SUPPLEMENTAL MATERIAL

Structural Variation of Glycolipids from *Meiothermus taiwanensis* ATCC BAA-400 under Different Growth Temperatures

Yu-Liang Yang, Feng-Ling Yang, Zih-You Huang, Yu-Hsuan Tsai, Wei Zou, Shih-Hsiung Wu

Experimental section	S3
Structures of compounds 2a-4a	S 5
Fatty acid compositions of 1-4	S6
NMR Data (500 MHz) of 1 in CDCl ₃ /CD ₃ OD (10:1) and 1a in C ₆ D ₆	S7
NMR data (500 MHz) of 2a-4a in C ₆ D ₆	S8
TLC profiles (CHCl ₃ /CH ₃ OH = 3:1) of polar lipid extracts from <i>M</i> .	S9
taiwanensis. PGL: phosphoglycolipid; GL: glycolipid	
¹ H NMR (400 MHz) spectra of 1 (in CDCl ₃ /CD ₃ OD = 10:1) and 1a (in CDCl ₃ ,	S10
C_6D_6)	
¹³ C NMR (100 MHz) spectrum of 1 (in CDCl ₃ /CD ₃ OD = 10:1)	S11
DEPT135 spectrum of 1 (in CDCl ₃ /CD ₃ OD = 10:1)	S12
HSQC spectrum of 1 (in CDCl ₃ /CD ₃ OD = 10:1)	S13
HSQC spectrum of 1a (in C ₆ D ₆)	S14
HMQC spectrum (without ¹³ C decoupling) of 1 (in CDCl ₃ /CD ₃ OD = 10:1)	S15
HMQC spectrum (without ¹³ C decoupling) of 1a (in C ₆ D ₆)	S16
HMBC spectrum of 1 (in CDCl ₃ /CD ₃ OD = 10:1)	S17
HMBC spectrum of 1a (in C ₆ D ₆)	S18
ROESY spectrum of 1 (in CDCl ₃ /CD ₃ OD = 10:1, 400 ms)	S19
ROESY spectrum of 1a (in C ₆ D ₆ , 400 ms)	S20

2D TOCSY spectrum of 1 (in CDCl ₃ /CD ₃ OD = 10:1)	S21
1D TOCSY spectra of 1a (in C ₆ D ₆)	S22
DIOS-TOF mass spectrum of 1	S23
ESI tandem mass spectra of 1	S24
¹ H NMR (500 MHz) spectra of 2a and the mixture of 3a and 4a (in C_6D_6)	S25
HSQC spectrum of 2a (in C ₆ D ₆)	S26
HSQC spectrum of the mixture of 3a and 4a (in C ₆ D ₆)	S27
HMBC spectrum of 2a (in C ₆ D ₆)	S28
HMBC spectrum of the mixture of 3a and 4a (in C ₆ D ₆)	S29
MALDI-TOF mass spectrum of 2a	S30
MALDI-TOF spectrum of the mixture of 3a and 4a	S31

Experimental section

NMR. NMR spectra were recorded on 400 and 500 MHz spectrometers in $CDCl_3/CD_3OD = 10:1$ for **1** and C_6D_6 for **1a-4a** at 300 K. 1D and 2D TOCSY spectra were observed with mixing times 80~120 ms. ROESY spectra were recorded with 400 ms mixing time. HSQC spectra were obtained with ${}^{1}J_{H-C} = 145$ Hz and HMBC spectra were recorded with ${}^{3}J_{H-C}$ or ${}^{2}J_{H-C} = 8$ Hz. ${}^{1}J_{H-C}$ coupling constant of anomeric protons were observed from HMQC without ${}^{13}C$ decoupling (PL12= 120 dB).

Mass. Molecular weight analysis of 1 was recorded on a desorption ionization on silicon time-of-flight (DIOS-TOF) mass spectrometry, and those of 2a-4a were observed on MALDI-TOF mass Spectrometry. Tandem mass spectra of 1 were observed on ESI-LTQ mass spectrometry.

Material and purification of glycolipids 1 and 2a-4a. The incubational condition of *M. taiwanensis* was followed previous literature. The 55 °C cultural bacteria was extracted with ethanol then subjected to Si-gel chromatography eluted by a CHCl₃/CH₃OH gradient from 10:1 to 3:1 to obtain GL1 and GL2 fractions. Both fractions were acetylated then purified by a Si-gel column eluted by CHCl₃/CH₃OH = 100:1 to yield 2a and a mixture of 3a and 4a. The 65 °C cultural bacteria was extracted and separated by the same method as above mention to obtain a mixture of glycolipid and phosphoglycolipid. The mixture was subjected to a Sephadex LH-20 column eluted by CHCl₃/CH₃OH = 1:2 to give 1.

Composition and linkage analysis. The fatty acid composition of the *O*-acyl groups in the glycolipid was determined by comparing the retention times of FAMEs (fatty acid methyl esters) from glycolipids to the standards in GC-MS analysis. The methyl esters were prepared by treatment of the glycolipids with 0.5 M HCl/CH₃OH at 80 $^{\circ}$ C for 1 h. Solvent was removed under a nitrogen stream, and the residue was partitioned between CHCl₃ and H₂O. FAMEs in organic phase were analyzed by GC-MS. The sugar composition analysis was determined by GC-MS. The GC-MS analyses of glycolipid were performed by methanolysis with 0.5 M methanolic/HCl at 80 °C for 16 h, re-*N*-acetylation with pyridine/acetic anhydride (in low temperature with equivalent quantity of acetic anhydride), and trimethylsilylation with Sylon HTP (HMDS/TMCS/pyridine = 3:1:9) trimethylsilylation reagent. The final trimethylsilylated (TMS) derivatives were kept in *n*-hexane for GC-MS analysis.

For the carbohydrate linkage analysis, the Hakomori methylation analysis was carried out. The glycolipid was per-*O*-methylated with methyl iodide and dimethylsulfoxide anion in dimethylsulfoxide, and then hydrolyzed by 2 M trifluoroacetic acid at 100 °C for 5 h. The solvent was evaporated by compressed air, the residue was reduced with 0.25 M NaBD₄ in 1 M NH₄OH for 40 min. The reaction was quenched with 20% HOAc and coevaporated with CH₃OH. The residue was then per-acetylated with Ac₂O/pyridine (1:1, v/v) overnight, dried with toluene, and finally analyzed by GC-MS.

The GC-MS programs for analyses of TMS and FAMEs were set up at 60 °C for 1 min, increasing to 140 °C at 25 °C min⁻¹, to 200 °C at 5 °C min⁻¹, and finally to 300 °C at 10 °C min⁻¹. For partial methylated aditol acetates derivatives, the oven was programmed at 60 °C for 1 min before increasing to 290 °C at 8 °C min⁻¹, and finally to 300 °C at a rate of 10 °C min⁻¹. Peaks were analyzed by GC-MS and compared with the database. The arabitol derivative was used as an internal standard.

3a

4a Structures of compounds 2a-4a

	Compositions (%)					
Fatty acids	1	2	3 and 4			
Isobranched						
14:0	3.2	-	-			
15:0	46.3	27.0	37.6			
16:0	17.9	20.9	15.8			
17:0	17.2	23.6	17.5			
Anteisobranched						
15:0	5.0	8.9	6.8			
17:0	2.8	19.6	12.0			
Unsaturated						
18:1	4.5	-	-			
others	3.1	-	10.3			

Fatty acid compositions of 1-4

	1		1a				
	$\delta_{\rm H} \left(J \text{ in Hz} \right)$	$\delta_{\rm C}$	$\delta_{\rm H} \left(J \text{ in Hz} \right)$	δ_{C}			
A1	5.02 (s)	109.5	5.55 (s)	107.5			
A2	3.91 (d, 2.4)	80.7	5.33 (d, 1.0)	81.7			
A3	3.83 (dd, 4.8, 2.4)	77.5	5.39 (dd, 3.5, 1.0)	76.7			
A4	3.90 (m)	84.6	4.87 (dd, 4.9, 3.5)	81			
A5	3.57 (m)	71	5.87 (ddd, 6.0, 5.1, 4.9)	69.7			
A6	3.46 (m)	62.9	4.61 (dd, 11.6, 5.1)	62.1			
			4.53 (dd, 11.6, 6.0)				
B1	4.71 (d, 3.7)	98.5	5.63 (d, 3.9)	96.7			
B2	3.71 (m)	67.8	5.57 (dd, 10.6, 3.9)	70.7			
B3	3.61 (m)	77.4	4.58 (dd, 10.6, 3.4)	72			
B4	3.90 (m)	69.3	5.82 (d, 3.4)	70.1			
B5	3.65 (m)	70.4	4.56 (m)	62.4			
B6	3.55 (m)	61	4.42 (m)	61.9			
C1	4.52 (d, 8.4)	101.1	5.51 (d, 8.4)	99.7			
C2	3.44 (m)	56.3	3.25 (ddd, 10.0, 8.4, 7.7)	57.2			
C3	3.27 (m)	76.1	6.71 (t, 10.0)	71.2			
C4	3.21 (m)	70.9	5.43 (m)	69.4			
C5	3.32 (m)	74.4	3.55 (m)	73.1			
C6	3.72 (m)	66.5	3.71 (dd, 11.9, 2.9)	65.4			
	3.59 (m)		3.62 (m)				
NH			5.10 (d, 7.7)				
D1	4.68 (d, 3.7)	98.5	5.38 (d, 3.6)	99.1			
D2	3.38 (m)	79.1	4.07 (dd, 9.5, 3.6)	76.1			
D3	3.61 (m)	72	5.99 (t, 9.5)	72.1			
D4	3.24 (m)	69.9	5.47 (m)	69.2			
D5	3.35 (m)	71.1	4.47 (m)	67.7			
D6	3.55 (m)	61.0	4.44 (m)	67.3			
			4.30 (m)				
Diol							
1	3.44 (m)	69.3	4.09 (m)	70.1			
	3.32 (m)		4.01 (dd, 10.7, 5.4)				
2	4.81 (m)	72.5	5.51 (m)	72.2			
2	4.81 (m)	72.5	5.51 (m)	72.2			

NMR Data (500 MHz) of 1 in CDCl₃/CD₃OD (10:1) and 1a in C₆D₆.^a

^{*a*} The lipids signals are not listed.

NMR data (500 MHz) of 2a-4a in C₆D₆.^a

	2a		3a4			la	
	δ_{H}	$\delta_{\rm C}$	δ_{H}	$\delta_{\rm C}$	δ_{H}	δ_{C}	
A 1	5.16 (d, 3.2)	96.8	5.13 (d, 3.2)	96.9	5.15 (d, 3.2)	96.8	
A2	5.60 (dd, 10.8, 3.2)	68.1	5.64 (dd, 8.4, 3.2)	68.0	5.64 (dd, 8.4, 3.2)	68.0	
A3	5.76 (dd, 10.8, 3.2)	68.0	5.74 (dd, 8.4, 3.0)	68.1	5.74 (dd, 8.4, 3.0)	68.1	
A4	5.81 (d, 3.2)	68.4	5.86 (br s)	68.3	5.86 (br s)	68.3	
A5	4.34 (dd, 6.4, 5.6)	67.3	4.48 (m)	67.4	4.48 (m)	67.4	
A6	4.39 (dd, 10.0, 5.6)	61.6	4.46 (m)	61.6	4.46 (m)	61.6	
	4.22 (dd, 10.0, 6.4)		4.31 (m)		4.31 (m)		
B1	4.46 (d, 8.0)	101.2	4.44 (d, 8.8)	102.3	4.48 (d, 8.8)	101.9	
B2	5.61 (dd, 10.0, 8.0)	68.0	5.60 (dd, 8.8, 7.2)	69.0	5.6 (dd, 8.8, 7.2)	69.0	
B3	5.23 (dd, 10.0, 3.2)	71.5	5.21 (m)	71.1	5.21 (m)	71.1	
B4	5.54 (d, 3.2)	67.8	5.51 (br s)	68.0	5.51 (br s)	68.0	
B5	3.54 (dd, 6.8, 6.0)	71.8	3.48 (m)	72.0	3.48 (m)	72.0	
B6	3.85 (dd, 10.0, 6.0)	65.9	3.89 (m)	66.9	3.89 (m)	66.9	
	3.37 (dd, 10.0, 6.8)		3.48 (m)		3.48 (m)		
C1	5.43 (d, 8.4)	100.4	4.72 (d, 8.4)	104.2	4.64 (8.4)	104.3	
C2	3.66 (ddd, 11.2, 10.4, 8.4)	53.7	4.63 (dt, 12.0, 8.4)	51.2	4.63 (dt, 12.0, 8.4)	51.2	
C3	6.06 (dd, 11.2, 2.8)	68.6	5.28 (dd, 12.0, 3.2)	70.8	5.28 (dd, 12.0, 3.2)	70.8	
C4	5.63(br s)	67.8	5.51 (d, 3.2)	67.1	5.51 (d, 3.2)	67.1	
C5	3.86(m)	72.4	4.05 (m)	72.3	4.05 (m)	72.3	
C6	4.07(m)	67.3	4.30 (m)	69.7	4.06 (m)	69.5	
	3.85(m)		3.65 (dd, 12.0, 3.2)		3.71 (m)		
NH	5.82 (d, 10.4)		6.85 (d, 8.4)		6.65 (d, 8.4)		
D1	5.24 (d, 3.2)	99.1	5.45 (d, 3.2)	98.8	5.42 (d, 3.2)	98.9	
D2	4.07 (dd, 10.0, 3.2)	76.0	3.71 (m)	82.7	3.71 (m)	82.7	
D3	5.81 (dd, 10.0, 9.6)	72.2	4.46 (m)	70.3	4.46 (m)	70.3	
D4	5.31 (t, 9.6)	69.2	5.32 (dd, 10.0, 9.6)	70.1	5.32 (dd, 10.0, 9.6)	70.1	
D5	4.19(m)	68.0	4.21 (m)	68.6	4.21 (m)	68.6	
D6	4.46(m)	62.1	4.35 (dd, 12.0, 5.6)	62.6	4.44 (m)	62.7	
	4.16(m)		4.23 (m)		4.27 (m)		
Diol 1					4.43 (m)	70.2	
					3.90 (m)		
2					5.44 (m)	72.4	
Glycerol 1	3.96 (dd, 10.8, 5.6)	66.9	4.17 (dd, 11.2, 5.4)	67.0			
	3.64 (m)		3.97 (dd, 11.2, 4.4)				
2	5.48 (m)	69.7	5.68 (m)	70.3			
3	4.70 (dd, 12.0, 2.4)	63.0	4.88 (dd, 12.0, 2.4)	63.3			
	4.57 (dd, 12.0, 6.4)		4.63 (dd, 12.0, 7.6)				
COCH(OH)		4.96 (dd, 6.8, 5.6)	75.0	4.96 (dd, 6.8, 5.6)	75.0	

^{*a*} The lipids signals are not listed.

TLC profiles (CHCl₃/CH₃OH = 3:1) of polar lipid extracts from *M. taiwanensis*. PGL: phosphoglycolipid; GL: glycolipid

DEPT135 of 1

											· · · · ·	
110	105	100	95	90	85	80	75	70	65	60	55	ppm

Display Report

Display Report

Analysis Info Analysis Name Method Sample Name Comment		D:\service_data\Bio-To methodname samplename comment	DF\2007_0830\GL1OAc_34_01_{	Acquis 34_01_8789.ser Opera Instrur	sition Date 2 tor conent E	9 2007/9/3 下午 06:55:29 operator name BioTOF Ⅱ		
Acquisi Capilary EndP	tion Parameter End Plate	r n/a 3500 V	Capilary Exit Collision energy	n/a n/a		detbias Number of Averages	1950 V n/a	
Intens.	1762.88	35 1777.8974	lı		1915.1047	1973 1959.1043	+MS, 1. 3. 1217 1988.1385	334-2.534min #(41-77)
υĘ	1750	1800	1850	1	900	1950	200	0 m/z

Bruker Daltonics DataAnalysis 3.2

printed: 2007/09/04 上 11:01:17

Page 1 of 1

nlav Poport

		DIS	splay Report				
Analysis Info				Acquisition Date	2007/	9/3下午 06:48:47	7
Analysis Name Method Sample Name Comment	D:\service_data\Bio-TC methodname samplename comment	/F\2007_0830\GLOAc5_33_01_	1_8788.ser Operator Instrument	opera BioTC	operator name BioTOF II		
Acquisition Paramet Capilary End Plate EndP	er n/a 3500 V	Capilary Exit Collision energy	n/a n/a	detbias Number	of Averages	1950 V n/a	
Intens. 800 - 381 -	.2916					+MS, 1.202-1.9	68min #(37-60)
600 -							
400-							
200- 		1	·				
	500	1000	1500	2000	250	10	m/z
Bruker Daltonics Data	Analysis 3.2	prin	ted: 2007/09/0	4 上 10:55:40		Page 1 of	i1

Display Report

