Supporting Information for

Construction and Transmembrane Dissociation Behavior of Supramolecular Assembly of Quinolylcyclodextrin with Porphyrin

Miao Yu, Yong Chen, Ning Zhang, Yu Liu*

Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China.

Figure S1: Fluorescence intensity changes of **1** (20 μ mol L⁻¹) and **1**+Zn²⁺ system ([**1**] = 20 μ mol L⁻¹, [Zn²⁺] = 5 μ mol L⁻¹) upon the titration of EGTA (ethylene glycol tetraacetic acid) with various amounts in aqueous buffer solution (pH 7.2, *I* = 0.1 mol L⁻¹ NaNO₃, 25 °C, λ_{ex} =362 nm, λ_{em} = 502 nm).

Figure S2. Job's plot of 1/ZnTSPP system produced with data taken from UV-vis spectra at 556 nm in buffer solution (pH 7.20, $I = 0.1 \text{ mol } L^{-1} \text{ NaNO}_3$, 25 °C, $[\text{ZnTSPP}] + [\mathbf{1}] = 50 \,\mu\text{mol } L^{-1}$).

Figure S3. a) Fluorescence spectra of ZnTSPP ($1.0 \times 10^{-5} \text{ mol } L^{-1}$) upon addition of **1** (a to u, $0-4 \times 10^{-5} \text{ mol } L^{-1}$; and v to z, 0.1, 0.3, 0.5, 1, 2 mmol L^{-1}) in buffer solution (pH 7.20, $I = 0.1 \text{ mol } L^{-1} \text{ NaNO}_3$, 25 °C, $\lambda_{ex} = 556 \text{ nm}$). b) The nonlinear least-squares analysis of the differential intensity (ΔF) at 650 nm to calculate the complex formation constant (*K*).

Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is The Royal Society of Chemistry 2010

Figure S4. STM image of 2 on the HOPG surface.

Figure S5. TG-DTA curves of a) ZnTSPP; b) Zn·1₂; c) assembly 2.

TG-DTA analysis. The molecular weight of assembly **2** could be deduced from the TG curves (Figure S5).¹ Considering the very strong association constants between Zn^{2+} and **1**, we could deduce that the assembly chain should be terminated in the ZnTSPP or Zn·**1**₂. On the other hand, considering the different thermal stability of ZnTSPP (ZnTSPP lost 39.6% of its weight below 800 °C) and Zn·**1**₂ (Zn·**1**₂ was decomposed completely below 800 °C) in the control experiment. We deduced that the remaining weight below 800 °C (14.0%) in the TG curve of 2 should be assigned to the residue of ZnTSPP. By defining the number of complex Zn·**1**₂ as n, we can set up the following equation for the case of terminal group as ZnTSPP.

 $14.0\% \times [nM + (n + 1) \times 1088] = 60.4\% \times (n + 1) \times 1088$

M (ca. 3681) is the molecular weight of $Zn \cdot I_2$. From this equation, we could deduce that the assembly chain composed of ca. 48 units of $Zn \cdot I_2$ and ZnTSPP was the major species contained in the assembly, and the molecular weight of assembly **2** could be calculated from $[nM + (n + 1) \times 1088]$ as ca. 2.3×10^5 g mol⁻¹. However, it should be noted that the TG-DTA analysis method to deduce the molecular weight of the inclusion polymer would suffer from a serious lack of sensitivity when the number of units increased.

Liu, Y.; Chen, G.-S.; Chen, Y.; Zhang, N.; Chen, J.; Zhao, Y.-L. Nano Lett., 2006, 6, 2196.

Figure S6. UV/vis absorbance of ZnTSPP (30 μ mol L⁻¹) in aqueous buffer solution (pH 7.20, $I = 0.1 \text{ mol L}^{-1} \text{ NaNO}_3, 25 \text{ °C}$).

Figure S7. Optimized molecular modeling of $Zn \cdot 1_2$. The geometries were optimized by the molecular dynamic method with the Dreiding force field.