The Influence of a 1,1-Diarylvinyl Moiety on the Photochromism of Naphthopyrans

Christopher D. Gabbutt, B. Mark Heron^{*}, Colin Kilner and Suresh B. Kolla

School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.

E-mail b.m.heron@leeds.ac.uk; Fax: +44 (0)113 3436565, Tel: +44 (0)113 3432925

Supplementary Information

Crystal data and structure refinement for 1-[2,2-bis-(4-dimethylaminophenyl)vinyl]-3phenyl-1*H*-naphtho[2,1-*b*]pyran 14

Measurements were carried out at 150 K on a Bruker-Nonius Apex X8 diffractometer equipped with an Apex II CCD detector and using graphite monochromated Mo-K α radiation from a FR591 rotating anode generator. The structure was solved by direct methods and refined using SHELXL-97. Compound **14** crystallises in the chiral space group $P2_12_12_1$. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms could be located in a difference Fourier map but, in the final stages of the refinement, they were placed in calculated positions and refined using a riding model. In the absence of significant anomalous scattering effects, the absolute configuration could not be confirmed from the diffraction data and Friedel pairs were merged. An arbitrary choice of enantiomer has been made.

The structure has been deposited at the Cambridge Crystallographic Data Centre and information on the structure can be obtained by quoting the CCDC at:

http://www.ccdc.cam.ac.uk/deposit

Telephone: (44) 01223 762910

Facsimile: (44) 01223 336033

Postal Address: CCDC, 12 Union Road, CAMBRIDGE CB2 1EZ, UK

Table S1. Crystal data and structure refinement for compound 14.

Formula	$C_{37}H_{34}N_2O$
Formula weight	522.66
Size	0.19 x 0.11 x 0.05 mm
Crystal morphology	Colourless fragment
Temperature	150K
Wavelength	0.71073 Å [Mo-K _α]
Crystal system	Orthorhombic
Space group	$P2_{1}2_{1}2_{1}$
Unit cell dimensions	$a = 10.9909(10) \text{ Å} \qquad \alpha = 90^{\circ}$
	$b = 13.0053(11) \text{ Å} \qquad \beta = 90^{\circ}$
	$c = 20.0553(18) \text{ Å}$ $\gamma = 90^{\circ}$
Volume	$2866.7(4) \text{ Å}^3$
Ζ	4
Density (calculated)	1.211 Mg/m^3
Absorption coefficient	0.072 mm ⁻¹
F(000)	1112
Data collection range	$2.57 \leq \theta \leq 27.94^{\circ}$
Index ranges	$-13 \le h \le 14, -14 \le k \le 17, -25 \le l \le 26$
Reflections collected	27053
Independent reflections	3842 [R(int) = 0.0786]
Observed reflections	2744 [<i>I</i> >2σ(<i>I</i>)]
Absorption correction	multi-scan
Max. and min. transmission	0.9964 and 0.8278
Refinement method	Full
Data / restraints / parameters	3114 / 0 / 365
Goodness of fit	1.063
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0431, wR_2 = 0.0957$
<i>R</i> indices (all data)	$R_1 = 0.0669, wR_2 = 0.1087$
Largest diff. peak and hole	$0.190 \text{ and } -0.182 \text{e.} \text{\AA}^{-3}$

	X	у	Z	$U_{ m eq}$
O(4)	8371.3(16)	8420.9(16)	1240.2(9)	322(5)
C(31)	7239(3)	7247(2)	577.9(13)	251(6)
C(1)	6230(2)	9238(2)	1957.3(14)	255(6)
C(13)	7839(3)	10224(2)	2664.6(13)	257(6)
C(2)	6229(3)	8365(2)	1454.5(14)	266(6)
N(57)	1710(2)	8224.1(19)	3834.3(12)	334(6)
C(52)	3428(3)	10363(2)	3014.5(13)	274(6)
C(3)	7206(2)	8035(2)	1113.4(13)	256(6)
C(61)	3952(2)	11518(2)	1599.4(13)	253(6)
C(56)	3287(2)	8955(2)	2247.8(13)	252(6)
C(14)	7558(2)	9516(2)	2132.7(13)	246(6)
C(6)	9759(2)	9326(2)	1923.9(14)	306(7)
C(64)	2951(3)	13307(2)	945.8(14)	306(7)
C(36)	8363(3)	6937(2)	290.5(14)	296(7)
C(65)	2203(3)	12559(2)	1245.9(15)	320(7)
C(33)	6208(3)	6042(2)	-171.7(14)	329(7)
C(12)	6919(3)	10708(2)	3062.3(14)	293(7)
C(32)	6165(3)	6777(2)	332.5(14)	287(7)
C(66)	2683(3)	11701(2)	1561.3(14)	295(7)
C(11)	7212(3)	11412(2)	3549.5(14)	329(7)
C(5)	8511(2)	9098(2)	1773.6(13)	270(6)
N(67)	2472(3)	14141(2)	593.9(13)	402(7)
C(55)	2635(3)	8377(2)	2715.3(14)	273(6)
C(53)	2796(3)	9791(2)	3496.0(14)	284(7)
C(41)	4450(2)	10540(2)	1876.0(13)	247(6)
C(10)	8444(3)	11677(3)	3676.3(15)	377(8)
C(59)	1305(3)	7179(3)	3658.3(18)	418(8)
C(9)	9356(3)	11214(2)	3312.3(15)	364(8)
C(54)	2385(2)	8786(2)	3354.6(13)	260(6)
C(7)	10026(3)	10002(2)	2420.8(14)	304(7)
C(51)	3706(2)	9952(2)	2382.6(13)	240(6)
C(34)	7327(3)	5743(2)	-449.7(14)	345(7)
C(35)	8394(3)	6199(2)	-214.4(15)	346(7)
C(8)	9089(3)	10486(2)	2805.2(14)	282(7)
C(69)	1163(3)	14167(3)	443.7(18)	465(9)
C(62)	4695(3)	12309(2)	1342.2(14)	305(7)
C(63)	4232(3)	13175(2)	1027.0(15)	318(7)
C(68)	3272(3)	14786(3)	188.5(17)	457(9)
C(40)	5555(2)	10164(2)	1675.4(13)	261(6)
C(58)	1985(3)	8380(3)	4538.6(15)	495(10)

Table 2. Atomic co-ordinates (x 10⁴) and equivalent isotropic displacement parameters (Å² x 10⁴) with standard uncertainties (s.u.s) in parentheses. U_{eq} is defined as $^{1}/_{3}$ of the trace of the orthogonalized U_{ij} tensor.

	U_{11}	U_{22}	U_{33}	U_{23}	<i>U</i> ₁₃	U_{12}
O(4)	19.4(10)	46.5(13)	30.8(11)	-10.7(10)	0.8(9)	-2.4(10)
C(31)	25.9(15)	28.9(15)	20.5(13)	4.4(12)	-1.2(12)	0.5(13)
C(1)	19.6(14)	31.9(16)	24.9(14)	-0.7(14)	1.7(11)	-3.2(12)
C(13)	28.4(15)	28.3(15)	20.5(13)	4.0(13)	0.1(12)	1.3(13)
C(2)	22.2(14)	30.0(16)	27.5(14)	1.1(14)	1.0(12)	-4.5(13)
N(57)	39.5(14)	32.6(14)	28.2(13)	1.5(11)	7.2(12)	-1.9(12)
C(52)	26.8(15)	27.5(15)	28.0(14)	-4.8(13)	-2.1(12)	-0.6(13)
C(3)	19.8(14)	31.1(16)	25.9(14)	4.5(13)	0.3(12)	-3.2(12)
C(61)	23.2(14)	27.7(15)	25.2(14)	-1.9(13)	-1.8(12)	-0.9(12)
C(56)	24.3(14)	30.9(16)	20.4(13)	-3.7(12)	-0.8(11)	3.5(13)
C(14)	20.0(14)	29.6(15)	24.1(14)	4.9(12)	0.4(11)	0.0(12)
C(6)	21.0(15)	40.7(19)	30.0(15)	-1.7(15)	0.6(12)	3.7(13)
C(64)	33.9(17)	29.0(16)	29.0(15)	-2.8(14)	-1.1(13)	1.3(14)
C(36)	26.4(16)	34.6(17)	27.8(15)	2.4(13)	1.6(13)	0.5(14)
C(65)	25.3(15)	33.7(17)	36.9(17)	2.0(14)	-0.4(14)	1.4(13)
C(33)	35.1(17)	37.2(18)	26.5(15)	1.6(15)	-0.9(13)	-6.4(15)
C(12)	31.2(16)	31.0(17)	25.5(14)	4.7(13)	2.4(12)	2.0(13)
C(32)	24.9(15)	36.5(17)	24.8(14)	1.8(14)	0.4(12)	-0.8(14)
C(66)	23.5(15)	34.7(16)	30.2(15)	1.7(14)	4.1(13)	-1.8(13)
C(11)	40.9(18)	31.6(17)	26.3(15)	3.3(14)	2.7(14)	3.4(14)
C(5)	24.0(15)	36.4(16)	20.7(14)	-0.9(13)	-0.6(12)	-0.5(13)
N(67)	40.9(16)	33.1(15)	46.5(15)	10.4(13)	-5.9(13)	-0.2(13)
C(55)	25.1(14)	27.4(15)	29.3(15)	-1.2(13)	-0.4(12)	0.6(13)
C(53)	29.2(16)	33.8(16)	22.1(14)	-3.1(13)	2.4(12)	1.6(13)
C(41)	23.9(14)	27.5(16)	22.6(14)	-2.8(12)	1.3(11)	-3.4(12)
C(10)	48(2)	35.7(18)	29.3(16)	-4.9(14)	-8.1(15)	-0.5(16)
C(59)	40.4(19)	39.5(19)	45(2)	3.1(16)	10.3(16)	-3.9(16)
C(9)	35.5(17)	40.0(19)	33.8(17)	-3.4(15)	-7.7(14)	-1.9(15)
C(54)	20.1(14)	32.9(16)	25.1(14)	4.2(13)	-0.8(11)	3.9(12)
C(7)	24.5(14)	37.7(19)	29.2(15)	-0.7(15)	-3.6(12)	-1.7(13)
C(51)	18.8(13)	29.4(16)	23.7(14)	2.0(13)	-0.3(11)	2.6(12)
C(34)	47.7(19)	31.7(17)	24.0(15)	-2.7(13)	0.7(14)	-0.9(15)
C(35)	35.4(18)	37.5(18)	30.7(16)	1.0(15)	6.7(14)	5.1(15)
C(8)	28.5(15)	30.5(17)	25.6(15)	3.1(13)	-3.3(12)	-0.9(13)
C(69)	41(2)	47(2)	51(2)	9.0(18)	-9.4(16)	10.5(17)
C(62)	22.2(15)	34.8(17)	34.5(17)	-2.8(14)	-0.4(13)	-3.6(13)
C(63)	28.9(16)	29.3(17)	37.3(17)	1.9(14)	0.1(13)	-6.1(14)
C(68)	62(2)	36.9(19)	38.6(18)	5.9(16)	7.8(17)	0.9(18)
C(40)	25.4(15)	31.0(16)	21.7(14)	0.5(13)	2.0(11)	-1.8(12)
C(58)	55(2)	66(2)	28.2(17)	6.8(17)	3.1(15)	-13(2)

Table 3. Anisotropic displacement parameters (Å² x 10³). The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2 h k a^* b^* U_{12}]$

	X	У	Z	$U_{ m eq}$
H(1)	5805.	9003.	2371.	31.
H(2)	5478.	8026.	1375.	32.
H(52)	3674.	11045.	3117.	33.
H(56)	3451.	8661.	1824.	30.
H(6)	10394.	9008.	1678.	37.
H(36)	9101.	7235.	444.	36.
H(65)	1345.	12646.	1232.	38.
H(33)	5475.	5740.	-329.	40.
H(12)	6089.	10539.	2988.	35.
H(32)	5401.	6968.	516.	34.
H(66)	2142.	11220.	1759.	35.
H(11)	6583.	11723.	3804.	40.
H(55)	2359.	7706.	2603.	33.
H(53)	2642.	10083.	3922.	34.
H(10)	8638.	12169.	4009.	45.
H(59a)	847.	7201.	3239.	63.
H(59b)	783.	6909.	4014.	63.
H(59c)	2016.	6731.	3605.	63.
H(9)	10180.	11385.	3402.	44.
H(7)	10854.	10156.	2515.	37.
H(34)	7357.	5239.	-792.	41.
H(35)	9154.	6004.	-401.	41.
H(69a)	950.	13577.	163.	70.
H(69b)	967.	14805.	208.	70.
H(69c)	699.	14135.	861.	70.
H(62)	5552.	12246.	1387.	37.
H(63)	4774.	13685.	863.	38.
H(68a)	3917.	15073.	470.	69.
H(68b)	2799.	15347.	-10.	69.
H(68c)	3637.	14370.	-167.	69.
H(40)	5944.	10521.	1321.	31.
H(58a)	2827.	8174.	4627.	74.
H(58b)	1432.	7963.	4810.	74.
H(58c)	1880.	9108.	4651.	74.

Table 4. Hydrogen atom co-ordinates (x 10^3) and isotropic displacement parameters (Å² x 10^2) with s.u.s in parentheses.

O(4)-C(5)	1.394(3)	O(4)-C(3)	1.399(3)
C(31)-C(32)	1.417(4)	C(31)-C(36)	1.422(4)
C(31)-C(3)	1.485(4)	C(1)-C(2)	1.519(4)
C(1)-C(40)	1.523(4)	C(1)-C(14)	1.544(4)
C(13)-C(12)	1.433(4)	C(13)-C(14)	1.443(4)
C(13)-C(8)	1.443(4)	C(2)-C(3)	1.344(4)
N(57)-C(54)	1.418(4)	N(57)-C(58)	1.459(4)
N(57)-C(59)	1.473(4)	C(52)-C(53)	1.403(4)
C(52)-C(51)	1.409(4)	C(61)-C(62)	1.411(4)
C(61)-C(66)	1.417(4)	C(61)-C(41)	1.492(4)
C(56)-C(55)	1.399(4)	C(56)-C(51)	1.402(4)
C(14)-C(5)	1.383(4)	C(6)-C(7)	1.361(4)
C(6)-C(5)	1.435(4)	C(64)-N(67)	1.397(4)
C(64)-C(65)	1.409(4)	C(64)-C(63)	1.427(4)
C(36)-C(35)	1.395(4)	C(65)-C(66)	1.387(4)
C(33)-C(32)	1.392(4)	C(33)-C(34)	1.405(4)
C(12)-C(11)	1.377(4)	C(11)-C(10)	1.420(4)
N(67)-C(68)	1.462(4)	N(67)-C(69)	1.470(4)
C(55)-C(54)	1.415(4)	C(53)-C(54)	1.412(4)
C(41)-C(40)	1.369(4)	C(41)-C(51)	1.512(4)
C(10)-C(9)	1.378(4)	C(9)-C(8)	1.420(4)
C(7)-C(8)	1.433(4)	C(34)-C(35)	1.396(4)
C(62)-C(63)	1.388(4)		

Table 5. Interatomic distances (Å) with s.u.s in parentheses.

Table 6. Angles between interatomic vectors (°) with s.u.s in parentheses.

C(5)-O(4)-C(3)	117.9(2)	C(32)-C(31)-C(36)	117.4(2)
C(32)-C(31)-C(3)	121.9(3)	C(36)-C(31)-C(3)	120.7(2)
C(2)-C(1)-C(40)	110.2(2)	C(2)-C(1)-C(14)	109.0(2)
C(40)-C(1)-C(14)	111.1(2)	C(12)-C(13)-C(14)	122.7(3)
C(12)-C(13)-C(8)	117.3(2)	C(14)-C(13)-C(8)	119.9(2)
C(3)-C(2)-C(1)	125.2(2)	C(54)-N(57)-C(58)	118.5(3)
C(54)-N(57)-C(59)	118.1(2)	C(58)-N(57)-C(59)	115.0(3)
C(53)-C(52)-C(51)	121.6(3)	C(2)-C(3)-O(4)	121.6(2)
C(2)-C(3)-C(31)	127.4(3)	O(4)-C(3)-C(31)	110.9(2)
C(62)-C(61)-C(66)	115.3(3)	C(62)-C(61)-C(41)	123.1(2)
C(66)-C(61)-C(41)	121.6(2)	C(55)-C(56)-C(51)	122.4(3)
C(5)-C(14)-C(13)	118.3(2)	C(5)-C(14)-C(1)	120.4(2)
C(13)-C(14)-C(1)	121.3(2)	C(7)-C(6)-C(5)	119.6(3)
N(67)-C(64)-C(65)	122.1(3)	N(67)-C(64)-C(63)	121.5(3)
C(65)-C(64)-C(63)	116.4(3)	C(35)-C(36)-C(31)	120.7(3)
C(66)-C(65)-C(64)	121.9(3)	C(32)-C(33)-C(34)	120.5(3)
C(11)-C(12)-C(13)	121.4(3)	C(33)-C(32)-C(31)	121.3(3)
C(65)-C(66)-C(61)	122.3(3)	C(12)-C(11)-C(10)	120.8(3)
C(14)-C(5)-O(4)	124.3(2)	C(14)-C(5)-C(6)	122.2(3)
O(4)-C(5)-C(6)	113.4(2)	C(64)-N(67)-C(68)	120.0(3)
C(64)-N(67)-C(69)	119.4(3)	C(68)-N(67)-C(69)	117.5(3)
C(56)-C(55)-C(54)	120.3(3)	C(52)-C(53)-C(54)	120.7(3)
C(40)-C(41)-C(61)	121.3(2)	C(40)-C(41)-C(51)	119.7(3)
C(61)-C(41)-C(51)	118.9(2)	C(9)-C(10)-C(11)	119.5(3)
C(10)-C(9)-C(8)	121.3(3)	C(53)-C(54)-C(55)	117.9(3)
C(53)-C(54)-N(57)	120.5(2)	C(55)-C(54)-N(57)	121.5(3)
C(6)-C(7)-C(8)	121.5(3)	C(56)-C(51)-C(52)	117.0(3)
C(56)-C(51)-C(41)	121.1(2)	C(52)-C(51)-C(41)	122.0(3)
C(35)-C(34)-C(33)	118.9(3)	C(36)-C(35)-C(34)	121.2(3)
C(9)-C(8)-C(7)	122.0(3)	C(9)-C(8)-C(13)	119.6(3)
C(7)-C(8)-C(13)	118.4(3)	C(63)-C(62)-C(61)	123.1(3)
C(62)-C(63)-C(64)	120.7(3)	C(41)-C(40)-C(1)	127.2(2)

Table 7.	Torsion angles	(°) with	s.u.s in	parentheses.
----------	----------------	----------	----------	--------------

C(40)-C(1)-C(2)-C(3)	109.4(3)	C(14)-C(1)-C(2)-C(3)	-12.8(4)
C(1)-C(2)-C(3)-O(4)	5.9(4)	C(1)-C(2)-C(3)-C(31)	-174.5(3)
C(5)-O(4)-C(3)-C(2)	5.5(4)	C(5)-O(4)-C(3)-C(31)	-174.1(2)
C(32)-C(31)-C(3)-C(2)	3.8(4)	C(36)-C(31)-C(3)-C(2)	-176.3(3)
C(32)-C(31)-C(3)-O(4)	-176.6(3)	C(36)-C(31)-C(3)-O(4)	3.3(4)
C(12)-C(13)-C(14)-C(5)	179.4(3)	C(8)-C(13)-C(14)-C(5)	0.6(4)
C(12)-C(13)-C(14)-C(1)	0.3(4)	C(8)-C(13)-C(14)-C(1)	-178.5(3)
C(2)-C(1)-C(14)-C(5)	9.4(4)	C(40)-C(1)-C(14)-C(5)	-112.2(3)
C(2)-C(1)-C(14)-C(13)	-171.6(2)	C(40)-C(1)-C(14)-C(13)	66.8(3)
C(32)-C(31)-C(36)-C(35)	0.2(4)	C(3)-C(31)-C(36)-C(35)	-179.8(3)
N(67)-C(64)-C(65)-C(66)	176.2(3)	C(63)-C(64)-C(65)-C(66)	-4.6(4)
C(14)-C(13)-C(12)-C(11)	-177.4(3)	C(8)-C(13)-C(12)-C(11)	1.4(4)
C(34)-C(33)-C(32)-C(31)	0.3(4)	C(36)-C(31)-C(32)-C(33)	-0.2(4)
C(3)-C(31)-C(32)-C(33)	179.8(3)	C(64)-C(65)-C(66)-C(61)	-0.3(5)
C(62)-C(61)-C(66)-C(65)	4.9(4)	C(41)-C(61)-C(66)-C(65)	-173.4(3)
C(13)-C(12)-C(11)-C(10)	-0.4(4)	C(13)-C(14)-C(5)-O(4)	-178.7(2)
C(1)-C(14)-C(5)-O(4)	0.4(4)	C(13)-C(14)-C(5)-C(6)	1.6(4)
C(1)-C(14)-C(5)-C(6)	-179.3(3)	C(3)-O(4)-C(5)-C(14)	-8.6(4)
C(3)-O(4)-C(5)-C(6)	171.1(3)	C(7)-C(6)-C(5)-C(14)	-2.2(5)
C(7)-C(6)-C(5)-O(4)	178.0(3)	C(65)-C(64)-N(67)-C(68)	-168.6(3)
C(63)-C(64)-N(67)-C(68)	12.2(4)	C(65)-C(64)-N(67)-C(69)	-9.3(4)
C(63)-C(64)-N(67)-C(69)	171.5(3)	C(51)-C(56)-C(55)-C(54)	-0.7(4)
C(51)-C(52)-C(53)-C(54)	-1.8(4)	C(62)-C(61)-C(41)-C(40)	-25.8(4)
C(66)-C(61)-C(41)-C(40)	152.4(3)	C(62)-C(61)-C(41)-C(51)	154.8(3)
C(66)-C(61)-C(41)-C(51)	-27.0(4)	C(12)-C(11)-C(10)-C(9)	-0.8(5)
C(11)-C(10)-C(9)-C(8)	0.9(5)	C(52)-C(53)-C(54)-C(55)	0.2(4)
C(52)-C(53)-C(54)-N(57)	-177.8(3)	C(56)-C(55)-C(54)-C(53)	1.0(4)
C(56)-C(55)-C(54)-N(57)	178.9(3)	C(58)-N(57)-C(54)-C(53)	-33.4(4)
C(59)-N(57)-C(54)-C(53)	179.9(3)	C(58)-N(57)-C(54)-C(55)	148.7(3)
C(59)-N(57)-C(54)-C(55)	2.1(4)	C(5)-C(6)-C(7)-C(8)	0.7(4)
C(55)-C(56)-C(51)-C(52)	-0.9(4)	C(55)-C(56)-C(51)-C(41)	177.6(3)
C(53)-C(52)-C(51)-C(56)	2.1(4)	C(53)-C(52)-C(51)-C(41)	-176.4(3)
C(40)-C(41)-C(51)-C(56)	-61.8(4)	C(61)-C(41)-C(51)-C(56)	117.5(3)
C(40)-C(41)-C(51)-C(52)	116.6(3)	C(61)-C(41)-C(51)-C(52)	-64.0(3)
C(32)-C(33)-C(34)-C(35)	-0.3(4)	C(31)-C(36)-C(35)-C(34)	-0.3(4)
C(33)-C(34)-C(35)-C(36)	0.3(4)	C(10)-C(9)-C(8)-C(7)	179.7(3)
C(10)-C(9)-C(8)-C(13)	0.1(4)	C(6)-C(7)-C(8)-C(9)	-178.2(3)
C(6)-C(7)-C(8)-C(13)	1.4(4)	C(12)-C(13)-C(8)-C(9)	-1.3(4)
C(14)-C(13)-C(8)-C(9)	177.6(3)	C(12)-C(13)-C(8)-C(7)	179.1(3)
C(14)-C(13)-C(8)-C(7)	-2.0(4)	C(66)-C(61)-C(62)-C(63)	-4.7(4)
C(41)-C(61)-C(62)-C(63)	173.6(3)	C(61)-C(62)-C(63)-C(64)	-0.1(5)
N(67)-C(64)-C(63)-C(62)	-176.0(3)	C(65)-C(64)-C(63)-C(62)	4.8(4)
C(61)-C(41)-C(40)-C(1)	173.9(2)	C(51)-C(41)-C(40)-C(1)	-6.8(4)
C(2)-C(1)-C(40)-C(41)	109.8(3)	C(14)-C(1)-C(40)-C(41)	-129.3(3)

The following supplementary pages contain ¹H NMR, ¹³C NMR, infrared and mass spectra of compounds 11a - 11c, 13a - 13c, 14, 16a and 16b. ¹H NMR spectra of compounds 12a - c only are provided as these materials were used directly in subsequent reactions to obtain the target naphthopyrans.

 F2 - Processing parameters

 SI
 32768

 SF
 400.1300088

 WDW
 EM

 SSB
 0

 SB
 0.30 Hz

 GB
 0

 PC
 1.00
 32768 MHz EM 0.300088 MHz 0.30 Hz 1.00

1H 10.25 usec 2.00 dB 400.1324710 MHz

CHANNEL f1 ======

C13CPD CDC13 {D: \u} Suresh SK-3-25-CARBON

and Mass Spectrometry 'EPSRC National Mass Spectrometry Service Centre

ACCURATE MASS MEASUREMENT REPORT

YOUR REFERENCE: SK-3-25
OUR REFERENCE: LEEHER059
Instrument: MAT900 XLT
Ionisation Mode: Electrospray (positive)
Reference compound: Polyethylenimine
Ion identity: [M+H]⁺
Calculated mass (of ion): 345.1485
Measured mass (of ion): 345.1489

Z An = 4- Meo (6H4-10 Z

Thursday, 06 March 2008

PEAK: Active N REG MASS REF MASS PEAK WIDTH SLOW REG 1/2: 50.0 0.0 Register: [ppm]: 345.148935 RCOPY2 RCOPY3 Ч 319.32411 319.32922 86.65248 REG 1/3:LIMIT 0.30 CENTER 345. 86. SPREAD 5.14341 2.37142 5.67676 1.00 Þ REG An= 4- Mas COM-ERASE 2/3: 119 3 RESUME PAGE

06/03/2008 5:37:11 PM

CMEP755MAT900

MAT 900 XLT

and the second of the second o

.

Peak

Register

Display

Copy result to ULIST

100.0

	345.1489	Mass	Fits:	Db/Ring Equi	Tolerance Wi	16 0	14 N	1 8	12 C	Isotope:
345.1485 345.1477 345.1504 345.1504	Mass 345.1490	Theoretical	100	v: -2	ndow: +- 5.	0	0	0	0	Min.
1.2 3.6 -4.1 2	[ppm] -0.3	Delta		100	.00 ppm	.10	.10	. 80	.50	Max.
13.5 0.5	1.0	RCR	Charge:	N-Rule:						
C ₂₃ H ₂₁ O ₃ C ₇ H ₂₁ O ₅ N ₈ C ₁₁ H ₂₅ O ₁₀ N ₂ C ₁₁ H ₂₅ O ₁₀ N ₂	C, H ₂₃ O, N ₅	Composition	1	Do not use						

•

	ACCURATE MASS MEASUREMENT REPORT
YOUR REFERENCE:	SK-3-26
OUR REFERENCE:	LEEHER060

EPSRC National Mass Spectrometry Service Centre

OUR REFERENCE: LEEHER060 Instrument: MAT900 XLT Ionisation Mode: Electrospray (positive) Reference compound: Polyethylenimine Ion identity: [M+H]⁺ Calculated mass (of ion): 371.2118

Measured mass (of ion):

371.2117

Thursday, 06 March 2008

06/03/2008 5:42:14 PM

CMEP755MAT900

PEAK: Active Register: N REG MASS REF MASS PEAK WIDTH 100.0 SLOW REG 1/2: 50.0 0.0 Peak Register Display [ppm]: 371.211720 RCOPY2 RCOPY3 Ч 362.37200 362.37142 86.65401 REG 1/3: LIMIT 0.30 CENTER SPREAD Copy result to ULIST 371.21232 362.37142 86.67356 1.00 5 REG ERASE 2/3: 15 RESUME PAGE

MAT 900 XLT

			371.2117		Мавя	Fits:	Db/Ring Equiv	Tolerance Wir	16 0	14 N	1 H	12 C	Isotope:
371.2104	371.2110	371.2123	371.2118	Mass	Theoretical	100	/: -2	1dow: +- 5	0	••••	0	0	Min.
3-4	2.1	-1.6	-0.2	[mdđ]	Delta		100	-00 ppm	.10	.10	. 80	.50	··· Max.
14.0	1.5	1.0	13.5		RDB	Charge:	N-Rule:						
							н						

•

2 8278.146 Hz 3.9564243 sec 181 60.400 usec 5.00 usec 300.0 K 1.00000000 sec

sk-3-27-carbon C13CPD CDC13 {D: \u} Suresh 6

sk-3-28-pure alkynol PROTON.ColChem CDC13 {D: \u} Suresh 7

 1D NWR plot parameters
 30.00 cm

 CX
 30.00 cm

 F1P
 7.889 ppm

 F1
 3156.55 Hz

 F2P
 -0.212 ppm

 F2
 -84.73 Hz

 PPMCM
 0.27002 ppm/cm

 HZCM
 108.04254 Hz/cm
 F2 - Acquisition Parameters Date_ 20080305 Time 15.35 INSTRUM spect PROBHD 5 mm GNP 1H/15 Current Data Parameters NAME sk-3-40 EXPNO 10 PROCNO 1 **** Processing parameters 400.1300096 MHz EM 0.30 Hz 0.30 Hz 1.00 CHANNEL f1 ======= 1H 10.25 usec 2.00 dB 400.1324710 MHz 16 2 . 8278.146 Hz 0.126314 Hz 3.9584243 sec 228.1 1.00000000 sec 60.400 usec 6.00 usec 300.0 K zg30 65536 CDC13

sk-3-40

YOUR REFERENCE: OUR REFERENCE: Instrument: Ionisation Mode: Reference compound:	SK-3-20 LEEHER061 MAT 95 XP EI Perfluorotributylamine
Ionisation Mode:	EI
Reference compound:	Perfluorotributylamir
Ion identity:	[M]+.
Calculated mass (of ion):	496.2033
Measured mass (of ion):	496.2028

2 ß 3

An = 4- Med 6644-

EPSRC National Mass Spectrometry Service Centre

and the second second

ACCURATE MASS MEASUREMENT REPORT

12/03/2008 07:13:44

CMEP755MAT95

PEAK: Active Register: N REG 100.0 REF MASS : PEAK WIDTH [ppm]: MASS REG 1/2: SLOW 50.0 0.0 **0**-1 RCOPY1 1 Peak Register Display 496.202815 Ν RCOPY3 413.98058 413.97695 77.72298 REG 1/3: LIMIT 0.30 CENTER SPREAD 12 to ULIST Copy result 496.20716 501.97055 75.44507 1.00 REG ERASE An = 4-MeOC6H4-2/3: RESUME ₹ PAGE ₹

MAT 95 XP
									496.2028		Mass	Fits:	Db/Ring Equi	Tolerance Wi	14 N	16 0	1 H	12 C	Isotope:
496.2051	496.2051	496.2006	496.2011	496.2011	496,2038	496.2038	496.2020	496.2033	496.2025	Mass	Theoretical	100	V: -2	ndow: +- 5.	0	0	0	0	Min.
-4.7	-4.7	4.4	3-4	3.4	-2.0	-2.0	1.7	-1.0	0.7	[ppm]	Delta		100	.00 ppm	,12	.12	.80	.60	Max.
9.0	14.5	23.0	10.5	5.0	9.5	15.0	22.5	22.0	10.0		RDB	Charge:	N-Rule:						
C_{23}^{12} H_{32}^{22} O_{10}^{10} N_{2}^{10}	C, H, O, N	C, H, O, N	$C_{17} H_{26} O_{7} N_{11}$			C ₂₀ H ₂₄ O ₄ N ₁₂		C35 H28 O3	C ₁₉ H ₂₈ O ₈ N ₈		Composition	ц	Do not use						

Mass 523.2739	Isotope: 14 N 16 O 12 C 1 H Tolerance W1 Db/Ring Equi Pits:
Theoretical Ma## 523.2736 523.2736 523.2736 523.2744 523.2749 523.2749 523.2749 523.2749 523.2749 523.2749 523.2717 523.2717	Min. 0 0 0 0 v. v. v. v. 100
Del ta 0.6 el ta 0.7 -0.7 -1.6 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9	Max. .10 .15 .80 .110 .00 ppm
и 40000 01 440000 01 10 10 00 00 00 00 00 00 00 00 00 00 00 00 0	N-Rule: Charge:
$\begin{array}{c} \textbf{Composition}\\ \textbf{C}_{22} \ \textbf{H}_{31} \ \textbf{O}_{11} \ \textbf{N}_{3} \\ \textbf{C}_{21} \ \textbf{H}_{35} \ \textbf{O}_{1} \ \textbf{N}_{3} \\ \textbf{C}_{23} \ \textbf{H}_{3} \ \textbf{O}_{1} \ \textbf{N}_{3} \\ \textbf{C}_{23} \ \textbf{H}_{3} \ \textbf{O}_{1} \ \textbf{N}_{3} \\ \textbf{C}_{24} \ \textbf{H}_{3} \ \textbf{O}_{1} \ \textbf{N}_{3} \\ \textbf{C}_{25} \ \textbf{H}_{39} \ \textbf{O}_{10} \ \textbf{N}_{3} \\ \textbf{C}_{25} \ \textbf{H}_{39} \ \textbf{O}_{10} \ \textbf{N}_{3} \\ \textbf{C}_{25} \ \textbf{H}_{39} \ \textbf{O}_{10} \ \textbf{N}_{3} \end{array}$	Do not use

ŝ

į

	527.2213	Wass Mass	Isotope: 14 N 16 O 12 C 1 H Tolerance Win Tolerance Win Db/Ring Equiv
527.2195 527.2235 527.2235 527.2190	527,2209 527,2209 527,2209 527,2222 527,2223 527,2230 527,2230	100 Theoretical Mass	жыр. 0 0 0 0 0 4 - 5.
4 1 1 4 4 1 4 1 4 4 2 1 2 2 2		Delta [ppm]	
14.5 8.5 22.5	22299.00 22.00 5.00 5.00	Charge:	N-Rule:
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, ²	1 Composition	Do not use

Ŋ A = t- MeO(6HL-·Þ

٠

•

Connetty EPSRC(National Mass Spectrometry Service Centre

ACCURATE MASS MEASUREMENT REPORT

Measured mass (of ion):	Calculated mass (of ion):	Ion identity:	Reference compound:	Ionisation Mode:	Instrument:	OUR REFERENCE:	YOUR REFERENCE:	
523.2747	523.2744	$[M+H]^+$	Polyethylenimine	Electrospray (positive)	MAT95 XP	LEEHER063	SK-3-31-B1	

Tuesday, 18 March 2008

CMEP755MAT95

18/03/2008 12:50:05

MAT 95 XP

Mass 523.2747	Isotope: 12 C 1 H 16 O 14 N 14 N Tolerance Win Db/Ring Equiv Fits:
Theoretical Mass 523.2749 523.2749 523.2749 523.2744 523.2744 523.2736 523.2762 523.2762 523.2762 523.2722	Mdin. 0 0 0 dow: +- 5. - 100
Delt - 0 - 2 . 	- Max. 60 90 90 14 14 14 14 14 14 14 100 100
RDB 9.0 9.1 9.5 9.5 9.5 9.5 14.0 14.0 22.0 14.0 22.0	N-Rule: Charge:
$\begin{array}{c} \textbf{Composition}\\ \textbf{Composition}\\ \textbf{C}_{2} \ \textbf{H}_{1} \ \textbf{O}_{2} \ \textbf{N}_{1} \\ \textbf{C}_{2} \ \textbf{H}_{3} \ \textbf{O}_{1} \ \textbf{N}_{1} \\ \textbf{C}_{3} \ \textbf{H}_{3} \ \textbf{O}_{1} \ \textbf{N}_{3} \\ \textbf{C}_{3} \ \textbf{H}_{3} \ \textbf{O}_{3} \ \textbf{N}_{3} \\ \textbf{C}_{3} \ \textbf{H}_{3} \ \textbf{O}_{3} \ \textbf{N}_{3} \\ \textbf{C}_{3} \ \textbf{N}_{3} \ \textbf{O}_{3} \ \textbf{N}_{3} \ \textbf{O}_{3} \ \textbf{N}_{3} \ \textbf{O}_{3} \ \textbf{N}_{3} \ \textbf{N}_{3} \ \textbf{O}_{3} \ \textbf{N}_$	Do not use 1

ł

ppo

EPSRC National Mass Spectrometry Service Centre

ACCURATE MASS MEASUREMENT REPORT

YOUR REFERENCE:	SK-3-33
OUR REFERENCE:	LEEHER062
Instrument:	MAT 95 XP
Ionisation Mode:	EI
Reference compound:	Perfluorotributylamine
Ion identity:	[M]+.
Calculated mass (of ion):	568.2244
Measured mass (of ion):	568.2246

12/03/2008 07:18:00

CMEP755MAT95

MAT 95 XP

An= 4-mescon-

										568.2246		Mass	Fits:	Db/Ring Equi	Tolerance Wi	14 N	16 0	1 H	12 0	Isotope:
568.2271	568,2222	568.2263	568.2263	568.2231	568.2258	568.2236	568.2249	568.2249	568,2244	568.2244	Mass	Theoretical	100	v: -2	ndow: +- 5.	0	0	0	0	Min.
-4.4	4.1	-2-9	-2.9	2.7	-2.0	1.8	-0.6	-0.6	0.3	0.3	[سَطْطَ]	Delta		100	.00 ppm	.12	. 12	. 80	.60	Мах.
27.5	11.5	10.0	15.5	23.5	28.0	11.0	10.5	16.0	28.5	23.0		RDB	Charge:	N-Rule:						
C_{41} H ₃₀ O ₂ N ₁	C ²⁰ H ³⁰ O ³ N ¹¹	C_{26} H ₃₆ O ₁₂ N ₂	C ₂₅ H ₃₀ O, N,	C ₃₆ H ₃₀ O ₄ N ₃	C_{39} H ₂₆ O ₁ N ₄	C ₂₂ H ₃₂ O ₁₀ N ₈	$C_{24} H_{34} O_{11} N_{5}$	C ₂₃ H ₂₈ O ₆ N ₁₂	C ₃₇ , H ₂₆ , N ₇	C, H, O,		Composition	μ	Do not use						,

.

	Mass 437.1750	Isotope: 14 N 16 O 12 C 1 H 23 Na 23 Na 70lerance Wi Db/Ring Equi Fits:
437,1747 437,1761 437,1739 437,1739 437,1739 437,1766 437,1766 437,1734	Theoretical Mass 437.1752	Min. 0 0 0 0 +- 5 v: v: 200
3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Delta [ppm.] -0.6	.10 .14 .60 .80 .00 ppm 100
18.0 027. 18.5 05.5	5.0 5.0	N-Rule: Charge:
	Сощровітіо С ₁₅ Н ₂ , О ₁₀ М	Do not use

