This journal is (c) The Royal Society of Chemistry 2010

Electronic supplementary information

The Reaction of Primary Aromatic Amines with Alkylene Carbonates for the Selective

Synthesis of bis-N-(2-Hydroxy)alkylanilines: the Catalytic Effect of Phosphonium-based Ionic

Liquids

Maurizio Selva,* Massimo Fabris, Vittorio Lucchini, Alvise Perosa, and Marco Noè Dipartimento di Scienze Ambientali dell'Università Ca' Foscari

Calle Larga S. Marta 2137 – 30123 – Venezia (Italy)

e-mail: selva@unive.it

Synoptic table of major MS signals of reaction products 2a-d, 3a-d, 4a-d, 5a-d, 6a-b, 7a-b, 8a-b and 9a-b

	CC/MS
Compound	
N (2 hydroyy) othyl opiling	(E1, 70 eV)
N-(2-nydroxy)etnyr annine	Π/Z . 157 ([M], 18%), 100 [M-CH ₂ OH], 100), 79 (10), 77 (34),
(2a)	$\frac{54(18)}{121(10)}$
	m/z: 181 ([M] ⁺ , 12%), 151 (10), 150 ([M-CH ₂ OH] ⁺ , 100), 107
Bis-N-(2-hydroxy)ethyl aniline	(10), 106 ($[M-(CH_2OH)-(CH_2CH_2O)]$, 86), 104 (11), 91 ($[M-$
(3a)	$(CH_2CH_2OH)_2$, 14), 79 (16), 77 (38), 51 (19), 45 (28), 31
	$([CH_2OH]^{+}, 10)$
N-phenylmorpholine	m/z : 163 ($[M]^+$, 38%), 106 (13), 105 ($[C6H5N=CH_2]^{++}$, 100), 104
(4a)	(53), 77 (40), 51 (23), 32 (26)
3-phenyloxazolidin-2-one	m/z : 163 ($[M]^+$, 50%), 118 ($[M-CO_2-H]^+$, 16), 104 $[M-CO_2-H-$
(5a)	CH ₂] ⁺ , 81), 91 (16), 77 (100), 52 (15), 51 (27), 50 (10), 29 (10)
N-(2-hydroxy)ethyl <i>p</i> -anisidine	m/z : 167 ($[M]^+$, 20%), 136 ($[M-CH_2OH]^+$, 100), 121 (13), 108
(2b)	(13), 32 (14)
Bis-N-(2-hydroxy)ethyl	m/z: 211 ([M] ⁺ , 13%), 181 (12), 180 ([M-CH ₂ OH] ⁺ , 100), 136
<i>p</i> -anisidine	$([M-CH_2OH-CHCH_2OH]^+, 55), 121 ([M-(CH_2CH_2OH)_2]^+, 17),$
(3b)	120 (18), 108 (15), 77 (12), 65 (11), 45 (28), 31 ($[CH_2OH]^+$, 10)
4-(4-methoxyphenyl) morpholine (4b)	m/z: 193 ($[M]^+$, 61%), 178 (23), 136 (10), 135 ($[M-CH_2OH]^+$,
	100), 121 (10), 120 (66), 92 (13), 77 (15), 65 (17), 64 (10), 39
	(11)
3-(4-methoxyphenyl) oxazolidin-2- one (5b)	m/z : 193 ($[M]^+$, 60%), 148 ($[M-CO_2-H]^+$, 10), 135 (11), 134 ($[M-CO_2-H]^+$)
	CO ₂ -H-CH ₂] ⁺ , 100), 121 (17), 107 (15), 91 (12), 80 (10), 79 (10),
	78 (11), 77 (25), 65 (11), 64 (16), 63 (13), 52 (13), 51 (12), 39
	(12), 32 (12)
N-(2-hydroxy)ethyl <i>p</i> -toluidine	m/z : 151 ($[M]^+$, 18%), 121 (10), 120 ($[M-CH_2OH]^+$, 100), 91 (27),
(2c)	77 (11), 65 (16)
Bis-N-(2-hydroxy)ethyl	m/z: 195 ([M] ⁺ , 12%), 165 (11), 164 ([M-CH ₂ OH] ⁺ , 100), 121
<i>p</i> -toluidine	(10), 120 ([M-CH ₂ OH-CHCH ₂ OH)] ⁺ , 71), 118 (12), 105 ([M-
(3c)	$[(CH_2CH_2OH_2)^+, 10], 91 (33), 65 (18), 45 (28), 31 ([CH_2OH]^+, 10)$
4-p-tolylmorpholine	m/z: 177 ([M] ⁺ , 36%), 120 (18), 119 ([M-CH ₂ OH] ⁺ , 100), 118
(4c)	(31), 91 (45), 65 (22), 39 (12), 32 (36)

3-p-tolyloxazolidin-2-one (5c)	m/z: 177 ([M] ⁺ , 54%), 132 ([M-CO ₂ -H] ⁺ , 18), 118 ([M-CO ₂ -H-CH ₂] ⁺ , 79), 105 (20), 91 (100), 89 (10), 77 (13), 65 (36), 63 (13), 52 (10), 51 (17), 39 (21), 32 (10)
N-(2-hydroxy)ethyl <i>p</i> -chloroaniline (2d)	m/z: 171 ([M] ⁺ , 15%), 142 (33), 141 (10), 140 ([M-CH ₂ OH] ⁺ , 100), 111 (11), 105 (12), 77 (19), 75 (16)
Bis-N-(2-hydroxy)ethyl <i>p</i> -chloroaniline (3d)	m/z: 215 ($[M]^+$, 14%), 186 (35), 185 (13), 184 ($[M-CH_2OH]^+$, 100), 142 (24), 141 (12), 140 ($[M-CH_2OH-CHCH_2OH]^+$, 76), 138 (13), 125 ($[M-(CH_2CH_2OH)_2]^+$, 10), 111 (20), 105 (10), 77 (19), 75 (19), 51 (11), 45 (28), 31 ($[CH_2OH]^+$, 10)
4-(4-chlorophenyl)morpholine (4d)	m/z: 197 ([M] ⁺ , 42%), 141 (33), 140 (22), 139 ([M-CH ₂ OH] ⁺ , 100), 138 (40), 111 (20), 75 (16)
3-(4-chlorophenyl) oxazolidin-2-one (5d)	m/z: 197 ([M] ⁺ , 44%), 152 ([M-CO ₂ -H] ⁺ , 15), 140 (33), 139 (12), 138 ([M-CO ₂ -H-CH ₂] ⁺ , 100), 125 (13), 113 (26), 111 (79), 90 (10), 76 (16), 75 (36), 74 (10), 69 (14), 63 (19), 51 (14), 50 (19), 39 (10), 38 (10), 32 (93)
1-(phenylamino)propan-2-ol 2-(phenylamino)propan-1-ol (6a)	m/z: 151 ([M] ⁺ , 11%), 106 ([M-CH(CH ₃)OH] ⁺ , 100), 79 (11), 77 (23), 51 (12)
Bis-N-(2-hydroxy)propyl aniline 2-(N-(2-hydroxypropyl)-N- phenylamino)propan-1-ol (7a)	m/z: 209 ($[M]^+$, 11%), 165 (11), 164 ($[M-CH(CH_3)OH]^+$, 100), 107 (13), 106 ($[M-CH(CH_3)OH-CH_2CH(CH_3)O]^+$, 84) 104 (10), 91 (10) 77 (25), 59 ($[CH_2CH(CH_3)OH]^+$, 28), 31 ($[CH_2OH]^+$, 12)
2,6-dimethyl-4-phenyl morpholine 2,5-dimethyl-4-phenyl morpholine (8a)	m/z: 191 ($[M]^+$, 24%), 106 (10), 105 ($[C_6H_5N=CH_2]^+$, 100), 104 (29), 77 (21)
5-methyl-3-phenyl oxazolidin-2-one 4-methyl-3-phenyl oxazolidin-2-one (9a)	m/z: 177 ([M] ⁺ , 24%), 163 (10), 162 ([M-CH ₃] ⁺ , 100), 134 ([M-CH ₃ -CO] ⁺ , 36), 118 ([M-CH ₃ -CO ₂] ⁺ , 32], 117 (11), 105 ([M-CO ₂ CHCH ₃] ⁺ , 15), 104 (23), 91 (22), 77 (69), 51 (28), 43 (14)
1-(4-methoxyphenylamino) propan-2-ol 2-(4-methoxyphenylamino) propan-1-ol (6b)	m/z: 181 ([M] ⁺ , 14%), 136 ([M-CH(CH ₃)OH] ⁺ , 100), 121 (11), 108 (11), 77 (6)
Bis-N-(2-hydroxy)propyl p-anisidine 2-(N-(2-hydroxypropyl)-N-(4- methoxyphenyl)amino)propan-1-ol (7b)	$ \begin{array}{l} m/z: \ 239 \ \left([M]^{+}, \ 11\% \right), \ 195 \ (12), \ 194 \ \left([M-CH(CH_3)OH]^{+}, \ 100 \right), \\ 137 \ (17), \ 136 \ \left([M-(CH(CH_3)OH)-(CH_2CH(CH_3)O)]^{+}, \ 76 \right), \ 121 \\ \left([M-(CH_2CH(CH_3)OH)_2]^{+}, \ 15 \right), \ 120 \ (13), \ 77 \ (10), \ 59 \\ \left([CH_2CH(CH_3)OH]^{+}, \ 14 \right), \ 31 \ \left([CH_2OH]^{+}, \ 14 \right) \end{array} $
4-(4-methoxyphenyl)-2,6- dimethylmorpholine 4-(4-methoxyphenyl)-2,5- dimethylmorpholine (8b)	m/z: 221 ([M] ⁺ , 39%), 136 (17), 135 ([CH ₃ OC ₆ H ₄ N=CH ₂] ⁺ , 100), 134 (11), 120 (39), 92 (9), 77 87)
3-(4-methoxyphenyl)-5- methyloxazolidin-2-one 3-(4-methoxyphenyl)-4- methyloxazolidin-2-one (9b)	m/z: 207 ([M] ⁺ , 44%), 193 (13), 192 ([M-CH ₃] ⁺ , 100], 164 ([M-CH ₃ -CO] ⁺ , 48), 162 (12), 150 (10), 148 ([M-CO ₂ -CH ₃] ⁺ , 26), 136 (11), 135 ([M-CO ₂ CHCH ₃] ⁺ , 14), 134 (76), 122 (14), 121 (35), 120 (11), 109 (11), 108 (14), 107 (20), 92 (18), 79 (10), 77 (17), 65 (13), 64 (11), 63 (13), 51 (10), 43 (13), 41 (23)

MS spectra of products 3a-d

Bis-N-(2-hydroxy)ethyl p-anisidine, 3b.

Bis-N-(2-hydroxy)propyl aniline, 7a.

Bis-N-(2-hydroxy)propyl anisidine, 7b.

¹H and ¹³C NMR spectra of products **3a-d**, **7a-b**, **PIL2-7** and **PIL9-13**.

Bis-N-(2-hydroxy)ethyl aniline, **3a.** The spectroscopic data were consistent with those reported in the literature. HO \longrightarrow OH

¹³C NMR

150 ppm (f1) 140

120

130

110

1 1

100

Bis-N-(2-hydroxy)ethyl *p*-anisidine, **3b.** The spectroscopic data were consistent with those reported in the literature.

80

| 70 60

Т

1 1 1

90

Bis-*N*-(2-hydroxy)ethyl *p*-toluidine, **3c**.

Bis-N-(2-hydroxy)propyl aniline, 7a.

Bis-N-(2-hydroxy)propyl anisidine, 7b.

[(*n*-Bu)₃MeP][TosO], **PIL2**.

[(*n*-Hex)₃MeP][TosO], **PIL3**.

[(*n*-Oct)₃MeP][TosO], **PIL4**.

[(*i*-Bu)₃MeP][OCO₂CH₃], **PIL5**.

[(*n*-Bu)₃MeP][OCO₂CH₃], **PIL6**.

[(*n*-Hex)₃MeP][OCO₂CH₃], **PIL7**.

[(*i*-Bu)₃MeP][Br], **PIL9**.

[(*n*-Bu)₃MeP][Br], **PIL10**.

[(*n*-Hex)₃MeP][Br], **PIL11**.

[(*n*-Oct)₃MeP][Br], **PIL12**.

[(*n*-Oct)₃MeP][I], **PIL13**.

References

¹ A. Clerici, A. Ghilardi, N. Pastori, C. Punta, O. Porta *Org. Lett.* 2008, **10(21)**, 5063-5066.