Supplementary Information

Stereoselective synthesis of vinyl-substituted (Z)-stilbenes by rhodium-catalysed addition of arylboronic acids to allenic alcohols

Tomoya Miura, Hiroshi Shimizu, Tomohiro Igarashi and Masahiro Murakami*

Department of Synthetic Chemistry and Biological Chemistry, Kyoto University Katsura, Kyoto 615-8510 (Japan)

General. Infrared spectra were recorded on a Shimadzu FTIR-8100 spectrometer. ¹H and ¹³C NMR spectra were recorded on a Varian Gemini 2000 (¹H at 300 MHz and ¹³C at 75 MHz), a JNM-ECS 400 (¹H at 400 MHz and ¹³C at 100 MHz) or a Bruker AVANCE 500 (¹H at 500MHz and ¹³C at 125MHz) spectrometer using CHCl₃ (¹H, δ = 7.26) and CDCl₃ (¹³C, δ = 77.0) as an internal standard. Low-resolution mass spectra were recorded on a Shimadzu PARVUM 2 (GC/MS). High-resolution mass spectra were recorded on a JEOL JMS-SX102A. All reactions were carried out under an argon atmosphere unless otherwise noted. Flash column chromatography was performed with basic silica gel NH-DM1020 (Fuji Silysia Chemical Ltd) or silica gel 60 N (Kanto). Preparative thin-layer chromatography was performed with silica gel 60 PF254 (Merck).

Materials. Unless otherwise noted, all chemicals were obtained from commercial suppliers and used as received. Anhydrous MeOH (Nacalai) was purchased and distilled from magnesium. $[Rh(OH)(cod)]_2$ was prepared according to the literature procedure.¹ Allenic alcohols (**1a**, **1c**, **1d**, **1e** and **4b**) were prepared from the corresponding propargyl alcohols by the literature procedures.^{2,3} Allenic alcohols (**1b** and **4a**) were prepared from the corresponding allenic esters⁴ according to the reported procedure.⁵ The analytical data of compounds (**1a**, ² **1b**, ⁶ **3ac**, ⁷ **3ad**, ⁸ **4a**, ³ and **4b**³) have been already reported.

1c: IR (neat): 3397, 3032, 2930, 1950, 1703, 1599, 1495, 1456, 1375, 1152 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 1.44$ (6H, s), 5.79 (1H, d, J = 6.6 Hz), 6.33 (1H, d, J = 6.6 Hz), 7.13–7.25 (1H, m), 7.25–7.35 (4H, m); ¹³C NMR (75 MHz, CDCl₃): $\delta = 30.4$, 70.5, 98.2, 105.3, 126.8, 127.3, 128.8, 134.2, 202.1; MS (EI⁺): m/z (%) 174 (M⁺, 5), 116 (100), 89 (8), 59 (87); HRMS (EI⁺): Calcd for C₁₂H₁₄O, M⁺ 174.1045. Found m/z 174.1047.

1d: IR (neat): 3347, 2930, 2874, 1952, 1491, 1092, 1013 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ = 4.20–4.33 (2H, m), 5.73–5.85 (1H, m), 6.23–6.33 (1H, m), 7.17–7.35 (4H, m); ¹³C NMR (75 MHz, CDCl₃): δ = 60.4, 96.4, 96.5, 128.2, 129.0, 132.5, 133.0, 204.5; MS (EI⁺): m/z (%) 180 (M⁺, 28), 149 (86), 127 (31), 115 (100); HRMS (EI⁺): Calcd for C₁₀H₉ClO, M⁺ 180.0342. Found m/z 180.0345.

¹ R. Uson, L. A. Oro and J. A. Cabeza, *Inorg. Synth.* 1985, 23, 129.

² N. A. Vinson, C. S. Day and M. E. Welker, Organometallics, 2000, 19, 4356.

³ B. M. Trost, D. R. Fandrick and D. C. Dinh, J. Am. Chem. Soc., 2005, 127, 14186.

⁴ R. W. Lang and H-J. Hansen, Org. Synth., 1984, 62, 202.

⁵ S. Yin, S. Ma, N. Jiao and F. Tao, Chin. J. Chem., 2002, 20, 707.

⁶ J. Deska and J-E. Bäckvall, Org. Biomol. Chem., 2009, 7, 3379

⁷ N. Chinkov, S. Majumdar and I. Marek, J. Am. Chem. Soc., 2003, 125, 13258.

⁸ L-X. Shao and M. Shi, Org. Biomol. Chem., 2005, 3, 1828.

1e: IR (neat): 3386, 2838, 1948, 1607, 1512, 1464, 1441, 1300, 1248, 1173, 1032 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ = 3.80 (3H, s), 4.18–4.32 (2H, m), 5.73–5.82 (1H, m), 6.26–6.34 (1H, m), 6.80–6.90 (2H, m), 7.19–7.30 (2H, m); ¹³C NMR (75 MHz, CDCl₃): δ = 55.5, 60.7, 96.0, 97.0, 114.4, 126.2, 128.1, 159.2, 203.7; MS (EI⁺): m/z (%) 176 (M⁺, 37), 145 (100), 115 (13), 102 (18); HRMS (EI⁺): Calcd for C₁₁H₁₂O₂, M⁺ 176.0837. Found m/z 176.0836.

Typical procedure for the rhodium-catalysed reaction of arylboronic acids to allenic alcohols: An oven-dried flask was charged with 2a (27.1 mg, 0.20 mmol), $B(OH)_3$ (123.6 mg, 2.0 mmol) and a solution of 1a (29.4 mg, 0.20 mmol) in MeOH (2.0 mL). Then, $[Rh(OH)(cod)]_2$ (2.3 mg, 5.0 µmol) was added and the flask was flushed with argon. After stirred at room temperature for 3 h, the reaction mixture was diluted with ethyl acetate (10 mL) and passed through a pad of basic silica gel (Fuji Silysia Chemical Ltd., NH-DM1020). The filtrate was concentrated under reduced pressure and the residue was purified by preparative thin-layer chromatography (hexane/ethyl acetate 50:1) to give the product 3aa as a colorless oil (31.6 mg, 0.14 mmol, 71%, Z/E = 98:2).

3aa: IR (neat): 3061, 3022, 2922, 1601, 1493, 1447 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 2.10$ (3H, s), 4.67 (1H, d, J = 17.1Hz), 5.10 (1H, d, J = 10.5 Hz), 6.63 (1H, s), 6.73 (1H, dd, J = 17.1, 10.5 Hz), 6.81–6.92 (2H, m), 7.00–7.15 (4H, m), 7.15–7.35 (3H, m); ¹³C NMR (75 MHz, CDCl₃): $\delta = 19.2$, 115.9, 126.3, 127.0, 127.5, 128.1, 128.9, 129.4, 130.3, 131.5, 136.2, 136.8, 137.3, 141.1; MS (EI⁺): m/z (%) 220 (M⁺, 100), 205 (79), 129 (54), 105 (74); HRMS (EI⁺): Calcd for C₁₇H₁₆, M⁺ 220.1252; Found m/z 220.1251.

3ab: IR (KBr): 3029, 2921, 1599, 1493, 1445, 1408, 1076 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 2.35$ (3H, s), 4.85 (1H, d, *J* =17.1Hz), 5.15 (1H, d, *J* = 10.5Hz), 6.58 (1H, s), 6.73 (1H, dd, *J* = 17.1, 10.5 Hz), 6.87–7.00 (4H, m), 7.05–7.20 (4H, m), 7.23–7.33 (1H, m); ¹³C NMR (75 MHz, CDCl₃): $\delta = 21.7$, 116.5, 126.7, 127.0, 128.1, 128.2, 128.8, 129.6, 130.2, 131.5, 136.9, 137.9, 138.5, 142.0; MS (EI⁺): m/z (%) 220 (M⁺, 100), 205 (77), 128 (54), 105 (84); HRMS (EI⁺): Calcd for C₁₇H₁₆, M⁺ 220.1252. Found m/z 220.1254.

3ac: IR (KBr): 2919, 1599, 1512, 1445, 1109 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 2.40$ (3H, s), 4.87 (1H, d, J = 17.1 Hz), 5.15 (1H, d, J = 10.5 Hz), 6.59 (1H, s), 6.73 (1H, dd, J = 17.1, 10.5 Hz), 6.88–6.98 (2H, m), 7.13–7.15 (5H, m), 7.16–7.24 (2H, m); ¹³C NMR (75 MHz, CDCl₃): $\delta = 21.5$, 116.4, 127.0, 128.1, 129.60, 129.64, 131.5, 134.9, 137.0, 141.9, 142.1; MS (EI⁺): m/z (%) 220 (M⁺, 96), 205 (82), 128 (49), 105 (100); HRMS (EI⁺): Calcd for C₁₇H₁₆, M⁺ 220.1252. Found m/z 220.1251.

3ae: IR (neat): 3084, 2834, 1597, 1491, 1248, 1097 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 3.73$ (3H, s), 4.83 (1H, d, J = 17.1 Hz), 5.16 (1H, d, J = 9.6 Hz), 6.75 (1H, s), 6.80 (1H, dd, J = 17.1, 10.2 Hz), 6.95–7.20 (8H, m), 7.35–7.45 (1H, m); ¹³C NMR (75 MHz, CDCl₃): $\delta = 55.9$, 111.6, 115.5, 121.3, 126.8, 127.0, 128.1, 129.0, 129.7, 131.1, 132.2, 137.1, 138.5, 141.0, 157.2; MS (EI⁺): m/z (%) 236 (M⁺, 100), 221 (31), 202 (35), 121 (71); HRMS (EI⁺): Calcd for C₁₇H₁₆O, M⁺ 236.1201. Found m/z 236.1202.

3af: IR (KBr): 3017, 2934, 1603, 1509, 1441, 1287, 1244, 1183, 1173, 1030 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 3.85$ (3H, s), 4.89 (1H, dd, J = 17.4 Hz), 5.15 (1H, dd, J = 11.1 Hz), 6.59 (1H, s), 6.73 (1H, dd, J = 17.1, 10.5Hz), 6.89–6.99 (4H, m), 7.05–7.15 (5H, m); ¹³C NMR (75 MHz, CDCl₃): $\delta = 55.4$, 114.4, 116.4, 127.0, 128.1, 129.6, 130.1, 130.9, 131.6, 137.0, 141.5, 142.2, 159.0; MS (EI⁺): m/z (%) 236 (M⁺, 100), 221 (31), 205 (34), 121 (89); HRMS (EI⁺): Calcd for C₁₇H₁₆O, M⁺ 236.1201. Found m/z 236.1202.

3ag: IR (KBr): 3092, 3046, 1597, 1485, 1445, 1406, 1389, 1069 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 4.83$ (1H, d, J = 17.4 Hz), 5.17 (1H, d, J = 10.5 Hz), 6.63 (1H, s), 6.73 (1H, dd, J = 16.5, 10.5 Hz), 6.85–6.98 (2H, m), 7.03–7.20 (5H, m), 7.50–7.59 (2H, m); ¹³C NMR (75 MHz, CDCl₃): $\delta = 116.6$, 121.5, 127.3, 128.2, 129.5, 131.6, 132.1, 132.2, 136.4, 136.9, 140.5, 141.4; MS (EI⁺): m/z (%) 284 (M⁺, 50), 269 (10), 205 (100), 169 (40); HRMS (EI⁺): Calcd for C₁₆H₁₃Br, M⁺ 284.0201. Found m/z 284.0203.

3ah: IR (neat): 2951, 1723, 1607, 1435, 1277, 1103 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 3.94$ (3H, s), 4.79 (1H, d, J = 17.1 Hz), 5.17 (1H, dd, J = 10.5 Hz), 6.65 (1H, s), 6.74 (1H, dd, J = 17.1, 10.5 Hz), 6.85–6.95 (2H, m), 7.05–7.15 (3H, m), 7.24–7.32 (2H, m), 8.04–8.12 (2H, m); ¹³C NMR (75 MHz, CDCl₃): $\delta = 52.3$, 116.7, 127.3, 128.2, 129.3, 129.5, 130.0, 130.2, 132.1, 136.3, 140.8, 141.2, 143.3, 167.1; MS (EI⁺): m/z (%) 264 (M⁺, 89), 233 (17), 205 (100), 149 (44); HRMS (EI⁺): Calcd for C₁₈H₁₆O₂, M⁺ 264.1150. Found m/z 264.1151.

3ai: IR (neat): 3075, 2926, 1599, 1491, 1449, 1225 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 5.14$ (1H, d, J = 16.5 Hz), 5.24 (1H, d, J = 10.2 Hz), 6.73 (1H, s), 6.76 (1H, dd, J = 16.8, 10.5 Hz), 6.86–6.92 (1H, m), 6.99–7.21 (6H, m), 7.34–7.42 (1H, m); ¹³C NMR (100 MHz, CDCl₃): $\delta = 116.5$, 126.0, 127.28, 127.34, 127.35, 128.0, 129.4, 133.9, 134.1, 136.3, 137.9, 141.2; MS (EI⁺): m/z (%) 212 (M⁺, 100), 197 (38), 178 (87), 128 (66); HRMS (EI⁺): Calcd for C₁₄H₁₂S, M⁺ 212.0660. Found m/z 212.0663.

3aj: IR (KBr): 3102, 2924, 1597, 1489, 1444, 997 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 5.01$ (1H, d, J = 17.1 Hz), 5.18 (1H, d, J = 9.6 Hz,), 6.64 (1H, s), 6.72 (1H, dd, J = 17.1, 11.4 Hz), 6.85–7.05 (3H, m), 7.05–7.23 (3H, m), 7.23–7.43 (1H, m); ¹³C NMR (75 MHz, CDCl₃): $\delta = 116.3$, 123.7, 125.9, 127.2, 128.2, 129.1, 129.4, 132.5, 136.7, 136.9, 137.6, 141.4; MS (EI⁺): m/z (%) 212 (M⁺, 100), 197 (35), 178 (70), 128 (40); HRMS (EI⁺): Calcd for C₁₄H₁₂S, M⁺ 212.0660. Found m/z 212.0664.

3ak: IR (neat): 3024, 2926, 1599, 1493, 1449 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 5.19$ (1H, d, *J* = 10.8 Hz), 5.52 (1H, d, *J* = 17.1 Hz), 6.58 (1H, dd, *J* = 17.1, 10.8 Hz), 6.65 (1H, s), 6.72 (1H, d, *J* = 16.5 Hz), 7.06 (1H, d, *J* = 16.5 Hz), 7.10–7.43 (10H, m); ¹³C NMR (75 MHz, CDCl₃): $\delta = 116.7$, 125.9, 126.7, 127.3, 127.8, 128.3, 128.4, 128.8, 130.0, 132.6, 137.5, 137.6, 137.8, 138.2; MS (EI⁺): m/z (%) 232 (M⁺, 100), 215 (41), 141 (83), 128 (94); HRMS (EI⁺): Calcd for C₁₈H₁₆, M⁺ 232.1252. Found m/z 232.1254.

3al: IR (neat): 3023, 2957, 2926, 2857, 1597, 1491, 1466, 1445, 1379, 1076, 1030 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 0.92$ (3H, t, J = 7.2 Hz), 1.27–1.56 (4H, m), 2.05–2.24 (2H, m), 5.17 (1H, d, J = 11.1 Hz), 5.50 (1H, d, J = 17.1 Hz), 5.91 (1H, dt, J = 15.9, 7.2 Hz), 6.36 (1H, d, J = 15.6 Hz), 6.53 (1H, s) 6.54 (1H, dd, J = 17.1, 10.8 Hz), 7.16–7.42 (5H, m); ¹³C NMR (75 MHz, CDCl₃): $\delta = 14.2$, 22.5, 31.6, 33.1, 115.8, 126.5, 126.9, 128.1, 128.2, 129.8, 135.8, 137.7, 138.1, 139.1; MS (EI⁺): m/z (%) 212 (M⁺, 100), 197 (37), 178 (84), 128 (59); HRMS (EI⁺): Calcd for C₁₆H₂₀, M⁺ 212.1565. Found m/z 212.1567.

3ba: IR (neat): 3020, 2923, 1603, 1491, 1445, 1369 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 2.08$ (3H, s), 2.17 (3H, d, J = 0.7Hz), 4.55 (1H, d, J = 1.9 Hz), 5.05-5.07 (1H, m), 6.75 (1H, s), 6.82–6.84 (2H, m), 7.02 (1H, dd, J = 7.4, 1.4Hz), 7.05-7.11(3H, m), 7.18–7.27 (3H, m); ¹³C NMR (75 MHz, CDCl₃): $\delta = 19.4$, 21.0, 116.9, 126.3, 126.9, 127.2, 127.4, 128.2, 129.2, 129.8, 130.3, 136.5, 137.3, 139.4, 142.5, 144.3; MS (EI⁺): m/z (%) 234 (M⁺, 70), 219 (100), 204 (50), 115 (38); HRMS (EI⁺): Calcd for C₁₈H₁₈, M⁺ 234.1409. Found m/z 234.1405.

3ca: IR (neat): 3060, 2923, 1599, 1489, 1447, 1375 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.46$ (3H, s), 1.83 (3H, s), 2.15 (3H, s), 5.96–6.00 (1H, m), 6.50 (1H, s), 6.82–6.86 (2H, m), 7.02–7.11 (4H, m), 7.15–7.26 (3H, m); ¹³C NMR (100 MHz, CDCl₃): $\delta = 18.8$, 19.4, 27.9, 126.3, 126.4, 127.3, 128.0, 128.3, 128.5, 129.0, 129.8, 130.2, 135.3, 135.9, 137.5, 140.2, 140.4; MS (EI⁺): m/z (%) 248 (M⁺, 62), 233 (100), 218 (37), 115 (39); HRMS (EI⁺): Calcd for C₁₉H₂₀, M⁺ 248.1565. Found m/z 248.1564.

3da: IR (KBr): 3002, 2921, 1584, 1487, 1455, 1090 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 2.09$ (3H, s), 4.70 (1H, d, J = 17.1 Hz), 5.14 (1H, d, J = 11.1 Hz), 6.58 (1H, s), 6.71 (1H, dd, J = 17.1, 10.2 Hz), 6.73–6.82 (2H, m), 7.00–7.10 (3H, m), 7.19–7.35 (3H, m); ¹³C NMR (75 MHz, CDCl₃): $\delta = 19.3$, 116.7, 126.6, 127.9, 128.5, 129.5, 130.2, 130.3, 130.6, 132.8, 135.5, 136.2, 137.1, 140.9, 141.9; MS (EI⁺): m/z (%) 254 (M⁺, 63), 219 (100), 204 (72), 105 (47); HRMS (EI⁺): Calcd for C₁₇H₁₅Cl, M⁺ 254.0862. Found m/z 254.0860.

3ea: IR (KBr): 3007, 2965, 1595, 1509, 1460, 1254, 1179, 1028 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 2.11$ (3H, s), 3.72 (3H, s), 4.62 (1H, d, J = 17.7 Hz), 5.05 (1H, d, J = 10.2 Hz), 6.58 (1H, s), 6.60–6.84 (5H, m), 7.06 (1H, d, J = 6.6 Hz), 7.18–7.30 (3H, m); ¹³C NMR (75 MHz, CDCl₃): $\delta = 19.1, 55.1, 113.6, 114.7, 126.3, 127.4, 129.5, 129.6, 130.1, 130.2, 131.0, 136.3, 137.5, 139.0, 141.2, 158.6; MS (EI⁺): m/z (%) 250 (M⁺, 100), 235 (28), 219 (36), 134 (37); HRMS (EI⁺): Calcd for C₁₈H₁₈O, M⁺ 250.1358. Found m/z 250.1356.$

5aa: IR (neat): 2924, 2850, 1631, 1592, 1487, 1448, 986, 909 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 1.03-1.28$ (3H, m), 1.28–1.42 (2H, m), 1.64–1.72 (1H, m), 1.72–1.80 (4H, m), 2.17 (3H, s), 2.55–2.65 (1H, m), 4.64 (1H, d, J = 17.5 Hz), 5.09 (1H, d, J = 10.6 Hz), 5.24 (1H, d, J = 9.4 Hz), 6.91 (1H, dd, J = 17.2, 10.6 Hz), 7.05 (1H, d, J = 7.1 Hz), 7.12–7.23 (3H, m); ¹³C NMR (75 MHz, CDCl₃): $\delta = 19.5$, 25.9, 26.0, 33.3, 36.6, 116.2, 125.3, 126.8, 129.6, 130.0, 133.0, 136.3, 137.6, 139.1, 141.1; MS (EI⁺): m/z (%) 226 (M⁺, 77), 211 (32), 129 (100), 115 (35); HRMS (EI⁺): Calcd for C₁₇H₂₂, M⁺ 226.1722. Found m/z 226.1704.

5ba: IR (neat): 3015, 2957, 1593, 1487, 1456, 1379, 1044 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 0.95$ (3H, t, J = 7.1 Hz), 1.35–1.51 (4H, m), 2.19 (3H, s), 2.31–2.38 (2H, m), 4.66 (1H, d, J = 17.2, Hz), 5.10 (1H, d, J = 10.6 Hz), 5.41 (1H, t, J = 7.7 Hz), 6.91 (1H, d, J = 17.2, 10.6 Hz), 7.06 (1H, d, J = 7.1 Hz), 7.13–7.24 (3H, m); ¹³C NMR (75 MHz, CDCl₃): $\delta = 14.2$, 19.8, 22.6, 27.5, 32.1, 116.4, 125.5, 127.0, 129.8, 130.2, 133.0, 133.5, 136.5, 139.6, 141.4; MS (EI⁺): m/z (%) 200 (M⁺, 36), 157 (38), 143 (47), 129 (100); HRMS (EI⁺): Calcd for C₁₅H₂₀, M⁺ 200.1565. Found m/z 200.1572.

Stereochemistries of the products were determined by NOE or NOESY experiments. Curved arrows shown below indicate the observed NOE or NOESY.

[Compound 3aa]

The following results of **3aa** (major product) suggested that the stereochemistry of the double bond was (Z)-configuration.

[Compound 3al]

The following results of **3al** (major product) suggested that the stereochemistry of the double bond was (Z)-configuration.

[Compound 3ba]

The following results of **3ba** (major product) suggested that the stereochemistry of the double bond was (Z)-configuration.

[Compound 3ca]

The following results of 3ca (major product) suggested that the stereochemistry of the double bond was (Z)-configuration.

[Compound 5aa]

The following results of **5aa** (major product) suggested that the stereochemistry of the double bond was (E)-configuration.

[Compound 5ba]

The following results of **5ba** (major product) suggested that the stereochemistry of the double bond was (E)-configuration.

13C OBSERVE

