Highly efficient macrolactonization of ω-hydroxy acids using benzotriazole esters: Synthesis of Sansalvamide A

José Antonio Morales-Serna,^{*a*} Ericka Sánchez, ^{*a*} Ricardo Velázquez,^{*a*} Jorge Bernal,^{*a*} Eréndira García-Ríos, ^{*a*} Rubén Gaviño, ^{*a*} Guillermo Negrón-Silva, ^{*b*} Jorge Cárdenas^{*a*}*

^aInstituto de Química, Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria, Coyoacán 04510, México D.F., México, Fax: +52 55 5616 2217; Tel: +52 55 5622 4413; E-mail: <u>rjcp@unam.mx</u>

^bDepartamento de Ciencias Básicas, Universidad Autónoma Metropolitana, Av. San Pablo No 180, C.P. 02200, México D. F., México, Fax: +52 55 5318 2169; Tel: +52 55 5318 9593; E-mail: <u>gns@correo.azc.uam.mx</u>

1. NMR Spectra	S2
2. ESI MS of Sansalvamide A	S33
3. X-ray diffraction patterns of hydrotalcite	S34
4. FT-IR of hydrotalcite	S34

Supporting Information

1. NMR Spectra

Figure S1. ¹H NMR in CDCl₃

Figure S2. ¹³C NMR in CDCl₃

Figure S3. ¹H NMR in CDCl₃

Figure S4. ¹³C NMR CDCl₃

Figure S5. ¹H NMR in CDCl₃

Figure S6. ¹³C NMR in CDCl₃

Figure S7. ¹H NMR in CDCl₃

Figure S8. ¹³C NMR in CDCl₃

Supporting Information

Figure S9. ¹H NMR CDCl₃

Figure S10. ¹³C NMR in CDCl₃

Figure S11. ¹H NMR CDCl₃ of the crude reaction with 16-hydroxyhexadecanoic acid (1 equiv), EDC (1 equiv) and DMAP (2 equiv).

Figure S12. ¹H NMR in CDCl₃

Figure S13. ¹³C NMR in CDCl₃

Figure S14. ¹H NMR in CDCl₃

Figure S15. ¹³C NMR in CDCl₃

Figure S16. ¹H NMR in CDCl₃

Figure S17. ¹³C NMR in CDCl₃

Figure S18. ¹H NMR of 2 in CDCl₃

Figure S19. ¹³C NMR of 2 in CDCl₃

Figure S21. ¹³C NMR of 3 in CDCl₃

Supporting Information

Figure S22. ¹H NMR of 4 in CDCl₃

Figure S23. ¹³C NMR of 4 in CDCl₃

Figure S25. ¹³C NMR of 5 in CDCl₃

Figure S27. ¹³C NMR of 6 in CD₃OD

Figure S29. ¹³C NMR of 8 in CD₃OD

Figure S30. ¹H NMR of 7 in CD₃OD

Figure S31.¹³C NMR of 7 in CD₃OD

Supporting Information

Figure S32. ESI MS of 7

Figure S33. X-ray diffraction patterns of hydrotalcite Mg-Al with x = Al / (Al+Mg) = 0.33 are shown; these materials show a crystalline hydrotalcite pattern, indicating the formation of these compounds.

Figure S34. FT-IR of hydrotalcite Mg-Al with x = Al / (Al+Mg) = 0.33