Supporting Information

Primary 1,2-diamine catalysis III: An unexpected domino reaction for the synthesis of multisubstituted cyclohexa-1,3-dienamine

Junfeng Wang, Qin Li, Chao Qi, Yi Liu, Zemei Ge,* and Run-Tao Li*

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China

lirt@mail.bjmu.edu.cn; zmge@bjmu.edu.cn

General Methods. Unless otherwise stated, all reagents were purchased from commercial suppliers and were used without further purification. Reactions were monitored by thin layer chromatography (TLC) on GF₂₅₄ silica gel plates, using UV light as a visualizing agent. Flash column chromatography was performed using 200-300 mesh silica gel. ¹H NMR spectra and ¹³C NMR spectra were recorded on a Varian INOVA-500 (500 MHz) spectrometer in needful D-reagents with tetramethylsilane (TMS) as an internal reference. Data for ¹H NMR are reported as follows: chemical shift (ppm), and multiplicity (s = singlet, d = doublet, t = triplet, dd = double of doublet, br = broad, m = multiplet), coupling constants (Hz) and integration; Data for ¹³C NMR are reported as ppm. Melting points were measured on an X₄-type micro-melting point apparatus and were uncorrected. Electrospray ionization (ESI) mass spectrometer. High-resolution mass spectra (HRMS) were obtained on a Bruker APEX IV FT_MS (7.0) spectrometer for electrospray ionization (ESI).

Catalyst and Solvent Screening:

	0 Ph + 2 1a	Ph CN -	Catalyst MeOH, rt	NC Ph 3a	CN CN Ph
Entry	Catalyst	Additive	Media	Time (h)	3a Yield (%) ^a
1	$\Box_{\rm NH_2}^{\rm NH_2}$	HOAc ^b	МеОН	12	66
2		HOAc ^b	МеОН	48	63
3		-	МеОН	12	64
4		-	МеОН	48	42
5	NH ₂	HOAc ^c	MeOH	48	trace
6	NH ₂	-	MeOH	48	trace
7	N H	HOAc ^c	МеОН	48	trace
8	N H	-	MeOH	48	trace
9	► N	HOAc ^c	MeOH	48	-
10		-	MeOH	48	-
11	$\Box_{\rm NH_2}^{\rm NH_2}$	HOAc ^b	CHCl ₃	48	-
12	$\Box_{\rm NH_2}^{\rm NH_2}$	HOAc ^b	THF	48	-
13		HOAc ^b	DMSO	48	Trace

^a Isolated yield of the corresponding product; ^b The additive loading is 40 mol%; ^c The additive loading is 20 mol%.

General procedure for multicomponent domino reactions:

To a mixture of ary ketone 1, aromatic aldehyde 2 (1.0 mmol), malononitrile (2.2 mmol) and catalyst ethanediamine (0.2 mmol) in 1.0-1.5 ml of MeOH was added the acid additive HOAc (0.4 mmol). The resulting mixture was stirred under room temperature for the required time monitored by TLC (silica gel, pet ether: ethyl acetate, 4:1). The resulting mixture was then directly purified by filtration and/or recrystallization to afford the pure products **3**.

R ₁	+ $\frac{CHO}{R_2}$ + 2 $\begin{pmatrix} CN \\ CN \end{pmatrix}$	Ethanediamine (2 HOAc (40% mol);	0% mol) rt, MeOH	$ \begin{array}{c} $
Entry ^a	R ₁	R ₂	Time(h)	Yield (%) ^b
1	Ph	Ph	15	3a- 90
2	Ph	2-ClPh	12	3b- 92
3	Ph	3-ClPh	12	3c- 95
4	Ph	4-MePh	10	3d- 89
5	Ph	Me(CH ₂) ₉	10	3e- 91
6	4-MePh	Ph	15	3f -88
7	4-MePh	2-ClPh	18	3g- 86
8	4-MePh	3-ClPh	18	3h- 90
9	4-MePh	3-BrPh	14	3i -96
10	3-ClPh	4-ClPh	13	3 j-93
11	3-ClPh	4-MePh	12	3k- 93
12	4-FPh	Ph	18	31- 91
13	4-FPh	3-FPh	12	3m -89
14	3,4-diClPh	Ph	12	3n- 95
15	3,4-diClPh	3-ClPh	12	30- 95
16	3,4-diMeOPh	Ph	32	3p- 86

^a All the reactions were conducted at room temperature; ^b Isolated yields of the corresponding products.

Scope of the Domino Reactions:

2-amino-4,6-diphenylcyclohexa-2,4-diene-1,1,3-tricarbonitrile 3a:¹ obtained in

NC NH₂CN 90% yield; white powder; m.p. 158-160°C; ¹H NMR (500 MHz, CDCl₃): δ 7.50 (s, 1H), 7.46-7.43 (m, 1H), 7.42-7.39 (m, 2H), 7.32-7.31(m, 2H), 7.23 (d, J = 7.5 Hz, 2H), 5.72 (d, J = 4.0 Hz, 1H), 5.60 (s, 2H), 4.24 (d, J = 4.0 Hz, 1H), 2.39 (s,

3H); ESI (m/z): $[(M+H)^+]$ calcd. for C₂₁H₁₅N₄ 323.1297, found 323.1305.

2-amino-6-(2-chlorophenyl)-4-phenylcyclohexa-2,4-diene-1,1,3-tricarbonitrile 3b:

obtained in 92% yield;² light yellow powder; m.p. 152-154°C; ¹H NMR (500 MHz, CDCl₃): δ 7.66 (dd, J = 2.5 Hz, 7.5 Hz, 1H), 7.54 (dd, J = 2.0 Hz, 7.5 Hz, 1H), 7.40-7.25 (m, 7H), 5.69 (d, J = 4.0 Hz, 1H), 5.67 (s, 2H), 5.11 (d, J = 4.0 Hz, 1H);

¹³C NMR (125 MHz, CDCl₃): δ 145.8, 137.9, 136.6, 135.2, 132.2, 131.3, 130.7, 130.3, 129.5, 129.0, 128.3, 127.7, 116.3, 115.9, 111.5, 110.9, 82.2, 44.2, 43.0.

2-amino-6-(3-chlorophenyl)-4-phenylcyclohexa-2,4-diene-1,1,3-tricarbonitrile 3c:

obtained in 95% yield; colorless crystals; m.p. 226-228°C; ¹H NMR (500 MHz, CDCl₃): δ 7.51 (m, 1H), 7.48-7.45 (m, 1H), 7.42-7.39 (m, 8H), 5.77 (d, J = 3.5 Hz, 1H), 5.24 (s, 2H), 4.25 (d, J = 4.0 Hz, 1H); ¹³C NMR (125 MHz,

CDCl₃): δ 145.1, 137.8, 136.1, 135.7, 135.3, 130.6, 130.3, 129.5, 129.4, 129.1, 128.8, 127.6, 127.5, 115.3, 111.6, 110.2, 82.6, 48.6, 43.9; ESI (*m*/*z*): [(M+Na)⁺] calcd. for C₂₁H₁₃ClN₄Na 379.0726, found 379.1204.

arbonitrile 3d: obtained in 89% yield; yellow powder; m.p. 210-212°C; ¹H NMR (400 MHz, CDCl₃): δ 7.43 (m, 5H), 7.40 (d, J = 10.5 Hz, 2H), 7.27 (d, J = 9.5 Hz, 2H), 5.82 (d,

2-amino-4-phenyl-6-p-tolylcyclohexa-2,4-diene-1,1,3-tric

J = 5.0 Hz, 1H), 5.59 (s, 2H), 4.26 (d, J = 4.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃):

 δ 145.6, 139.8, 137.0, 136.3, 129.8, 128.9, 127.3, 116.1, 115.6, 115.6, 111.8, 110.4, 81.3, 48.6, 44.1, 21.0; ESI (*m/z*): [(M+Na)⁺] calcd. for C₂₂H₁₆N₄Na 359.1273, found 359.1270.

2-amino-6-decyl-4-phenylcyclohexa-2,4-diene-1,1,3-tricarbonitrile 3e: obtained in

91% yield; colorless oil; ¹H NMR (500 MHz, CDCl₃): δ
7.41-7.36 (m, 5H), 5.61 (d, J = 3.5 Hz, 1H), 5.45 (s, 2H),
3.01 (dt, J = 3.5 Hz, 1H), 1.93-1.87 (m, 1H), 1.87-1.78 (m, 1H), 1.66-1.60 (M, 1H), 1.56-1.26 (m, 19H), 0.89 (t, J = 10.5 Hz, 120.5 Hz, 120.5

6.5 Hz, 4H); ¹³C NMR (125 MHz, CDCl₃): δ 145.3, 136.5, 136.3, 129.0, 128.6, 127.4, 115.8, 115.5, 112.4, 110.6, 82.3, 42.4, 42.3, 31.9, 29.9, 29.5, 29.5, 29.3, 29.3, 29.2, 26.4, 22.7, 14.1; HRMS-ESI (*m*/*z*): [(M+H)⁺] calcd. for C₂₅H₃₀N₄Na 409.2368, found 409.2365.

2-amino-6-phenyl-4-p-tolylcyclohexa-2,4-diene-1,1,3-tricarbonitrile 3f:³ obtained

in 88% yield; light yellow powder; m.p. 162-164°C; ¹H NMR (500 MHz, CDCl₃): δ 7.52-7.49 (m, 2H), 7.47-7.44 (m, 3H), 7.44-7.35 (m, 3H), 7.33-7.31 (m, 2H), 7.22 (d, J =7.5 Hz, 2H) 5.79 (d, J = 3.5 Hz, 1H), 5.53 (s, 2H), 4.26 (d, J

= 3.5 Hz, 1H), 2.38 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 145.3, 139.3, 137.2, 133.8, 133.5, 129.9, 129.7, 129.4, 129.4, 129.3, 129.1, 128.4, 127.3, 115.7, 115.6, 111.9, 110.5, 82.5, 49.1, 44.2, 21.3.

```
2-amino-6-(2-chlorophenyl)-4-p-tolylcyclohexa-2,4-diene-1,1,3-tricarbonitrile 3g:
```


obtained in 86% yield;⁴ yellow powder; m.p. 208-210°C; ¹H NMR (500 MHz, CDCl₃): δ 7.66 (dd, J = 2.0 Hz, 7.5Hz, 1H), 7.53 (dd, J = 1.5 Hz, 7.5Hz, 1H), 7.41-7.35 (m, 2H), 7.31 (d, J = 8.0 Hz, 1H), 7.22 (d, J = 8.0 Hz, 1H), 5.66 (d, J

= 4.0 Hz, 1H), 5.96 (s, 2H), 5.10 (d, J = 3.5 Hz, 1H), 2.38 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 145.2, 139.3, 137.5, 134.9, 133.4, 131.9, 130.9, 130.5, 130.0, 129.4,

127.9, 127.3, 115.6, 115.4, 111.3, 110.6, 82.3, 43.9, 42.7, 21.3.

2-amino-6-(3-bromophenyl)-4-p-tolylcyclohexa-2,4-diene-1,1,3-tricarbonitrile 3h:

4.0 Hz, 1H), 2.39 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 145.4, 139.4, 137.7, 135.8, 135.2, 133.3, 130.6, 130.2, 129.5, 129.4, 127.6, 127.3, 115.6, 114.5, 111.6, 110.3, 82.2, 48.6, 43.9, 21.3.

2-amino-6-(3-bromophenyl)-4-p-tolylcyclohexa-2,4-diene-1,1,3-tricarbonitrile 3i:

obtained in 96% yield; white powder; mp: 205-209 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.65 (m, 1H), 7.61-7.59 (m, 1H), 7.45 (d, J = 8.0 Hz, 1H), 7.35-7.30 (m, 3H), 7.25-7.22 (m, 2H), 5.71 (d, J = 3.5 Hz, 1H), 5.63 (s,

2H), 4.22 (d, J = 3.5 Hz, 1H), 2.39 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 145.4, 139.4, 137.8, 136.1, 133.3, 133.1, 132.4, 130.8, 129.4, 128.1, 127.3, 123.2, 115.6, 114.5, 111.7, 110.3, 82.2, 48.5, 43.9, 21.3; HRMS-ESI (*m/z*): [(M+H)⁺] calcd. for C₂₂H₁₅BrN₄Na 437.0378, found 437.0377.

2-amino-4-(3-chlorophenyl)-6-(4-chlorophenyl)cyclohexa-2,4-diene-1,1,3-tricarbo

nitrile 3j: obtained in 93% yield; white powder; mp: 172-174 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.51-7.43 (m, 4H), 7.41-7.35 (m, 3H), 7.32-7.30 (m, 1H), 5.78 (d, J = 4.0 Hz, 1H), 5.68 (s, 2H), 4.27 (d, J = 3.5 Hz, 1H);

¹³C NMR (125 MHz, CDCl₃): δ 145.7, 137.9, 136.7, 136.3, 134.7, 131.8, 130.7, 130.0, 129.7, 129.4, 127.6, 125.7, 116.3, 115.2, 111.5, 110.2, 81.4, 48.4, 43.9; HRMS-ESI (*m/z*): $[(M+H)^+]$ calcd. for C₂₁H₁₂Cl₂N₄Na 413.0337, found 413.0334.

2-amino-4-(3-chlorophenyl)-6-p-tolylcyclohexa-2,4-diene-1,1,3-tricarbonitrile 3k:

¹³C NMR (125 MHz, CDCl₃): δ 145.7, 140.2, 138.1, 136.1, 134.7, 130.3, 130.1, 130.0, 129.3, 129.2, 127.6, 125.7, 117.3, 115.4, 111.8, 110.4, 81.5, 48.7, 44.1, 21.2; HRMS-ESI (m/z): [(M+H)⁺] calcd. for C₂₁H₁₅ClN₄Na 393.0883, found 393.0878.

2-amino-4-(4-fluorophenyl)-6-phenylcyclohexa-2,4-diene-1,1,3-tricarbonitrile 31:

obtained in 91% yield; white powder; mp: 160-161 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.51-7.45 (m, 5H), 7.42-7.38 (m, 2H), 7.14-7.09 (m, 2H), 5.79 (d, J = 3.5 Hz, 1H), 5.60 (s, 2H), 4.27 (d, J = 3.5 Hz, 1H), 2.39 (s, 3H); ¹³C NMR (125 MHz,

CDCl₃): δ 163.3 (d, ¹*J*_{C-F} = 247.9 Hz), 145.6, 136.4, 133.6, 132.5, 130.0, 129.4, 129.3, 116.2, 115.9, 115.7, 115.5, 111.8, 110.4, 81.9, 49.0, 44.1; HRMS-ESI (*m/z*): [(M+Na) ⁺] calcd. for C₂₁H₁₃FN₄Na 359.1108, found 363.1019.

2-amino-6-(3-fluorophenyl)-4-(4-fluorophenyl)cyclohexa-2,4-diene-1,1,3-tricarbo

nitrile 3m: obtained in 89% yield; white powder; mp: 162-164 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.51-7.45 (m, 5H), 7.42-7.38 (m, 2H), 7.14-7.09 (m, 2H), 5.79 (d, J = 3.5Hz, 1H), 5.60 (s, 2H), 4.27 (d, J = 3.5 Hz, 1H), 2.39 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 163.3 (d, ¹J _{C-F} = 248.0

Hz), 162.9 (d, ${}^{1}J_{C-F} = 247.0$ Hz), 145.6, 136.9, 136.0, 135.9, 132.3, 131.1, 131.0, 129.4, 129.3, 125.2, 117.2, 117.1, 116.5, 116.4, 115.9, 115.7, 115.4, 115.3, 111.6, 110.2, 81.8, 48.6, 43.8; HRMS-ESI (*m/z*): $[(M+H)^{+}]$ calcd. for C₂₁H₁₃F₂N₄ 359.1108, found 359.1106.

2-amino-4-(3,4-dichlorophenyl)-6-phenylcyclohexa-2,4-diene-1,1,3-tricarbonitrile

3n: obtained in 95% yield; light yellow powder; m.p.: 124-126 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.52-7.48 (m, 7H), 7.27 (dd, J = 1.6 Hz, 8.0 Hz, 1H), 5.84 (d, J = 3.5 Hz, 1H), 5.63 (s, 2H), 4.27 (d, J = 3.5 Hz, 1H); ¹³C NMR (125

MHz, CDCl₃): δ 145.9, 136.2, 135.4, 133.6, 133.2, 133.1, 130.7, 130.1, 129.5, 129.4, 129.3, 126.8, 117.4, 115.2, 111.6, 110.2, 81.2, 49.0, 43.9; HRMS-ESI (*m/z*): [(M+H)⁺] calcd. for C₂₁H₁₃Cl₂N₄ 391.0517, found 391.0519.

2-amino-6-(3-chlorophenyl)-4-(3,4-dichlorophenyl)cyclohexa-2,4-diene-1,1,3-tric

arbonitrile 30: obtained in 95% yield; white powder;
m.p. 129-130 °C; ¹H NMR (500 MHz, CDCl₃): δ *π* 7.53-7.51 (m, 2H), 7.49-7.47 (m, 2H), 7.44-7.35 (m, 3H),
7.28-7.26 (m, 3H), 5.79 (d, J = 4.0 Hz, 1H), 5.59 (s, 2H),

4.25 (d, J = 3.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 145.7, 135.9, 135.9, 135.4, 135.2, 133.7, 133.2, 130.8, 130.7, 130.5, 129.4, 129.4, 127.5, 126.8, 116.4, 114.9, 111.3, 109.9, 81.4, 48.6, 43.7, 14.2; HRMS-ESI (*m*/*z*): [(M+Na) ⁺] calcd. for C₂₁H₁₂Cl₃N₄Na 446.9947, found 446.9942.

4-(3,4-dimethoxyphenyl)-6-phenylcyclohexa-2,4-diene-1,1,2,3-tetracarbonitrile

3p: obtained in 86% yield; light yellow powder; m.p. 122-124°C; ¹H NMR (500 MHz, CDCl₃): δ 7.53-7.48 (m, 5H), 7.01(dd, J = 1.5 Hz, 8.5 Hz, 1H), 6.92-6.89 (m, 2H), 5.79 (d, J = 3.5 Hz, 1H), 5.53 (s, 2H), 4.27 (d, J = 3.0 Hz,

1H), 3.92 (s, 3H), 3.91 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 149.9, 148.9, 145.3, 136.9, 133.9, 129.9, 129.4, 129.3, 129.0, 120.2, 115.8, 115.1, 111.9, 111.1, 110.6, 110.5, 82.6, 56., 55.9, 49.1, 44.2; HRMS-ESI (*m*/*z*): [(M+Na) ⁺] calcd. for C₂₃H₁₈N₄O₂Na 405.1327, found 405.1322.

2,6-dicyano-3,5-diphenylaniline 4a: obtained in 21% yield; white powder; ¹H NMR (500 MHz, CDCl₃): δ 7.59-7.48 (m, 10H), 6.90 (s, 1H), 5.38 (s, 2H).

2-amino-4-phenyl-4a,5,6,7-tetrahydronaphthalene-1,3,3(4H)-tricarbonitrile 7a:

obtained in 86% yield; white powder; m.p. 254-255°C; ¹H NMR (500 MHz, CDCl₃): δ 7.58 (m, 1H), 7.49-7.44 (m, 4H), 7.29 (m, 1H), 6.05 (d, J = 2.5 Hz, 1H), 4.89 (s, 2H), 3.13-3.05 (m, 1H), 2.90-2.85 (m, 1H), 2.31-2.26 (m, 1H), 2.19-2.10 (m, 1H),

1.81-1.78 (m, 1H), 1.70-1.66 (m, 1H), 1.56-1.46 (m, 1H), 0.99-0.91 (m, 1H); 13 C NMR (125 MHz, CDCl₃): δ 140.3, 133.6, 131.8, 129.6, 129.2, 127.5, 126.6, 125.6, 115.1, 111.9, 111.8, 88.3, 52.2, 43.2, 34.7, 27.2, 25.4, 21.4.

References:

- V. A. Tafeenko, Y. T. Abramenko, A. Ivashchenko, *Zhurnal Organicheskoi Khimii*, 1989, 25, 482.
- Y. A. Sharanin, Y. A. Baskakov, Y. T. Abramenko, Y. G. Putsykin, A. F. Vasil'ev, E. B. Nazarova, *Zhurnal Organicheskoi Khimii*, 1980, 16, 2192.
- 3. Y. T. Abramenko, A. B. Ivashchenko, K. A. Nogaeva, Y. A. Sharanin, Khimiya Geterotsiklicheskikh Soedinenii, 1986, 5, 621.
- 4. X. S. Wang, M. M. Wang, Q. Li, C. S. Yao, S. J. Tu, Tetrahedron, 2007, 63, 5265.

NMR spectra for product 3

<u>3b</u>

<u>3c</u>

<u>3d</u>

<u>3e</u>

<u>3f</u>

<u>3g</u>

<u>3h</u>

<u>3i</u>

<u>3j</u>

<u>3k</u>

<u>31</u>

<u>3m</u>

<u>3n</u>

<u>30</u>

<u>3p</u>

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

13 12 11 10 9 8 -7 $\frac{5}{6}$ 5 4 $\frac{3}{32}$ $\frac{2}{12}$ $\frac{1}{10}$ -0 -1 ppm

