The acid-promoted reactions of phenyliodonium ylides with substituted anilines and their applications to the synthesis of indoles

Xian-Pei Wang, Bing Han, Jun-Yan Wang, and Wei Yu*

State Key Laboratory of Applied Organic Chemistry, Lanzhou University

Lanzhou 730000, P. R. China

Phenyliodonium ylides $(2)^1$ were prepared according to reported methods.

General procedure for the reactions of 1 with 2:

13 μ L of BF₃·Et₂O was added to the mixture of 1 mmol **1** and 1 mmol **2** in 2 mL methanol, and the mixture was stirred at room temperature for 5 min. The solvent was then removed under reduced pressure, and the residual was treated with silica gel chromatography to give the pure product **3**.

Procedure for the one-pot synthesis of indoles under thermal conditions:

A mixure of 1 mmol **1**, 1 mmol **2**, and 13 μ L of BF₃·Et₂O in 3 mL toluene was stirred in a 10 mL round bottom flask at room temperature for 30 min. Then 300 mg of Amberlyst^R 15 was added into the reaction mixture, followed by fitting the flask with a condenser. The reaction mixture was then stirred at reflux for 12 hours. The solvent was removed under reduced pressure, and the residual was subject to silica gel chromatography to give the indole product **4**.

General procedure for the synthesis of indoles from 1 and 2 under photochemical conditions:

To a Pyrex tube containing a solution of 1 mmol **1** in 10 mL of benzene and 10 mL of methanol was added 1 mmol **2**. The solution was bubbled with argon for 15 min. Then 0.6 mL TFAA was added in and the solution was irradiated with a 500W medium-pressure mercury lamp under argon atmosphere at room temperature for 12 hours. After irradiation, the solvent was removed under reduced pressure, and the

residual was treated with silica gel chromatography to give the product 4.

Spectroscopic data of the products

¹H NMR (CDCl₃, 400 MHz, δ ppm): 1.95 (s, 3H), 3.03 (s, 3H), 3.66 (s, 3H), 6.60–6.62 (d, 2H, J = 8.0 Hz), 6.70–6.74 (m, 1H), 7.19–7.23 (m, 2H), 12.26 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 17.4, 38.7, 51.7, 110.6, 111.7, 116.9, 129.1, 148.8, 172.5, 175.9, EI-MS m/z (rel. int., %): 221 (M⁺, 34), 118 (100), 104 (48), 77 (45), 43 (69).

White solid, mp: 126-129°C.

¹H NMR (CDCl₃, 400 MHz, δ ppm): 1.07-1.10 (t, 3H, *J* = 7.2 Hz), 2.92 (s, 3H), 4.11-4.22 (q, 2H, *J* = 7.2 Hz), 6.69-6.72 (m, 2H), 6.74-6.76 (m, 1H), 7.19-7.23 (m, 2H), 7.27-7.29 (m, 2H), 7.30-7.37 (m, 2H), 7.72-7.74 (d, 2H, *J* = 8.8 Hz), 12.88 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 14.0, 38.9, 60.9, 111.2, 112.5, 117.2, 127.9, 128.1, 129.0, 130.6, 133.2, 149.4, 170.3, 173.1; EI-MS *m*/*z* (rel. int., %): 297 (M⁺, 34), 192 (51), 118 (67), 105 (100), 77 (96), 51 (43).

Oil liquid.

¹H NMR (CDCl₃, 400 MHz, δ ppm): 0.89-0.92 (t, 3H, *J* = 7.2 Hz), 1.09-1.13 (t, 3H, *J*

= 7.2 Hz), 1.58-1.63 (m, 2H), 2.21-2.35 (m, 2H), 3.03 (s, 1H), 4.04-4.10 (m, 1H), 4.12-4.20 (m, 1H), 6.61-6.64 (d, 2H, J = 7.2 Hz), 6.70-6.74 (t, 1H, J = 7.2 Hz), 7.18-7.21 (t, 2H, J = 7.2 Hz), 12.40 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 14.0, 14.2, 19.4, 32.7, 39.4, 60.5, 110.8, 112.1, 116.9, 128.9, 149.4, 172.2, 178.7; EI-MS *m*/*z* (rel. int., %): 263 (M⁺, 39), 164 (21), 147 (48), 40 (100); HRMS (ESI): calcd for C₁₅H₂₁NO₃ + Na = 286.1414, found: 286.1415.

¹H NMR (CDCl₃, 400 MHz, δ ppm): 1.95 (s, 3H), 3.01 (s, 3H), 3.68 (s, 3H), 6.52–6.54 (d, 2H, J = 8.8 Hz), 7.13–7.15 (d, 2H, J = 8.8 Hz), 12.24 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 17.4, 39.0, 51.9, 110.5, 113.0, 122.0, 128.9, 147.5, 172.2, 176.0; EI-MS *m*/*z* (rel. int., %): 255 (M⁺, 14), 196 (43), 152 (59), 138 (20), 111 (23), 75 (18), 43 (100).

3bb New compound

Oil liquid.

¹H NMR (CDCl₃, 400 MHz, δ ppm): 1.10-1.13 (t, 3H, J = 7.2 Hz), 2.90 (s, 3H), 4.14-4.21 (q, 2H, J = 7.2 Hz), 6.60-6.62 (d, 2H, J = 8.8 Hz), 7.13-7.16 (d, 2H, J = 8.8Hz), 7.29-7.32 (m, 2H), 7.36-7.39 (m, 1H), 7.68-7.70 (d, 2H, J = 8.8 Hz), 12.89 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 14.1, 39.2, 61.1, 110.8, 113.0, 122.2, 127.8, 128.2, 128.9, 130.8, 133.0, 148.0, 170.6, 172.8; EI-MS *m*/*z* (rel. int., %): 331 (M⁺, 14), 152 (70), 105 (100), 77 (80), 51 (23); HRMS (ESI): calcd for C₁₈H₁₈ClNO₃ + H = 332.1048, found: 332.1054.

New compound

White solid, mp: 107-110°C.

¹H NMR (CDCl₃, 400 MHz, δ ppm): 1.95 (s, 3H), 3.06 (s, 3H), 3.74 (s, 3H), 6.77–6.81 (t, 1H, J = 8.2 Hz), 6.92-6.95 (d, 1H, J = 9.2 Hz), 7.13–7.17 (t, 1H, J = 8.2Hz), 7.22–7.25 (d, 1H, J = 9.2 Hz), 12.16 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 18.0, 41.5, 51.6, 112.9, 119.4, 121.0, 124.0, 127.6, 131.4, 147.1, 172.4, 174.3; EI-MS *m*/*z* (rel. int., %): 255 (M⁺, 14), 212 (21), 152 (42), 138 (24), 111 (15), 75 (22), 43 (100); HRMS (ESI): calcd for C₁₂H₁₄ClNO₃ + H = 256.0735, found: 256.0738.

Oil liquid.

As the mixture of enol and ketone form.

White solid, mp: 110-112°C

¹H NMR (CDCl₃, 400 MHz, δ ppm): 1.96 (s, 3H), 3.02 (s, 3H), 3.69 (s, 3H), 6.47–6.49 (d, 1H, J = 8.2 Hz), 6.59–6.60 (s, 1H), 6.69–6.71 (d, 1H, J = 8.2 Hz), 7.09-7.13 (t, 1H, J = 8.2 Hz), 12.26 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 17.4, 38.9, 51.9, 110.2, 111.8, 117.0, 130.1, 135.1, 150.1, 172.1, 176.0; EI-MS *m/z* (rel. int., %): 255 (M⁺, 10), 152 (44), 138 (24), 111 (27), 75 (29), 43 (100). HRMS (ESI): calcd for C₁₂H₁₄ClNO₃ + H = 256.0735, found: 256.0741.

CI N CO₂Et

New compound

Oil liquid.

¹H NMR (CDCl₃, 400 MHz, δ ppm): 1.11-1.14 (t, 3H, J = 7.2 Hz), 2.91 (s, 3H), 4.16-4.22 (q, 2H, J = 7.2 Hz), 6.55-6.58 (d, 1H, J = 10.4 Hz), 6.67 (s, 1H), 6.71-6.73 (d, 1H, 8.8 Hz), 7.09-7.13 (t, 1H, J = 8.0 Hz), 7.29-7.33 (m, 2H), 7.36-7.40 (m, 1H), 7.67-7.69 (d, 2H, J = 8.4 Hz), 12.90 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 14.1, 39.2, 61.1, 110.6, 110.8, 112.3, 117.3, 127.8, 128.3, 130.0, 130.8, 132.9, 135.0, 150.6, 170.7, 172.7; EI-MS m/z (rel. int., %): 331 (M⁺, 26), 228 (14), 222 (17), 152 (53), 105 (100), 77 (76); HRMS (ESI): calcd for C₁₈H₁₈ClNO₃ + H = 332.1048, found: 332.1052.

Ref. 2

¹H NMR (CDCl₃, 400 MHz, δ ppm): 1.95 (s, 3H), 3.01 (s, 3H), 3.68 (s, 3H), 6.47–6.50 (d, 2H, J = 9.2 Hz), 7.26–7.28 (d, 2H, J = 9.2 Hz), 12.24 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 17.4, 39.0, 51.9, 109.1, 110.4, 113.5, 131.8, 148.0, 172.2, 176.0; EI-MS *m*/*z* (rel. int., %): 299 (17), 267 (7), 198 (40), 43 (100); HRMS (ESI): calcd for C₁₂H₁₄BrNO₃ + H = 300.0230, found: 300.0228 .

• New compound

Oil liquid.

¹H NMR (CDCl₃, 400 MHz, δ ppm): 1.13-1.17 (t, 3H, *J* = 7.2 Hz), 2.92 (s, 3H), 4.14-4.27 (q, 2H, *J* = 7.2 Hz), 6.58-6.60 (d, 2H, *J* = 9.2 Hz), 7.27-7.35 (m, 4H), 7.38-7.42 (m, 1H), 7.70-7.72 (d, 2H, J = 9.2 Hz), 12.91 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 14.1, 39.2, 61.1, 109.4, 110.7, 114.1, 127.8, 128.2, 130.8, 131.7, 133.0, 148.5, 170.6, 172.7; EI-MS m/z (rel. int., %): 377 (M⁺, 17), 272 (17), 196 (50), 105 (100), 77 (93); HRMS (ESI): calcd for C₁₈H₁₈BrNO₃ + H = 376.0543, found: 378.0513.

3ec New compound

Oil liquid.

¹H NMR (CDCl₃, 400 MHz, δ ppm): 0.88-0.92 (t, 3H, J = 7.2 Hz), 1.10-1.14 (t, 3H, J = 7.2 Hz), 1.57-1.62 (m, 2H), 2.19-2.29 (m, 2H), 3.01 (s, 1H), 4.05-4.11 (m, 1H), 4.12-4.21 (m, 1H), 6.48-6.50 (d, 2H, J = 8.8 Hz), 7.25-7.27 (d, 2H, J = 8.8 Hz), 12.38 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 14.0, 14.2, 19.4, 32.7, 39.5, 60.7, 109.0, 110.4, 113.7, 113.8, 131.6, 131.7, 148.5, 171.8, 178.8; EI-MS m/z (rel. int., %): 341 (M⁺, 17), 211 (17), 43 (100); HRMS (ESI): calcd for C₁₅H₂₀BrNO₃ + H = 342.0699, found: 342.0695.

White solid, mp : 59–62°C.

¹H NMR (CDCl₃, 400 MHz, δ ppm): 1.99 (s, 3H), 2.28 (s, 3H), 3.05 (s, 3H), 3.70 (s, 3H), 6.55–6.57 (d, 2H, J = 8.0 Hz), 7.04-7.06 (d, 2H, J = 8.0 Hz), 12.29 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 17.4, 20.2, 38.8, 51.7, 110.7, 111.7, 125.9, 129.7 146.7, 172.6, 175.9; EI-MS *m*/*z* (rel. int., %): 235 (M⁺, 24), 132 (100), 118 (40), 91 (34), 43 (35); HRMS (ESI): calcd for C₁₃H₁₇NO₃ + H = 236.1285, found: 236.1289.

Ph OH N CO₂Et

3fb New compound.

Oil liquid.

¹H NMR (CDCl₃, 400 MHz, δ ppm): 1.08-1.12 (t, 3H, J = 7.2 Hz), 2.25 (s, 3H), 2.90 (s, 3H), 4.09-4.21 (q, 2H, J = 7.2 Hz), 6.59-6.61 (d, 2H, J = 8.4 Hz), 7.00-7.02 (d, 2H, J = 7.6 Hz), 7.26-7.34 (m, 3H), 7.74-7.76 (d, 2H, J = 8.4 Hz), 12.90 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 14.1, 20.3, 38.9, 60.9, 111.3, 112.4, 126.1, 127.9, 128.1, 129.6, 130.5, 133.3, 147.2, 170.2, 173.2; EI-MS *m*/*z* (rel. int., %): 311 (M⁺, 13), 206 (9), 132 (100), 105 (52), 91 (34), 77 (94); HRMS (ESI): calcd for C₁₉H₂₁NO₃ + H = 312.1594 , found: 312.1597.

Oil liquid.

¹H NMR (CDCl₃, 400 MHz, δ ppm): 0.88-0.92 (t, 3H, J = 7.2 Hz), 1.10-1.13 (t, 3H, J = 7.2 Hz), 1.57-1.63 (m, 2H), 2.24 (s, 3H), 2.25-2.35 (m, 2H), 3.01 (s, 3H), 4.04-4.10 (m, 1H), 4.14-4.21 (m, 1H), 6.52-6.54 (d, 2H, J = 8.4 Hz), 6.99-7.01 (d, 2H, J = 8.4 Hz), 12.39 (s, 1H); ³C NMR (CDCl₃, 100 MHz, δ ppm): 14.0, 14.2, 19.4, 20.2, 32.6, 39.4, 60.4, 110.8, 112.0, 125.8, 129.6, 130.2, 137.5, 147.2, 172.3, 178.7; EI-MS *m/z* (rel. int., %): 277 (M⁺, 30), 160 (64), 147 (62), 132 (72), 91 (99), 43 (100); HRMS (ESI): calcd for C₁₆H₂₃NO₃ + H = 278.1751, found: 278.1754.

^{3ga} New compound

Yellow solid, mp : 46–48 °C.

¹H NMR (CDCl₃, 400 MHz, δ ppm): 1.36-1.39 (t, 3H, J = 7.2 Hz), 1.97 (s, 3H), 3.00 (s, 3H), 3.67 (s, 3H), 3.94-3.99 (q, 2H, J = 7.2 Hz), 6.52-6.55 (d, 2H, J = 9.2 Hz), 6.79-6.81 (d, 2H, J = 9.2 Hz), 12.23 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 15.1, 17.5, 39.0, 51.7, 64.0, 111.1, 112.6, 115.5, 143.3, 150.9, 172.7, 176.5; EI-MS m/z (rel. int., %): 265 (M⁺, 23), 237 (34), 162 (100), 150 (47), 134 (29), 122 (75), 43 (84); HRMS (ESI): calcd for C₁₄H₁₉NO₄ + H = 266.1387, found: 266.1389.

Oil liquid.

As the mixture of enol and ketone form.

EI-MS m/z (rel. int., %): 251 (31), 208 (48), 176 (64), 134 (76), 77 (36), 43 (100); HRMS (ESI): calcd for C₁₃H₁₇NO₄ + H = 252.1230, found: 252.1227.

New compound.

Yellow solid, mp: 81–83°C

¹H NMR (CDCl₃, 400 MHz, δ ppm): 1.25-1.28 (t, 3H, *J* = 7.2 Hz), 2.92 (s, 3H), 3.87 (s, 3H), 4.24-4.28 (q, 2H, *J* = 7.2 Hz), 5.90 (s, 1H), 6.78-6.93 (m, 3H), 6.96-6.98 (m, 1H), 7.39-7.43 (t, 2H, 7.8 Hz), 7.54-7.58 (t, 1H, 7.4 Hz), 8.04-8.07 (d, 2H, *J* = 8.4 Hz); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 14.2, 36.4, 55.5, 60.9, 69.5, 111.6, 120.3, 121.2, 122.6, 127.8, 128.3, 128.5, 128.8, 129.0, 129.9, 133.6, 135.8, 139.4, 151.7, 169.8, 195.3; EI-MS *m*/*z* (rel. int., %): 327 (M⁺, 11), 238 (18), 222 (100), 194 (20), 148 (22), 134 (48), 105 (62), 77 (96), 51 (33), 42 (21); HRMS (ESI): calcd for C₁₉H₂₁NO₄ + H = 328.1543, found: 328.1550.

¹H NMR (CDCl₃, 400 MHz, δ ppm): 1.83 (s, 3H), 3.68 (s, 3H), 4.38-4.42 (d, 1H, J = 15.2 Hz), 4.69-4.72 (d, 1H, J = 15.2 Hz), 6.70-6.78 (m, 3H), 7.14-7.37 (m, 7H), 12.38 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 18.1, 51.7, 56.2, 109.7, 113.0, 117.7, 127.0, 128.1, 128.3, 129.2, 138.2, 148.7, 172.6, 176.8; EI-MS *m/z* (rel. int., %): 297 (M⁺, 12), 206 (26), 104 (86), 91 (80), 77 (60), 43 (100).

192 (51), 118 (67), 105 (100), 77 (96), 51 (43).

127.8, 128.2, 128.9, 130.8, 133.0, 148.0, 170.6, 172.8; EI-MS m/z (rel. int., %): 331 (M⁺, 14), 152 (70), 105 (100), 77 (80), 51 (23); HRMS (ESI): calcd for C₁₈H₁₈ClNO₃ + H = 332.1048, found: 332.1054.

¹H NMR (CDCl₃, 400 MHz, δ ppm): 2.58 (s, 3H), 3.93 (s, 3H), 3.99 (s, 3H), 7.11-7.15 (m, 1H), 7.33-7.37 (m, 2H), 7.65-7.67 (d, 1H, J = 8.0 Hz); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 10.8, 32.0, 51.3, 110.0, 119.6, 120.7, 124.8, 125.3, 127.1, 138.8, 163.5; EI-MS *m/z* (rel. int., %): 203 (M⁺, 100), 188 (79), 144 (72), 77 (46).

¹H NMR (CDCl₃, 400 MHz, δ ppm): 2.52 (s, 3H), 3.94 (s, 3H), 3.97 (s, 3H), 7.23-7.29 (m, 2H), 7.61 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 10.7, 32.2, 51.5, 111.2, 119.9, 120.0, 125.4, 125.6, 125.9, 127.9, 137.0, 163.2; EI-MS *m/z* (rel. int., %): 237 (M⁺, 100), 222 (89), 178 (53), 75 (35).

White solid, mp: 41–44°C

¹H NMR (CDCl₃, 400 MHz, δ ppm): 2.51 (s, 3H), 3.95 (s, 3H), 4.32 (s, 3H), 6.99–7.02 (t, 1H, J = 7.8 Hz), 7.26–7.28 (d, 1H, J = 8.0 Hz), 7.51–7.53 (d, 1H, J = 8.0 Hz); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 10.7, 34.5, 51.6, 117.4, 119.5, 120.1, 120.8, 127.1, 130.2, 134.5, 163.0; EI-MS m/z (rel. int., %): 237 (M⁺, 100), 222 (61), 178 (31); HRMS (ESI): calcd for C₁₂H₁₂ClNO₂ + H = 238.0648 , found: 238.0654.

¹H NMR (CDCl₃, 400 MHz, δ ppm): 2.51 (s, 3H), 3.94 (s, 3H), 3.96 (s, 3H), 7.18-7.21 (d, 1H, J = 8.8 Hz), 7.38-7.41 (s, 1H, J = 8.8 Hz), 7.77 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 10.7, 32.2, 51.5, 111.5, 112.8, 119.8, 123.2, 125.7, 128.0, 128.6, 137.2, 163.2; EI-MS m/z (rel. int., %): 283 (M⁺, 100), 268 (67), 222 (34), 143 (26), 102 (20).

Oil liquid.

¹H NMR (CDCl₃, 400 MHz, δ ppm): 2.45 (s, 3H), 2.55 (s, 3H), 3.93 (s, 3H), 3.97 (s, 3H), 7.16-7.18 (d, 1H, J = 8.4 Hz), 7.21-7.24 (d, 1H, J = 8.4 Hz), 7.42-7.43 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 10.8, 21.4, 32.0, 51.2, 109.7, 120.0, 120.2, 124.8, 127.2, 128.9, 137.4, 163.6; EI-MS m/z (rel. int., %): 217 (M⁺, 100), 202 (76), 186 (14), 158 (37), 115 (63), 39 (34).

$$4ga$$
 New compound.

Yellow solid, mp : 81–83°C

¹H NMR (CDCl₃, 400 MHz, δ ppm): 2.53 (s, 3H), 2.78 (s, 3H), 3.94 (s, 3H), 4.21 (s, 3H), 6.98-7.05 (m, 2H), 7.48-7.50 (d, 1H, *J* = 7.6 Hz); ¹³C NMR (CDCl₃, 100 MHz,

δ ppm): 10.8, 20.8, 34.7, 51.4, 118.7, 119.8, 121.0, 121.9, 126.1, 128.0, 128.2, 138.6, 163.5; EI-MS *m*/*z* (rel. int., %): 217 (M⁺, 93), 202 (42), 115 (100), 91 (53), 77 (48), 65 (38), 51 (42), 43 (39); HRMS (ESI): calcd for $C_{13}H_{15}NO_2 + H = 218.1176$, found: 218.1175.

¹H NMR (CDCl₃, 400 MHz, δ ppm): 2.53 (s, 3H), 3.92 (s, 3H), 3.93 (s, 3H), 4.28 (s, 3H), 6.69-6.72 (d, 1H, J = 7.6 Hz), 6.99-7.03 (t, 1H, J = 7.6 Hz), 7.22-7.26 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 11.0, 35.0, 51.3, 55.5, 105.4, 113.2, 120.0, 121.0, 125.7, 129.1, 148.0, 163.4; EI-MS m/z (rel. int., %): 233 (M+, 100), 218 (64), 45 (18).

Oil liquid.

¹H NMR (CDCl₃, 400 MHz, δ ppm): 1.02-1.06 (t, 3H, J = 7.2 Hz), 4.06 (s, 3H), 4.16-4.19 (q, 2H, J = 7.2 Hz), 7.11-7.15 (m,1H), 7.33-7.44 (m, 7H), 7.55-7.57 (d, 1H, J = 8.4 Hz); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 13.6, 31.9, 60.5, 110.0, 120.6, 121.5, 124.4, 125.2, 126.6, 126.8, 127.7, 130.4, 134.8, 138.4, 162.7; EI-MS *m*/*z* (rel. int., %): 279 (M⁺, 100), 251 (48), 207 (36), 190 (24), 165 (42); HRMS (ESI): calcd for C₁₈H₁₇NO₂ + H = 280.1332, found: 280.1334.

Oil liquid.

¹H NMR (CDCl₃, 400 MHz, δ ppm): 1.03-1.06 (t, 3H, J = 7.2 Hz), 4.06 (s, 3H), 4.15-4.20 (q, 2H, J = 7.2 Hz), 7.32-7.34 (m, 2H), 7.36-7.45 (m, 5H), 7.51 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 13.6, 32.2, 60.7, 111.3, 113.4, 120.7, 123.8, 125.7, 126.0, 126.4, 127.1, 127.5, 127.9, 130.3, 134.1, 136.7, 162.4; EI-MS *m*/*z* (rel. int., %): 131 (M⁺, 100), 285 (60), 204 (41), 190 (24), 163 (24); HRMS (ESI): calcd for C₁₈H₁₆ClNO₂ + H = 314.0942, found: 314.0936.

Yellow solid, mp: 88–90°C

¹H NMR (CDCl₃, 400 MHz, δ ppm): 1.02-1.06 (t, 3H, J = 7.2 Hz), 4.05 (s, 3H), 4.15-4.20 (q, 2H, J = 7.2 Hz), 7.28-7.30 (m, 1H), 7.37-7.45 (m, 6H), 7.66-7.67 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 13.6, 32.1, 60.7, 111.6, 113.9, 123.7, 123.9, 125.8, 127.1, 127.8, 128.1, 130.3, 134.0, 136.9, 162.3; EI-MS *m*/*z* (rel. int., %): 359 (M⁺, 100), 329 (68), 204 (89), 190 (49), 163 (47); HRMS (ESI): calcd for C₁₈H₁₆BrNO₂ + H = 358.0437, found: 358.0431.

Oil liquid

¹H NMR (CDCl₃, 400 MHz, δ ppm): 0.99-1.02 (t, 3H, J = 7.2 Hz), 1.43-1.47 (t, 3H, J = 7.2 Hz), 1.65-1.75 (m, 2H), 3.05-3.09 (t, 2H, J = 7.6 Hz), 4.01 (s, 3H), 4.39-4.45 (q, 2H, J = 7.2 Hz), 7.12-7.16 (m, 1H), 7.35-7.36 (m, 2H), 7.69-7.71 (d, 1H, J = 8.0 Hz); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 14.3, 24.6, 27.4, 32.0, 60.3, 110.0, 119.6, 120.8, 125.0, 125.5, 126.8, 138.7, 163.0; EI-MS m/z (rel. int., %): 245 (M⁺, 58), 216 (100), 188 (69); HRMS (ESI): calcd for C₁₅H₁₉NO₂ + H = 246.1489, found: 246.1485.

^{4bc} New compound.

White solid, mp: 70–72°C

¹H NMR (CDCl₃, 400 MHz, δ ppm): 0.96-1.00 (t, 3H, J = 7.2 Hz), 1.41-1.45 (t, 3H, J = 7.2 Hz), 1.62-1.68 (m, 2H), 2.97-3.00 (t, 2H, J = 7.8 Hz), 3.97 (s, 1H), 4.38-4.43 (q, 2H, J = 7.2 Hz), 7.26-7.27 (m, 2H), 7.63 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 14.2, 14.3, 24.5, 27.3, 32.2, 60.6, 111.2, 120.0, 124.7, 125.4, 125.9, 127.6, 137.0, 162.7; EI-MS *m*/*z* (rel. int., %): 279 (M⁺, 45), 250 (100), 222 (66), 43 (29); HRMS (ESI): calcd for C₁₅H₁₈CINO₂ + H = 280.1099, found: 280.1097.

Oil liquid

¹H NMR (CDCl₃, 400 MHz, δ ppm): 0.97-1.01 (t, 3H, J = 7.2 Hz), 1.41-1.45 (t, 3H, -7.2 Hz), 1.66-1.71 (m, 2H), 2.46 (s, 3H), 3.00-3.04 (t, 2H, J = 7.6 Hz), 3.97 (s, 3H), 4.37-4.42 (q, 2H, J = 7.2 Hz), 7.16-7.18 (d, 1H, J = 8.4 Hz), 7.22-7.24 (d, 1H, J = 8.4Hz), 7.44 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 14.3, 21.4, 24.6, 27.4, 32.1, 60.3, 109.8, 120.1, 124.8, 125.0, 127.0, 128.9, 130.2, 137.4, 163.1; EI-MS *m/z* (rel. int., %): 259 (M⁺, 41), 230 (100), 202 (72), 43 (33); HRMS (ESI): calcd for C₁₆H₂₁NO₂ + H = 260.1645, found: 260.1640.

References

- Bashford, K. E.; Cooper, A. L.; Kane, P. D.; Moody, C. J.; Muthusamy, S.; Swann, E. J. Chem. Soc. Perkin Trans. 1, 2002, 1672–1687.
- 2. Moody C. J.; Swann, E. Synlett, 1998, 135.
- 3. Honey, M. A.; Blake, A.; J.; Campbell, I. B.; Judkins, B. D.; Moody. C. J. *Tetrahedron* **2009**, *65*, 8995.

20

31

