27 [P ₃ + PhO ⁻]
Dipole Moment (Debye)	14.85	8.68	6.43	3.91	5.61	3.34	2.45
Bond Length (Å)							
$C_a C_b$	1.408	1.405	1.427	1.447	1.474	1.442	—
$C_b O_a$	1.348	1.360	1.309	1.432	1.514	1.276	—
$\mathbf{O}_{a}\mathbf{C}_{d}$	1.460	1.454	1.916	1.420	1.411		—
$C_d C_e$	1.511	1.529	1.520	1.526	1.530	1.540	1.543
$C_e C_f$	1.572	1.567	1.531	1.537	1.530	1.540	1.542
$C_f O_b$	1.339	1.343	1.394	1.385	1.411	1.457	1.450
H_aO_b		2.069	—	—	—	—	—
$C_b O_b$		—	—	1.783	1.515		—
$O_a H_b$		—	—	—	—	2.071	—
H_bC_e	1.099	1.095	1.097	1.096	1.096	1.094	1.090
Bond Angle (°)							
$C_a C_b O_a$	124.8	124.4	124.6	117.7	113.3	122.9	_
$C_b O_a C_d$	119.0	118.5	120.6	117.4	115.5		_
$O_a C_d C_e$	110.3	114.8	95.4	112.5	111.1		_
$C_d C_e C_f$	108.9	110.1	95.6	108.8	108.1	84.6	84.8

Table S3 Continued.

	$C_e C_f O_b$	113.8	112.7	100.2	110.9	111.1	92.0	91.8
	$C_b O_b C_f$	_	_	_	113.2	115.4	_	_
	$O_a H_b C_e$	_	_	_	_	_	173.5	
	$H_bO_aC_b$						140.1	—
Dihedral Ar	igle (°)							
	$O_a C_b C_a C_c$	-179.8	-179.8	-179.8	-133.3	-121.9	-179.9	_
	$C_d O_a C_b C_a$	1.4	2.9	-5.4	-58.4	-63.8	—	_
	$C_e C_d O_a C_b$	-178.7	-78.1	-177.4	-65.2	-60.2	—	_
	$C_f C_e C_d O_a$	177.2	141.6	-165.3	54.4	52.8	—	_
	$O_bC_fC_eC_d$	-53.6	-58.0	-22.6	-55.0	-52.8	-5.9	0.2
	$H_bO_aC_bC_a$	_	_	_	—	_	90.0	_
	$H_bC_eC_dO_a$	58.6	24.0	78.2	-64.7	-66.0	—	_

Table S4 The Elimination Reaction Pathways of the Singlet PhO(CH_2)₃O⁻ Anion. Energies and Selected Geometries of Anion Minima andTransition States. Level of theory used – CCSD(T)/6-31++G(d,p)//B3LYP/6-31++G(d,p).Relative energies in kJ mol⁻¹ with respect to 9 (0 kJ mol⁻¹)

		O _b Hd	δ- Η _{c、 Η d}	O _b		H _c H _d	
					_)
			C _e O _b	H _b	O _b	C _e	
	O _a C _d	^{o-} O _a	C _ C d	-0	$H_d C_f C_d H_3$	O_a	
		C _h			C _e ⊓	C _b	^{H^{_C}d≷C_e^Cf[⊗]O_b}
	C _c C _a	C _c [~] C _a	C _c C _b C _a	C _c ^{Cb} C _a	Н _ь	C _c ^b C _a	H H
	9	TS 9/13	TS 9/14	13	P ₄	14	P ₅
State	^{1}A	^{1}A	^{1}A	^{1}A	^{1}A	^{1}A	^{1}A
Symmetry	C_1	C_1	C_1	C_1	C_1	C_1	C1
Energy (Hartree)	-498.49110	-498.43070	-498.43613	-498.54503	-192.54482	-498.48908	-191.34790
Energy Relative to 1 (kJ mol ⁻¹)	0	159	144	-142	-88 [P ₄ + PhO ⁻]	5	$22 [P_5 + H_2 + PhO^-]$
Gibbs Free Energy (Hartree, 298 K)	-498.52808	-498.46970	-498.47532	-498.58938	-192.57251	-498.53024	-191.37420
Gibbs Free Energy Relative to 1 (kJ mol ⁻¹)	0	153	139	-161	-140 [P ₄ + PhO ⁻]	-6	$-56 [P_5 + H_2 + PhO^-]$
Dipole Moment (Debye)	14.85	8.89	21.73	4.28	3.48	11.20	
Bond Length (Å)							
$C_a C_b$		1.430	1.405	1.443	-	1.413	-
$C_b O_a$		1.304	1.355	1.284	-	1.340	-
$\mathbf{O}_{a}\mathbf{C}_{d}$		2.053	1.442	_	-	1.525	-
$C_d C_e$		1.492	1.515	1.540	1.539	1.462	1.340
$C_e C_f$		1.549	1.505	1.494	1.510	1.399	1.474
$C_f O_b$		1.279	1.225	1.223	1.214	1.265	1.218
H_dC_f		1.118	1.105	1.114	1.114	1.122	1.112
$\mathbf{H}_{c}\mathbf{C}_{f}$	See Structure 9 in	1.335	3.167	-	-	-	-
$\mathbf{H}_{c}\mathbf{C}_{d}$	Table S3	1.640	-	1.095	-	_	-
H_bC_e		1.093	1.106	1.112	1.100	2.805	-
H_bO_a		-	-	2.012	-	_	-
$\mathbf{H}_{c}\mathbf{H}_{b}$		_	2.158	_	-	0.751	-
Bond Angle (°)							
$C_a C_b O_a$		124.2	124.8	122.7	-	125.3	_
$C_b O_a C_d$		120.4	119.0	_	_	119.3	-

Table 54 Continueu.							
$O_a C_d C_e$		98.6	108.2	_	_	112.0	_
$C_d C_e C_f$		92.5	113.2	112.1	112.0	122.2	121.0
$C_e C_f O_b$		121.9	124.8	126.2	125.0	129.2	124.2
$H_c C_f C_e$		90.8	73.0	-	_	_	-
$H_cC_dC_e$		82.1	-	110.8	-	_	-
$H_dC_fC_e$		109.9	113.6	114.5	115.1	113.4	115.2
$H_bC_eC_d$		113.4	114.3	106.5	109.2	89.5	-
Dihedral Angle (°)	See Structure 9 in						
$O_a C_b C_a C_c$	Table S3	179.7	180.0	-179.6	_	179.9	_
$C_d O_a C_b C_a$		18.7	0.6	88.6	_	5.2	-
$C_e C_d O_a C_b$		165.0	179.7	141.5	_	178.1	-
$C_f C_e C_d O_a$		-179.3	168.3	-116.9	_	102.4	-
$O_bC_fC_eC_d$		-117.4	-13.2	-128.6	-127.0	1.4	-180.0
$H_bC_eC_dO_a$		-59.5	-71.4	0.4	-	-92.4	-
$H_cC_fC_eO_b$		118.2	132.8	-	-	-	-
H ₄ C ₄ C ₄ O _b		-147.6	165.7	-179.5	179.9	178.3	-180.0

Table S4 Continued.

 H_2 , State ¹Σ_g, Symmetry D_{∞v}, Dipole Moment 0.00 Debye, Energy -1.15514 Hartree, Gibbs Free Energy (298 K) -1.16663 Hartree, H-H 0.743 Å.

, See the structure in Supplementary Table 1.

Table S5 The Decomposition Reaction Pathways of the Singlet PhO(CH_2)₃O⁻ Anion. Energies and Selected Geometries of Anion Minimaand Transition States. Level of theory used – CCSD(T)/6-31++G(d,p)//B3LYP/6-31++G(d,p). Relative energies in kJ mol⁻¹ with respect to 9 (0 kJ mol⁻¹)

$\mathbf{C}_{e} \overset{\mathbf{C}_{f}}{\overset{\mathbf{O}_{b}}{\overset{\mathbf{O}_{b}}{\overset{\mathbf{H}_{c}}/\mathcal{H}_{b}}}} \overset{\mathbf{H}_{c}/\mathcal{H}_{b}}{\overset{\mathbf{H}_{c}}{\overset{\mathbf{O}_{b}}{\overset{\mathbf{O}}{$	О _ь С _f . На
$ \begin{array}{cccc} \mathbf{C}_{a} & \mathbf{O}_{a} & $	
9 TS 9/15 15	P ₆
State ¹ A ¹ A ¹ A	¹ A ₁
Symmetry C ₁ C ₁ C ₁	C_{2V}
Energy (Hartree) -498.49110 -498.45918 -498.50627 -114	1.18954
Energy Relative to 1 (kJ mol⁻¹) 0 84 -40 $29[\mathbf{P}_6 +$	P7+PhO ⁻]
Gibbs Free Energy (Hartree, 298 K) -498.52808 -498.49905 -498.55486 -114	4.21121
Gibbs Free Energy Relative to 1 (kJ mol ⁻¹) 0 76 -70 $-65[\mathbf{P}_6 +$	P ₇ +PhO ⁻]
Dipole Moment (Debye) 14.85 7.08 2.83	2.98
Bond Length (Å)	
$C_a C_b$ 1.426 1.440	-
$C_b O_a$ 1.314 1.288	-
$O_a C_d$ – 1.879 –	-
$C_d C_e$ 1.401 1.337	_
$C_e C_f$ 2.185 –	-
$C_f O_b$ 1.251 1.222 1	.210
H_dC_f 1.251 1.102	_
$\mathbf{H}_{c}\mathbf{C}_{f} \qquad \qquad \mathbf{See \ Structure \ 9 in} \qquad 1.110 \qquad \qquad 1.102 \qquad \qquad 1$.108
H_cC_d Table S3 – –	-
H_bC_e 1.091 1.092	_
$H_b O_a$ – 2.147	_
$\mathbf{H}_{c}\mathbf{O}_{a}$ – 2.504	_
H_dO_a – 2.509	-
Bond Angle (°)	
$C_a C_b O_a$ 124.5 122.52586	-

Table	S 5	Continue	h
Table	33	Conunue	u

$C_b O_a C_d$	119.9	_	_
$O_a C_d C_e$	112.9	-	_
$C_d C_e C_f$	103.0	-	_
$C_e C_f O_b$	113.8	-	_
$H_c C_f C_e$	93.5	-	_
$H_cC_fO_b$	120.6	-	121.9
$H_dC_fC_e$	86.0	-	_
$O_a C_f O_b$	_	126.4	_
$H_bO_aC_b$	_	143.6	_
$H_cO_aC_b$	_	92.0	_
$H_dO_aC_b$	_	91.6	_
Dihedral Angle $\binom{0}{1}$	See Structure 9 in		
	Table S3 179.6	-179.0	_
$C_a C_b C_a C_c$	19.0	-	_
$C_d O_a C_b C_a$	164.9	_	_
	174.9	_	_
	-72 7	_	_
	-73.2	_	_
$H_b C_e C_d O_a$	53.3	_	_
	165.5	_	_
	150.2	_	180.0
$H_d C_f C_b H_c$	-	-108 3	100.0
	_	179.5	
$C_b C_f C_b C_b$		-176.6	
		-1/0.0	

 $\begin{array}{l} \mathsf{H}_{\mathsf{C}_{d}} = \mathsf{C}_{e}^{\mathsf{H}_{d}} \\ \mathsf{H}^{\mathsf{T}_{e}} \mathsf{H}_{i}^{\mathsf{T}_{e}} [\mathsf{P}_{7}] \text{ State } {}^{1}\mathsf{A}_{g}, \text{ Symmetry } \mathsf{C}_{i}, \text{ Dipole Moment } 0.00 \text{ Debye, Energy -78.31058 Hartree, Gibbs Free Energy (298 K) -78.33277} \\ \text{Hartree, } \mathsf{C}_{d}\mathsf{C}_{e} 1.334 \text{ Å}, \mathsf{H}_{d}\mathsf{C}_{e} 1.087 \text{ Å}, \mathsf{H}_{d}\mathsf{C}_{e}\mathsf{C}_{d} 121.7^{\circ}. \end{array}$

$$\overline{\mathbf{C}}_{a}$$

 \mathbf{C}_{c}
 $\mathbf{C}_{b_{s}}\mathbf{C}_{a}$
, See the Structure in Table S1.