Flow chemistry kinetic studies reveal reaction conditions for ready access to unsymmetrical trehalose analogues

Mitul K. Patel and Benjamin G. Davis*

Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK

ben.davis@chem.ox.ac.uk

Supplementary Information

Contents

1.	General considerations	S2
2.	Synthetic protocols	S 3
3.	Flow chemistry and kinetic analysis	S 7
4.	Compound characterization data	S14
5.	NMR spectra	S22
6.	References	S53

1. General considerations

Proton nuclear magnetic resonance spectra (¹H NMR) were recorded on a Bruker Bruker AVC500 (500MHz) spectrometer. Carbon nuclear magnetic resonance spectra (¹³C NMR) were recorded on a Bruker AVC500 (125.6 MHz) and are proton decoupled. Spectra were assigned using COSY, DEPT-135, HMQC, HSQC, and HMBC if required. Phosphorus nuclear magnetic resonance spectra (³¹P NMR) were recorded on a Bruker AV400 (162 MHz). All chemical shifts are quoted on the δ scale in ppm using residual solvent as an internal standard.

Low resolution mass spectra were recorded on a Micromass Platform 1 spectrometer using electrospray ionization (ES), or on a Bruker Daltronic MicroTOF spectrometrer. High resolution mass spectra were recorded on a Bruker Daltronic MicroTOF spectrometer. m/z values are reported in Daltons. Infrared spectra (FT-IR) were recorded on a Bruker Tensor 27 Fourier Transform spectrophotometer using either KBr discs for solids or as a thin film on NaCl plates. Absorption maxima are reported in wavenumbers (cm⁻¹). Only signals representing functional groups are reported; C-H absorptions and the fingerprint region are not listed. Optical rotations were measured on a Perkin-Elmer 241 polarimeter at 589nm (Na D-line) with a path length of 1.0 dm and are reported in units of deg dm⁻¹cm³g⁻¹. Concentrations are given in g/100 mL.

Thin Layer Chromatography (TLC) was carried out using Merck aluminium backed sheets coated with Kieselgel $60F_{254}$ silica gel. Visualization of the sheets was achieved using a UV lamp ($\lambda_{max} = 254$ or 365 nm) and/or ammonium molybdate (5% in 2M H₂SO₄), or sulfuric acid (0.2M in 1 MeOH : 1 H₂O). Silica gel chromatography was performed on a Biotage SP4 purification system using KP-Sil SNAP cartridges. Anhydrous THF, DCM, and diethyl ether were dried under pressure through a column of alumina. Other anhydrous solvents were purchased from Fluka, and stored under Argon over molecular sieves. All other solvents were used as supplied (analytical or HPLC grade). "Petrol" refers to the fraction of light petroleum ether boiling in the range 40-60°C. "Brine" refers to a saturated aqueous solution of sodium chloride. Anhydrous D-trehalose was purchased from Fisher Scientific.

2. Synthetic protocols

2.1 Trehalose monofuntionalizations

Phosphorylation

To a suspension of D-trehalose (7.50 g, 21.9 mmol, 1 eq) in anhydrous pyridine (100 mL) was added dropwise diphenylchlorophosphate (4.54 mL, 21.9 mmol, 1 eq). TLC (1 water : 4 isopropanol : 4 ethyl acetate) after 18 hours showed the presence of two products. The reaction was quenched with methanol (10 mL) and the reaction mixture concentrated *in vacuo*. The residue was co-evaporated with toluene to remove pyridine (x3). Silica gel chromatography (1 water : 3 isopropanol : 13 ethyl acetate) allowed separation of the two products. Lyophilization yielded **3** (3.02g, 24%) and **4** (7.41g, 42%) as a white amorphous solids.

Silylation

To a stirred suspension of D-trehalose (0.5g, 1.46mmol, 1eq) and imidazole (0.099g, 1.46mmol, 1eq) in dry DMF (10ml) was added *tert*-butyl diphenylchlorosilane (0.38ml, 1.46mmol, 1eq) at room temperature. After stirring for 26 hours, TLC (1 water : 2 isopropanol : 2 ethyl acetate) indicated the formation of two products. The reaction mixture was concentrated *in vacuo* and purified by silica gel chromatography (2 ethyl acetate : 1 isopropanol) to give **5** (85mg, 10%) and **6** (0.53g, 44%) as white amorphous solids after lyophilization.

Mitsunobu reaction

Synthesis of hydrazoic acid

Hydrazoic acid was prepared by the careful addition of concentrated sulphuric acid (0.41ml, 7.7mmol, 0.5eq) to a solution of NaN₃ (1.0g, 15.4mmol, 1eq) in toluene (12ml) and water (1.5ml) at 0 °C. The toluene layer containing the hydrazoic acid was decanted off via cannula and stored over Na₂SO₄. Titration against a standardized solution of NaOH with phenolphthalein as indicator was used to determine the concentration of HN₃ as 0.75M.

Mitsunobu reaction

Diisopropyl azodicarboxylate (DIAD, 0.057ml, 0.292mmol, 1eq) was added to a stirred solution of D-trehalose (0.10g, 0.292mmol, 1eq) and PPh₃ (0.077g, 0.292mmol, 1eq) in dry 1,4-dioxane (10ml) to form a pale orange solution. After stirring for 30 minutes at room temperature, the solution decolourized and hydrazoic acid (0.750M solution in toluene, 0.39ml, 0.292mmol, 1eq) was added dropwise. TLC (1 water : 2 isopropanol : 2 ethyl acetate) after 66 hours indicated the formation of a product. The reaction was quenched with 2M NaOH (1ml) and the solvent removed *in vacuo*. Silica gel chromatography (1 water : 4 isopropanol : 8 ethyl acetate) followed

by lyophilization allowed isolation of the product as a white amorphous solid

(13.3mg, 11%).

2.2 Synthesis of trehalose-6-phosphate

Step (i)and (ii)

To a suspension of D-trehalose (1.0g, 2.92mmol, 1eq) in anhydrous pyridine (50ml) was added *tert*-butyl diphenyl chlorosilane (1.52ml, 5.84mmol, 2eq). TLC (1 water : 4 isopropanol : 10 ethyl acetate) after 14 hours indicated complete consumption of the starting materials. The solvent was removed *in vacuo* and the residue co-evaporated with toluene to remove pyridine (x3). To the crude solid, stirred at 0 °C in methanol (5ml) and diethyl ether (15ml), was added acetyl chloride (0.40ml, 5.84mmol, 2eq). The reaction mixture was warmed to room temperature, and regularly monitored by TLC and mass spectrometry. After 18 hours, a significant amount of the D-trehalose by-product was seen (~10%) and the reaction quenched with saturated NaHCO₃ solution until the mixture was at pH 7 (pH paper), and the solvent removed *in vacuo*. Two separate silica gel columns were required to purify the desired compound (1 water : 4 isopropanol : 10 ethyl acetate followed by 2 isopropanol : 1 ethyl acetate). Lyophilization gave the title compound as a white amorphous solid (0.93g, 55%).

Step (iii)

To a solution of **5** (0.90g, 1.55mmol, 1eq) in anhydrous pyridine (30ml) was added diphenyl chlorophosphate (0.36ml, 1.70mmol, 1.1eq). The reaction mixture was stirred at room temperature for 15 hours, after which TLC (1 water : 4 isopropanol : 10 ethyl acetate) indicated complete consumption of starting material. The reaction was quenched with methanol (2ml), the solvent removed *in vacuo*, and the crude solid co-evaporated with toluene to remove pyridine (x3). Silica gel chromatography (9 ethyl acetate : 1 methanol) followed by lyophilization gave the desired compound as a white solid (1.11g, 88%).

Step (iv)

To a solution of **9** (1.10g, 1.35mmol, 1eq) in methanol (20ml) at room temperature, was added acetyl chloride (0.39ml, 5.41mmol, 4eq). The reaction was stirred at this temperature for 18 hours, after which TLC (1 water : 4 isopropanol : 4 ethyl acetate) indicated completion of the reaction. The reaction mixture was quenched with saturated NaHCO₃ solution to pH 7, and the solvent removed *in vacuo*. Silica gel chromatography (1 water : 4 isopropanol : 6 ethyl acetate) followed by lyophilization afforded the desired compound as a white amorphous solid (0.73g, 94%).

Step (v)

A suspension of **3** (0.75g, 1.31mmol, 1eq) and PtO₂ (15 mg, 0.066mmol, 0.05eq) in 75% aqueous ethanol (10 mL) with 0.5% glacial acetic acid (50 μ L) was repeatedly degassed under high vacuum and the reaction vessel charged with hydrogen. The reaction was maintained at room temperature with aggressive stirring under an atmospheric pressure of hydrogen for 14 hours after which TLC (5 ethanol : 3 NH₄OH : 1 water) showed the complete consumption of the starting material and the formation of a single product. The reaction mixture was filtered through Celite[®] and the solvent was removed *in vacuo*. Lyophilization afforded the title compound as a white amorphous solid (0.55g, 99%).

3. Flow chemistry and kinetic analysis

3.1 General considerations

Reactions were performed using a Syrris Africa flow chemistry system using a 1000μ l or 250µl microreactor chip. The flow system was dried by rinsing reagent flasks and microreactor chip with anhydrous DCM (x3). The reagent flasks were subsequently dried over a stream of nitrogen. The flow path was primed with nitrogen, prior to addition of any solvents, or reagents.

High Performance Liquid Chromatography (HPLC) was conducted on a Dionex UltiMate 3000 HPLC system at ambient temperature, with a Varian PLS400 Evaporative Light Scattering detector (ELSD) for eluant detection. Injections were performed by manual injection using a 20µl Rheodyne sample loop as per the manufacturer's instructions.

Quantification of eluants required determination of ELSD response curves as reported previously.¹ 5µl of standardised concentrations of eluants (between 0 - 2.0 mg/ml) were injected and the response of the detector measured and fitted to Area = am^b. Values of a and b for the different compounds, chromatographic conditions and ELSD settings are reported below.

Kinetic parameters were estimated by minimisation of the objective function:

$$Q = \sum_{i} \sum_{t} (\chi_{i,t,exp} - \chi_{i,t,theo})^{2}$$

where $x_{i,t,exp}$ and $x_{i,t,theo}$ are experimental and theoretical concentrations respectively of the different reaction components, *i*, at different time points *t*. Theoretical values were determined by computationally solving equations (1)-(4) with Matlab 2009 using a Runge-Kutta algorithm.

$$Tre + R \xrightarrow{k_1} Mono + R \xrightarrow{k_2} Di$$

$$d[Tre] / dt = -k_1[Tre][R] \qquad (1)$$

$$d[Mono] / dt = k_1[Tre][R] - k_2[Mono][R] \qquad (2)$$

 $d[Di]/dt = k_2[Mono][R]$ (3)

 $d[R] / dt = -k_1[Tre][R] - k_2[Mono][R]$ (4)

3.2 Trehalose phosphorylation

Reactions were performed using a 1000µl microreactor chip at 40.0 °C. Solutions of D-trehalose (0.025M in pyridine) and diphenylchlorophosphate (0.1M in pyridine) were pumped to the chip at identical flow rates. Reactions were performed with a residence time between 1-10 minutes (1 minute reactions were performed on a 250µl chip). 250µl of the reaction mixture was collected in a vial containing methanol (1ml). The solvents were removed *in vacuo* and the crude residue dissolved in pyridine (0.5ml). Acetic anhydride (0.5ml) was added and the reaction mixture stirred at room temperature for 8 hours. The reactions were quenched with methanol (1ml) and the solvents removed *in vacuo*. The crude products were dissolved in methanol (5ml) and the product distribution analysed by HPLC using 5µl injections into a Phenomenex Synergi Hydro C18 column (250 x 4.8mm, 4µm) with 40 water : 60 acetonitrile as the mobile phase at a flow rate of 1.0 ml/min. Eluants were detected using an in-line ELS detector (gain 5.0, nebulizer 30 °C, drift tube 80 °C, 1.65 Bar N₂).

 $k_1 = 0.157 \text{ mol}^{-1} \text{dm}^3 \text{s}^{-1}, k_2 = 0.133 \text{ mol}^{-1} \text{dm}^3 \text{s}^{-1}, r^2 = 0.986.$

Large Scale Reaction

A 0.025M solution of anhydrous D-trehalose in pyridine was reacted with a 0.10M solution of diphenylchlorophosphate in pyridine at 40.0 °C through a 1000 μ l microreactor with a residence time of 120 seconds. The effluent from the chip was quenched by addition into water (500ml). 468ml of reaction mixture (equating to 2.0g of trehalose, 5.85mmol) was collected. The solvents were removed *in vacuo* and co-evaporated with toluene to remove pyridine (x3). The desired product was purified by silica gel chromatography (1 water : 4 isopropanol : 6 ethyl acetate + 1% NH₄OH for 4 column volumes, then a gradient to 1 water : 4 isopropanol : 6 ethyl acetate over 6 column volumes) to give **3** as a white amorphous solid (1.31g, 39%).

3.3 Desilylation reactions

6,6'-O-diterbutyldiphenylsilyl-D-trehalose (6)

To a stirred suspension of D-trehalose (3.00g, 8.77mmol, 1eq) in dry pyridine (60ml) was added *tert*-butyl diphenylchlorosilane (4.79ml, 18.4mmol, 2.1eq) at room temperature. After stirring for 12 hours, TLC (1 water : 2 isopropanol : 2 ethyl acetate) indicated the complete consumption of starting. The reaction mixture was concentrated *in vacuo* and co-evaporated with toluene to remove pyridine(x3). The product was purified by silica gel chromatography (9 THF : 1 methanol) to give the desired compound as a white amorphous solid after lyophilization (6.82g, 95%).

Reactions were performed using a Syrris Africa flow chemistry system using a 1000 μ l microreactor chip at 25.0°C. TBAF (8.77mmol in 60ml of solvent) was pumped through the chip at a flow rate three times that of **6** (8.77mmol in 60ml of solvent). Reactions were performed with a residence time between 0-70 minutes. 250 μ l of the reaction mixture was collected and diluted with pyridine (1ml). To this mixture was added acetic anhydride (1ml) and the reaction mixtures maintained at room temperature for 10 hours. The reactions were quenched with methanol (1ml) and the solvents removed *in vacuo*. The crude products were dissolved in methanol (5ml) and the product distribution analysed by HPLC using 5 μ l injections into a Pheneomenex Jupiter Proteo C12 column (300 x 4.8mm, 5 μ m) with acetonitrile as the

mobile phase at a flow rate of 1.0 ml/min. Eluants were detected using an in-line ELS detector (gain 2.0, nebulizer 30°C, drift tube 80°C, 1.65 Bar N_2)

	а	b
10	175.3	1.361
13	175.5	1.360
14	112.7	1.288

High solubility system

6 was dissolved in pyridine and TBAF dissolved in methanol. The reaction was performed as described above and kinetic parameters estimated by minimization of *Q*.

 $k_1 = 21.9 \text{ x } 10^{-3} \text{ mol}^{-1} \text{dm}^3 \text{s}^{-1}; k_2 = 17.9 \text{ x } 10^{-3} \text{ mol}^{-1} \text{dm}^3 \text{s}^{-1}; r^2 = 0.9651$

Low solubility system

6 was dissolved in THF and TBAF dissolved in petrol with 1% methanol. The reaction was performed as described above and kinetic parameters estimated by minimization of Q.

 $k_1 = 21.6 \text{ x } 10^{-3} \text{ mol}^{-1} \text{dm}^3 \text{s}^{-1}; k_2 = 7.67 \text{ x } 10^{-3} \text{ mol}^{-1} \text{dm}^3 \text{s}^{-1}; r^2 = 0.9691$

4. Compound characterization data

Trehalose-6-phosphate (2)

R_f 0.2 (5 ethanol : 3 NH₄OH : 1 water), $[α]_D^{18}$ + 150.3 (c = 1.0, H₂O) lit.² $[α]_D^{21}$ +151.2 (c = 0.8, H₂O); ¹H NMR (500MHz, D₂O) δ ppm 3.36 (1H, t, $J_{H3'-H4'}$ 9.5Hz, $J_{H4'-H5'}$ 9.5Hz, H4'), 3.50 (1H, t, J_{H3-H4} 9.6Hz, J_{H4-H5} 9.6Hz, H4), 3.56 (1H, dd, J_{H2-H3} 10.1Hz, J_{H1-H2} 3.8Hz, H2), 3.59 (1H, dd, $J_{H2'-H3'}$ 9.8Hz, $J_{H1'-H2'}$ 3.8Hz, H2'), 3.67 (1H, dd, $J_{H6a-H6b}$ 11.8Hz, $J_{H5'-H6'b}$ 5.4Hz, H6'b), 3.71-3.79 (4H, m, H3, H3', H5', H6'a), 3.82 (1H, d, J_{H4-H5} 10.1Hz, H5), 3.86 (ddd, $J_{H6a-H6b}$ 12.1Hz, $J_{H6b-31P}$ 5.4Hz, $J_{H5'-H6b}$ 1.7Hz, H6b), 3.94 (1H, ddd, $J_{H6a-H6b}$ 11.9Hz, $J_{H6a-31P}$ 7.7Hz, J_{H5-H6a} 4.1Hz, H6a), 5.09 (1H, d, $J_{H1'-H2'}$ 4.1Hz, H1'), 5.12 (1H, d, J_{H1-H2} 3.8Hz, H1); ¹³C NMR (126MHz, D₂O) δ ppm 60.5 (1C, C6'), 63.0 (1C, d, J_{C6-31P} 4.8Hz, C6), 69.1 (C1, C4'), 69.7 (1C, C4), 70.9 (1C, C2), 71.1 (1C, C2'), 71.6 (1C, d, J_{C5-31P} 6.7Hz, C5), 72.1 (1C, C5'), 72.2 (1C, C3), 72.4 (1C, C3'), 93.3 (1C, C1), 93.4 (1C, C1'); ³¹P{¹H} NMR (162MHz, D₂O) δ ppm 3.6 (1P, ROP(O)(OH₂); m/z (ES') 421.5 [M - H]⁻.

6-O-(diphenoxyphosphoryl)-D -trehalose (3)

 $R_f 0.68$ (1 water : 4 isopropanol : 4 ethyl acetate), $[\alpha]_D^{22} + 63.9$ (c = 1.0, MeOH); ¹H NMR (500MHz, MeOD) δ ppm 3.34 (1H, t, J_{H3'-H4'} 9.1Hz, J_{H4'-H5'} 9.1Hz, H4'), 3.38 (1H, t, J_{H3-H4} 9.1Hz, J_{H4-H5} 9.1Hz, H4), 3.43 (1H, dd, J_{H2'-H3'} 9.8Hz, J_{H1'-H2'} 3.5Hz, H2'), 3.48 (1H, dd, J_{H2-H3} 9.8Hz, J_{H1-H2} 3.8Hz, H2), 3.70 (1H, dd, J_{H6'a-H6'b} 12.0Hz, J_{H5'-H6'b} 5.4Hz, H6'b), 3.80 (1H, t, J_{H2'-H3'} 9.5Hz, J_{H3'-H4'} 9.5Hz, H3'), 3.81 (1H, t, J_{H2-H3} 9.1Hz, J_{H3-H4} 9.1Hz, H3), 3.80-3.83 (1H, m, H6'a), 3.84 (1H, m, J_{H5'-H6'b} 4.1Hz, J_{H5'-H6'a} 2.2Hz, H5'), 4.09 (1H, dt, J_{H4-H5} 10.1Hz, J_{H5-H6a} 2.1Hz, J_{H5-H6b} 2.1Hz, H5), 4.48 (1H, ddd, J_{H6a-H6b} 11.5Hz, J_{H6b-31P} 7.1Hz, J_{H5-H6b} 3.5Hz, H6b), 4.55 (1H, ddd, J_{H6a-H6b} 11.5Hz, J_{H6a-31P} 6.8Hz, J_{H5-H6a} 1.9Hz, H6a), 5.09 (1H, d, J_{H1'-H2'} 3.8Hz, H1'), 5.10 (1H, d, J_{H1-H2} 3.8Hz, H1), 7.21-7.31 (3H, m, ArH_{ortho}, ArH_{para}), 7.40-7.43 (2H, m, ArH_{meta}); ¹³C NMR (126MHz, MeOD) δ ppm 62.6 (1C, C6'), 69.8 (1C, d, J_{C6-31P} 6.7Hz, C6), 71.2 (1C, C4'), 71.9 (1C, C4), 72.0 (1C, d, J_{C5-31P} 6.7Hz, C5), 73.0 (1C, C5'), 73.2 (1C, C2'), 73.9 (1C, C2), 74.4 (1C, C3'), 74.6 (1C, C3), 95.2 (1C, C1'), 95.3 (1C, C1), 121.4 (2C, d, J_{C-31P} 4.8Hz, ArCortho), 126.8 (1C, ArCpara), 131.1 (2C, ArC_{meta}), 151.9 (1C, d, J_{C-31P} 7.6Hz, ArC_{ipso}), 151.9 (1C, d, J_{C-31P} 7.6Hz, ArC_{ipso}); ³¹P{¹H} NMR (162MHz, MeOD) δ ppm -12.0 (1P, P(O)(OPh)₂); FT-IR (KBr disc) υ 1287 (P=O), 3271 br (OH); HRMS m/z (ES⁺) 596.1357 [M + Na]⁺ required (596.1344); elemental C (49.87%) H (5.19%), required C (50.18%) H (5.44%).

6,6'-O-di(diphenoxyphosphoryl)-D-trehalose (4)

R_f 0.71 (1 water : 4 isopropanol : 4 ethyl acetate), $[α]_D^{22}$ +63.8 (c = 1.0, MeOH); ¹H NMR (500MHz, MeOD) δ ppm 3.37 (2H, t, J_{H3-H4} 9.1Hz, J_{H4-H5} 9.1Hz, H4), 3.40 (2H, dd, J_{H2-H3} 9.9Hz, J_{H1-H2} 3.6Hz, H2), 3.79 (2H, t, J_{H2-H3} 9.3Hz, J_{H3-H4} 9.3Hz, H3), 4.07 (2H, ddd, J_{H4-H5} 9.9Hz, J_{H5-H6b} 4.7Hz, J_{H5-H6a} 2.0Hz, H5), 4.48 (2H, ddd, $J_{H6a-H6b}$ 11.1Hz, $J_{\text{H6b-31P}}$ 7.6Hz, $J_{\text{H5-H6b}}$ 4.7Hz, H6b), 4.55 (2H, ddd, $J_{\text{H6-H6}}$ 11.1Hz, $J_{\text{H6a-31P}}$ 6.6Hz, $J_{\text{H5-H6a}}$ 1.9Hz, H6a), 5.00 (2H, d, $J_{\text{H1-H2}}$ 3.8Hz, H1), 7.21-7.29 (6H, m, ArH_{ortho}, ArH_{para}), 7.37-7.43 (4H, m, ArH_{meta}); ¹³C NMR (126MHz, MeOD) δ ppm 69.8 (2C, d, $J_{\text{C6-31P}}$ 6.7Hz, C6), 51.3 (2C, C4), 72.1 (2C, d, $J_{\text{C5-31P}}$ 6.7Hz, C5), 73.0 (2C, C2), 74.5 (2C, C3,), 95.3 (2C, C1), 121.2 (8C, d, $J_{\text{C-31P}}$ 4.8Hz, ArC_{ortho}), 126.9 (4C, ArC_{para}), 131.1 (8C, d, $J_{\text{C-31P}}$ 2.9Hz, ArC_{meta}), 151.9 (2C, d, $J_{\text{C-31P}}$ 1.9Hz, ArC_{ipso}), 151.9 (2C, d, $J_{\text{C-31P}}$ 1.9Hz, ArC_{ipso}), 151.9 (2C, d, $J_{\text{C-31P}}$ 2.9Hz, ArC_{ipso}); ³¹P{¹H} NMR (162MHz, MeOD) δ ppm -11.9 (1P, P(O)(OPh)₂); FT-IR (KBr disc) υ 1271 (P=O), 3364 br (OH); HRMS m/z (ES⁺) 829.1629 [M + Na]⁺ required (829.1633).

6-O-terbutyldiphenylsilyl-D-trehalose (5)

R_f 0.29 (1 water : 4 isopropanol : 4 ethyl acetate), $[α]_D^{18}$ +20.3 (c = 1.0, dioxane); ¹H NMR (500 MHz, DMSO-*d*₆) δ ppm 1.00 (9H, s, ^{*i*}Bu), 3.15 (1H, td, *J*_{H3'-H4'} 9.3Hz, *J*_{H4'-OH} 5.7Hz, H4'), 3.25 (1H, td, *J*_{H3-H4} 9.5Hz, *J*_{H4-H5} 9.5Hz, *J*_{H4-OH} 5.0Hz, H4), 3.26 (1H, m, H2'), 3.29 (1H, dt, *J*_{H2-H3} 10.7Hz, *J*_{H1-H2} 4.4Hz, *J*_{H2-OH} 4.4Hz, H2), 3.49 (1H, dt, *J*_{H6'a-H6'b} 11.4Hz, *J*_{H5'-H6'b} 5.5Hz, *J*_{H6'b-OH} 5.5Hz, H6'b), 3.55-3.64 (3H, m, H3', H5', H6'a), 3.68 (1H, ddd, *J*_{H3-H4} 9.9Hz, *J*_{H3-OH} 4.7Hz, *J*_{H2-H3} 1.9Hz, H3), 3.79 (1H, dd, *J*_{H6a-H6b} 10.7Hz, *J*_{H5-H6b} 5.4Hz, H6b), 3.83 (1H, dd, *J*_{H6a-H6b} 10.7Hz, *J*_{H5-H6a} 1.3Hz, H6a), 3.87 (1H, ddd, *J*_{H4-H5} 9.9Hz, *J*_{H5-H6b} 5.0Hz, *J*_{H5-H6a} 1.3Hz, H5), 4.39 (1H, t, *J*_{H6a-OH} 5.8Hz, *J*_{H6b-OH} 5.8Hz, 6'-OH), 4.58 (1H, d, *J*_{H2-OH} 6.3Hz, 2'-OH), 4.66 (1H, d, *J*_{H2'-OH} 6.3Hz, 2'-OH), 4.75 (1H, d, *J*_{H3'-OH} 4.7Hz, 3'-OH), 4.78 (1H, d, *J*_{H4'-OH} 5.4Hz, 4'-OH), 4.95 (1H, d, *J*_{H1'-H2'} 3.5Hz, H1'), 4.97 (1H, d, *J*_{H1-H2} 3.8Hz, H1), 7.40-7.46 (6H, m, ArH_{ortho}, ArH_{para}), 7.67 (4H, ad, *J* 6.9Hz, ArH_{meta}); ¹³C NMR (126 MHz, DMSO-*d*₆) δ ppm 19.0 (1C, <u>C</u>(CH₃)₃), 26.6 (1C, C(<u>C</u>H₃)₃), 60.7 (1C, C6'), 63.4 (1C, C6), 69.9 (1C, C4), 70.1 (1C, C4'), 71.6 (1C, C2), 71.7 (1C, C2'), 72.3 (1C, C5), 72.5

(1C, C3), 73.0 (1C, C5'), 73.0 (1C, C3'), 93.0 (1C, C1), 93.1 (1C, C1'), 127.8 (4C, ArC_{ortho}), 129.6 (1C, ArC_{para}), 129.7 (1C, ArC_{para}), 133.3 (2C, ArC_{ipso}), 133.5 (2C, ArC_{ipso}), 135.1 (1C, ArC_{meta}), 135.2 (1C, ArC_{meta}); FT-IR (KBr disc) υ 3400 br (OH); m/z (ES⁺) 603.2221 [M + Na]⁺ (required 603.2232); elemental C (58.00%) H (6.97%), required C (57.91%) H (6.94%).

6,6'-O-diterbutyldiphenylsilyl-D-trehalose (6)

R_f 0.35 (1 water : 2 isopropanol : 2 ethyl acetate), $[α]_D^{17}$ +71.5 (c = 1.0, dioxane), ¹H NMR (500MHz, DMSO) δ ppm 1.00 (18H, s, 2 x 'Bu), 3.26 (2H, td, J_{H3-H4} 9.5Hz, J_{H4-} H5 9.5Hz, J_{H4-OH} 5.4Hz, H4), 3.30 (2H, ddd, J_{H2-H3} 9.8Hz, J_{H2-OH} 6.3Hz, J_{H1-H2} 3.8Hz, H2), 3.63 (2H, td, J_{H2-H3} 9.1Hz, J_{H3-H4} 9.1Hz, J_{H3-OH} 5.0Hz, H3), 3.80 (2H, dd, $J_{H6a-H6b}$ 11.0Hz, J_{H5-H6b} 5.7Hz, H6b), 3.86 (4H, m, H5, H6a), 4.62 (2H, d, J_{H2-OH} 6.3Hz, 2-OH), 4.84 (2H, d, J_{H3-OH} 4.7Hz, 3-OH), 4.91 (2H, d, J_{H2-OH} 5.4Hz, 4-OH), 5.06 (1H, d, J_{H1-H2} 3.5Hz, H1), 7.36-7.46 (12H, ArH_{ortho}, ArH_{para}), 7.70 (8H, m, ArH_{meta}); ¹³C NMR (126MHz, DMSO) δ ppm 19.0 (2C, 2 x <u>C</u>(CH₃)₃), 26.6 (6C, 2 x C(<u>C</u>H₃)₃), 63.4 (2C, C6), 70.0 (2C, C4), 71.8 (2C, C2), 72.3 (2C, C5), 73.2 (2C, C3), 92.8 (2C, C1), 127.5 (4C, ArC_{ortho}), 127.7 (4C, ArC_{ortho}), 129.2 (2C, ArC_{para}), 129.6 (2C, ArC_{para}), 134.5 (4C, ArC_{ipso}), 135.2 (4C, ArC_{ipso}), 133.3 (2C, ArC_{meta}), 133.5 (2C, ArC_{meta}); FT-IR (KBr disc) v 3350 br (OH); m/z (ES⁺) 841.3410 [M + Na⁺] (required 841.3410).

6,6'-diazido-D-trehalose (8)

R_f 0.69 (1 water : 2 isopropanol : 2 ethyl acetate), $[α]_D^{17}$ +154.8 (c = 0.5, H₂O), lit.³ [α]_D²⁰ +156 (c = 1.0, H₂O); ¹H NMR (500MHz, D₂O) δ ppm 3.37 (2H, t, *J*_{H3-H4} 9.1Hz, *J*_{H4-H5} 9.1Hz, H4), 3.47 (2H, dd, *J*_{H6a-H6b} 13.7Hz, *J*_{H5-H6b} 5.8Hz, H6b), 3.58 (2H, as, H2), 3.58 (2H, dd, *J*_{H6a-H6b} 10.4Hz, *J*_{H5-H6a} 3.8Hz, H6a), 3.74 (2H, t, *J*_{H2-H3} 9.5Hz, *J*_{H3-H4} 9.5Hz, H3), 3.89 (2H, ddd, *J*_{H4-H5} 10.0Hz, *J*_{H5-H6b} 5.9Hz, *J*_{H5-H6a} 2.4Hz, H5), 5.11 (2H, d, *J*_{H1-H2} 3.8Hz, H1); ¹³C NMR (126MHz, D₂O) δ ppm 50.8 (2C, C6), 70.4 (2C, C4), 70.9 (2C, C2), 71.1 (2C, C5), 72.3 (2C, C3), 93.8 (2C, C1); FT-IR (KBr disc) υ 2106 (N₃), 3428 br (OH); HRMS m/z (ES⁻) 391.1218 [M – H]⁻ required (391.1219).

6-O-ditertbutyldiphenylsilyl-6'-O-diphenoxyphosphoryl-D-trehalose (9)

 $R_{f} 0.9$ (1 water : 4 isopropanol : 10 ethyl acetate), $[\alpha]_{D}^{22} + 31.4$ (c = 1.0, MeOH), ¹H NMR (500MHz, MeOD) δ ppm 3.34 (2H, t, J_{H3-H4} 9.7Hz, J_{H4-H5} 9.7Hz, H4, H4'), 3.38 (1H, dd, J_{H2-H3} 9.7Hz, J_{H1-H2} 3.5Hz, H2), 3.46 (1H, dd, J_{H2'-H3'} 9.9Hz, J_{H1'-H2'} 3.9Hz, H2'), 3.78 (1H, t, J_{H2'-H3'} 9.4Hz, J_{H3'-H4'} 9.4Hz, H3'), 3.80 (1H, t, J_{H2-H3} 9.4Hz, J_{H3-H4} 9.4Hz, H3), 4.05 (2H, m, H5, H5'), 4.45 (1H, dd, J_{H5-H6b} 4.1Hz, J_{H6a-H6b} 7.3Hz, H6b), 4.47 (1H, dd, J_{H6a-H6b} 7.1Hz, J_{H5-H6a} 3.9Hz, H6a), 4.52 (1H, m, H6'b), 4.55 (1H, ddd, J_{H6'a-H6'b} 11.2Hz, J_{H6'b-31P} 6.6Hz, J_{H5'-H6'b} 2.0Hz, H6'b), 7.19-7.26 (6H, m, P-OPh ArHortho, P-OPh ArHpara), 7.35-7.41 (10H, m, P-OPh ArHortho, P-OPh ArHmeta, Si-Ph Ar_{ortho}, Si-Ph Ar_{para}), 7.71-7.74 (4H, m, Si-Ph ArH_{meta}); ¹³C NMR (126MHz, MeOD) δ ppm 20.3 (1C, C(CH₃)₃), 27.4 (3C, C(CH₃)₃), 69.9 (1C, d, J_{C6'-31P} 6.7Hz, C6'), 69.9 (1C, C6), 71.3 (1C, C5), 71.7 (1C, C4), 72.0 (1C, d, J_{C5'-31P} 6.7Hz, C5'), 73.1 (1C, C4'), 73.3 (1C, C2), 74.3 (1C, C2'), 74.6 (1C, C3), 74.9 (1C, C3'), 94.9 (1C, C1), 95.0 (1C, C1'), 121.2 (4C, d, J_{C-31P} 4.7Hz, P-OPh ArCortho), 126.8 (2C, Si-Ph ArCpara) 128.7 (2C, d, J_{C-31P} 4.8Hz, P-OPh ArC_{para}), 130.8 (4C, Si-Ph ArC_{ortho}), 131.1 (4C, d, J_{C-31P} 2.9Hz, P-OPh ArC_{meta}), 134.8, 135.0 (2 x 1C, 2 x Si-Ph ArC_{inso}), 136.8, 137.9 (2 x 2C, 4 x Si-Ph ArC_{meta}), 151.9 (2C, d, J_{C-31P} 6.7Hz, P-OPh ArC_{ipso}); ³¹P{¹H} NMR (162MHz, CDCl₃) δ ppm -12.1 (1P, P(O)(OPh)₂); FT-IR (KBr disc) υ 3369 br (OH); HRMS m/z (ES⁻) 811.2556 [M - H]⁻ required (811.2556).

2,2',3,3',4,4',5,5',6,6'-O-acetyl-D-trehalose (10)

R_f 0.02 (2 petrol : 1 ethyl acetate); $[α]_D^{25}$ +160 (c = 1.0, CHCl₃), lit.⁴ $[α]_D^{22}$ +160 (c = 1.0, CHCl₃), m.p. 97-98°C (methanol), lit.⁴ m.p. 98-100°C; ¹H NMR (500MHz, CDCl₃) δ ppm 2.02, 2.04, 2.07, 2.07 (4 x 6H, 4 x s, 8 x OAc), 4.00 (2H, dd, $J_{H6a-H6b}$ 12.1, J_{H5-H6b} 2.0Hz, H6b), 4.04 (2H, ddd, J_{H4-H5} 10.1Hz, J_{H5-H6a} 5.4Hz, J_{H5-H6b} 2.7Hz, H5), 4.23 (1H, dd, $J_{H6a-H6b}$ 12.0Hz, J_{H5-H6a} 5.7Hz, H6a), 5.03 (1H, dd, J_{H2-H3} 10.4Hz, J_{H1-H2} 3.8Hz, H2), 5.03 (1H, t, J_{H3-H4} 9.9Hz, J_{H4-H5} 9.9Hz, H4), 5.28 (1H, d, J_{H1-H2} 3.8Hz, H1), 5.48 (1H, t, J_{H2-H3} 9.8Hz, J_{H3-H4} 9.8Hz, H3); ¹³C NMR (126MHz, CDCl₃) δ ppm 20.5, 20.6, 20.6, 20.6 (4 x 2C, 8 x COCH₃), 61.7 (2C, C6), 68.1 (2C, C5), 68.5 (2C, C4), 69.8 (2C, C2), 69.9 (2C, C3), 92.2 (2C, C1), 169.5, 169.6, 169.9, 170.5 (4 x 2C, 8 x C=O); m/z 696.6 [M + NH₄]⁺, 701.6 [M + Na]⁺, 737.6 [M + CH₃CN + NH₄]⁺.

6-O-(diphenoxyphosphoryl)-2,2',3,3',4,4',6'-O-acetyl-D-trehalose (11)

R_f 0.8 (ethyl acetate), $[α]_D^{25}$ +50.7 (c = 0.71, CHCl₃); ¹H NMR (500MHz, CDCl₃) δ ppm 2.03, 2.05, 2.06, 2.06, 2.09, 2.10, 2.11 (7 x 3H, 7 x s, 7 x OAc), 4.01 (1H, dd, $J_{H6'a-H6'b}$ 12.1Hz, $J_{H5-H6'b}$ 2.0Hz, H6'b), 4.06 (1H, ddd, $J_{H4'-H5'}$ 10.2Hz, $J_{H5'-H6'a}$ 5.5Hz, $J_{H5'-H6'b}$ 1.9Hz, H5'), 4.14 (1H, ddd, J_{H4-H5} 10.2Hz, J_{H5-H6a} 5.1Hz, J_{H5-H6b} 2.1Hz, H5), 4.24 (1H, dd, $J_{H6'a-H6'b}$ 12.3Hz, $J_{H5'-H6'a}$ 5.7Hz, H6'a), 4.25 (1H, add, $J_{H6a-H6b}$ 11.0Hz, $J_{H6b-31P}$ 6.3Hz, H6b), 4.31 (1H, ddd, $J_{H6a-H6b}$ 11.4Hz, $J_{H6a-31P}$ 6.6Hz, J_{H5-H6a} 5.7Hz, H6a), 4.96 (1H, dd, J_{H2-H3} 10.2Hz, J_{H1-H2} 3.9Hz, H2), 5.05 (1H, t, J_{H3-H4} 9.3Hz, J_{H4-H5} 9.3Hz, H4), 5.05 (1H, dd, $J_{H2'-H3'}$ 10.1Hz, $J_{H1'-H2'}$ 4.7Hz, H2'), 5.06 (1H, t, $J_{H3'-H4'}$ 9.6Hz, $J_{H4'-H5'}$ 9.6Hz, H4'), 5.13 (1H, d, J_{H1-H2} 3.8Hz, H1), 5.21 (1H, d, $J_{H1'-H2'}$ 4.1Hz, H1'), 5.46 (1H, t, $J_{H2'-H3'}$ 9.8Hz, $J_{H3'-H4'}$ 9.8Hz, H3'), 5.49 (1H, t, J_{H2-H3} 9.8Hz, J_{H3-H4} 9.8Hz, H3), 7.20-7.26 (6H, m, ArH_{ortho}, ArH_{para}), 7.35 (2H, t, $J_{ortho-meta}$ 7.9Hz, $J_{meta-para}$ 7.9Hz, ArH_{meta}), 7.36 (2H, t, $J_{ortho-meta}$ 7.9Hz, $J_{meta-para}$ 7.9Hz, ArH_{meta}); ¹³C NMR (126MHz, CDCl₃) δ ppm 20.5, 20.5, 20.6 (x3), 20.7, 20.7 (7 x 1C, 7 x CO<u>C</u>H₃), 61.7 (1C, C6'), 66.6 (1C, d, J_{C-31P} 4.8Hz, C6), 68.2 (1C, C5'), 68.4 (1C, C4'), 68.4 (1C, C4), 68.7 (1C, d, J_{C-31P} 7.6Hz, C5), 69.5 (1C, C2'), 69.7 (1C, C2), 69.9 (1C, C3'), 70.1 (1C, C3), 92.5 (1C, C1'), 92.8 (1C, C1), 120.0 (2C, d, J_{C-31P} 2.9Hz, ArC_{ortho}), 120.0 (2C, d, J_{C-31P} 2.9Hz, ArC_{ortho}), 125.5 (2C, ArC_{para}), 129.8 (4C, ArC_{meta}), 150.3 (1C, d, J_{C-31P} 5.7Hz, ArC_{ipso}), 150.4 (1C, d, J_{C-31P} 4.8Hz, ArC_{ipso}), 169.3, 169.5, 169.5, 169.6, 170.0, 170.0, 170.6 (7 x 1C, 7 x C=O); ³¹P{¹H} NMR (162MHz, CDCl₃) δ ppm -11.8 (1P, P(O)(OPh)₂); FT-IR (thin film) υ 1241 (P=O), 1723 (C=O); HRMS (ES⁺) m/z 891.2083 [M + Na]⁺ (required 891.2083).

6,6'-O-di(diphenoxyphosphoryl), 2,2',3,3',4,4'-O-acetyl-D-trehalose (12)

R_f 0.33 (2 ethyl acetate : 1 petrol), $[α]_D^{19}$ +80.4 (c = 1.0, CHCl₃); ¹H NMR (500MHz, CDCl₃) δ ppm 2.02, 2.03, 2.04 (3 x 6H, 3 x s, 6 x CH₃), 4.12 (2H, ddd, J_{H4-H5} 10.1Hz, J_{H5-H6a} 6.6Hz, J_{H5-H6b} 2.0Hz, H5), 4.22 (2H, ddd, $J_{H6a-H6b}$ 11.1Hz, $J_{H6b-31P}$ 6.6Hz, J_{H5-H6b} 2.2Hz, H6b), 4.29 (2H, ddd, $J_{H6a-H6b}$ 11.4Hz, $J_{H6a-31P}$ 6.6Hz, J_{H5-H6a} 5.4Hz, H6a), 4.96 (2H, dd, J_{H2-H3} 10.2Hz, J_{H1-H2} 3.9Hz, H2), 5.00 (2H, d, J_{H1-H2} 3.8Hz, H1), 5.03 (2H, dd, J_{H4-H5} 10.2, J_{H3-H4} 9.3Hz, H4), 5.43 (2H, dd, J_{H2-H3} 10.1Hz, J_{H3-H4} 9.5Hz, H3), 7.16-7.22 (12H, m, ArH_{ortho}, ArH_{para}), 7.32-7.36 (8H, m, ArH_{meta}); ¹³C NMR (126MHz, CDCl₃) δ ppm 20.5, 20.6, 20.7 (3 x 2C, CH₃), 66.6 (2C, d, J_{C6-31P} 5.7Hz, C6), 68.3 (2C, C4), 68.7 (2C, d, J_{C5-31P} 8.6Hz, C5), 69.3 (2C, C2), 70.1 (2C, C3), 93.0 (2C, C1), 120.0 (8C, d, J_{C-31P} 4.8Hz, ArC_{ortho}), 125.5 (4C, ArC_{para}), 129.8 (8C, ArC_{meta}), 150.3 (2C, d, J_{C-31P} 6.7Hz, ArC_{ipso}), 150.4 (2C, d, J_{C-31P} 7.6Hz, ArC_{ipso}), 169.3, 169.4, 170.0 (3 x 2C, C=O); ³¹P{¹H} NMR (162MHz, CDCl₃) δ ppm -11.9 (1P, P(O)(OPh)₂); FT-IR (thin film) υ 1248 (P=O), 1755 (C=O); HRMS m/z (ES⁺) 1081.23 (100%), 1082.23 (52%), 1083.24 (17%), 1084.24 (4%) required 1081.23 (100%), 1082.23 (53%), 1083.23 (19%), 1084.24 (5%).

6-O-ditertbutyldiphenylsilyl, 2,2',3,3',4,4',6'-acetyl-D-trehalose (13)

 $R_f 0.17$ (2 petrol : 1 ethyl acetate), $[\alpha]_D^{25}$ +119.4 (c = 1.0, CHCl₃), m.p. 154-156°C (ethyl acetate/petrol); ¹H NMR (500MHz, CDCl₃) δ ppm 1.03 (9H, s, ^tBu), 1.92, 1.96, 2.01, 2.04, 2.05, 2.10, 2.10 (7 x 3H, 7 x s, 7 x OAc), 3.65 (2H, ad, J 3.2Hz, H6'a, H6'b), 3.94 (1H, dt, J_{H4'-H5'} 10.2Hz, J_{H5'-H6'a} 3.0Hz, J_{H5'-H6'b} 3.0Hz, H5'), 4.04 (1H, dd, J_{H6a-H6b} 12.0Hz, J_{H5-H6b} 1.9Hz, H6b), 4.07 (1H, ddd, J_{H4-H5} 10.4Hz, J_{H5-H6a} 5.5Hz, J_{H5-H6b} 2.0Hz, H5), 4.24 (1H, dd, J_{H6a-H6b} 11.8Hz, J_{H5-H6a} 5.2Hz, H6a), 5.03 (1H, dd, J_{H2-H3} 10.2Hz, J_{H1-H2} 3.9Hz, H2), 5.06 (1H, t, J_{H3-H4} 8.7Hz, J_{H4-H5} 8.7Hz, H4), 5.06 (1H, dd, J_{H2'-H3'} 10.7Hz, J_{H1'-H2'} 3.5Hz, H2'), 5.26 (1H, t, J_{H3'-H4'} 9.8Hz, J_{H4'-H5'} 9.8Hz, H4'), 5.25 (1H, d, J_{H1'-H2'} 3.8Hz, H1'), 5.32 (1H, d, J_{H1-H2} 4.1Hz, H1), 5.47 (1H, t, J_{H2-H3} 9.8Hz, J_{H3-H4} 9.8Hz, H3), 5.49 (1H, t, J_{H2'-H3'} 10.1Hz, J_{H3'-H4'} 10.1Hz, H3'), 7.31-7.47 (6H, m, ArH_{ortho}, ArH_{para}), 7.62 (4H, ddd, ³J 10.9Hz, ³J 8.0Hz, ⁴J 1.3Hz, ArH_{meta}); ¹³C NMR (126MHz, CDCl₃) δ ppm 19.1 (1C, <u>C</u>(CH₃)₃), 20.4, 20.6, 20.7 (3 x 1C, 3 x COCH₃), 20.6, 20.6 (2 x 2C, 4 x COCH₃), 26.7 (3C, C(CH₃)₃), 61.8 (1C, C6), 61.8 (1C, C6'), 68.1 (1C, C5), 68.4 (1C, C4'), 68.4 (1C, C4), 69.6 (1C, C2'), 70.1 (1C, C2), 70.2 (1C, C3), 70.4 (1C, C3'), 70.6 (1C, C5'), 92.4 (1C, C1'), 92.5 (1C, C1), 127.7 (4C, ArCortho), 129.8 (2C, ArCpara), 129.8 (2C, ArCpara), 132.8 (2C, ArC_{inso}), 132.8 (2C, ArC_{inso}), 135.6 (2C, ArC_{meta}), 135.6 (2C, ArC_{meta}), 169.3, 169.4, 169.5, 169.7, 169.9, 170.2, 170.6 (7 x 1C, 7 x C=O); FT-IR (KBr disc) v 1754 (C=O); HRMS m/z (ES⁺) 897.2980 [M + Na]⁺ (required 897.2972).

6,6'-O-ditertbutyldiphenylsilyl, 2,2',3,3',4,4'-acetyl-D-trehalose (14)

R_f 0.35 (2 petrol : 1 ethyl acetate), $[α]_D^{25}$ +94.6 (c = 1.4, CHCl₃); ¹H NMR (500MHz, CDCl₃) δ ppm 1.06 (18H, s, 2 x 'Bu), 1.92, 1.96, 2.01 (3 x 6H, 3 x s, 6 x OAc), 3.67 (4H, ad, *J* 3.2Hz, H6a, H6b), 3.93 (2H, dt, *J*_{H4-H5} 10.3Hz, *J*_{H5-H6a} 2.3Hz, *J*_{H5-H6b} 2.3Hz, H5), 5.04 (2H, dd, *J*_{H2-H3} 10.4Hz, *J*_{H1-H2} 3.8Hz, H2), 5.28 (2H, t, *J*_{H3-H4} 9.8Hz, *J*_{H4-H5} 9.8Hz, H4), 5.27 (2H, d, *J*_{H1-H2} 4.1Hz, H1), 5.46 (2H, t, *J*_{H2-H3} 10.1Hz, *J*_{H3-H4} 10.1Hz, H3), 7.34-7.47 (12H, m, ArH_{ortho}, ArH_{para}), 7.64 (8H, ddd, ³*J* 13.7Hz, ³*J* 7.9Hz, ⁴*J* 1.4Hz, ArH_{meta}); ¹³C NMR (126MHz, CDCl₃) δ ppm 19.2 (2C, C(CH₃)₃), 20.5, 20.6, 20.7 (3 x 2C, 6 x CO<u>C</u>H₃), 26.7 (6C, C(<u>C</u>H₃)₃), 61.8 (2C, C6), 68.4 (2C, C4), 69.9 (2C, C2), 70.5 (2C, C5), 70.8 (2C, C3), 92.6 (2C, C1), 127.7 (8C, ArC_{ortho}), 129.8 (2C, ArC_{para}), 132.8 (2C, ArC_{ipso}), 132.9 (2C, ArC_{ipso}), 135.6 (4C, ArC_{meta}), 169.3, 169.6, 170.2 (3 x 2C, 6 x C=O); FT-IR (KBr disc) υ 1756 (C=O); HRMS m/z (ES⁺) [M + Na]⁺ peaks 1790.55 (100%), 1791.56 (84%), 1792.56 (44%), 1793.56 (18%), 1794.57 (6%); elemental C (57.72%) H (6.25%), required C (57.65%) H (6.22%).

5. NMR spectra

Chemical Shift (ppm)

0

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

Frequency (MHz)	162.00
Nucleus	31P
Number of Transients	32
Origin	av400
Pulse Sequence	zgpg30
Receiver Gain	18390.40
SW(cyclical) (Hz)	64935.07
Solvent	MeOD
Spectrum Offset (Hz)	-8126.5610
Sweep Width (Hz)	64933.09
Temperature (degree C)	27.000

												1	1				mmini		тин
45	40	35	30	25	20	15	10	5	0	-5	-10	-15	-20	-25	-30	-35	-40	-45	-50
								Cher	nical Sh	ift (ppm)									

and a state

-11.98

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

-35

-40

-45

-50

Sweep Width (Hz)	64933.
Temperature (degree C)	27.000

2
<u> </u>
N
~

														1					
n ha an														i in the second se		an in the second se			
45	40	35	30	25	20	15	10	5	0	-5	-10	-15	-20	-25	-30	-35	-40	-45	-50

2.07 2.07 2.04 2.02

[169.55 169.56 169.52		-92.17	69.88 69.79 68.47 68.13	61.68	L20.64
AcO _{ACO} AcO AcO AcO AcO OAc					
Frequency (MHz) Nucleus Number of Transients Origin Pulse Sequence Receiver Gain SW(cyclical) (Hz) Solvent Spectrum Offset (Hz) Sweep Width (Hz) Temperature (degree C)	125.80 13C 256 avc500 zgpg30 1290.00 31250.00 CHLOROFORM-d 12571.3047 31249.05 24.970				

176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0 Chemical Shift (ppm)

ي ال

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

Frequency (MHz)	162.00
Nucleus	31P
Number of Transients	32
Origin	av400
Pulse Sequence	zgpg30
Receiver Gain	23170.50
SW(cyclical) (Hz)	64935.07
Solvent	CHLOROFORM-d
Spectrum Offset (Hz)	-8099.8774
Sweep Width (Hz)	64933.09
Temperature (degree C)	27.000

											J								
www.	Heliopen and a second			initate history and a state			alian a share a		hill the second second	un and a state of the state of	handhannahala	idhyliiwyny pilylaidy	l a frank a banding and a start		had an transformation	Human al and and an			
					1														пп
45	40	35	30	25	20	15	10	5	Ó	-5	-10	-15	-20	-25	-30	-35	-40	-45	-50
								Che	emical Shit	ft (ppm)									

-11.84

1.0

0

0.5

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

9.5

9.0

TTT T

8.5

8.0

1

5.5

ㅠㅠ

4.0

4.5

Chemical Shift (ppm)

11111

3.5

3.0

1111

6.5

7.0

Т

1111

6.0

2.0

1.5

2.5

1.0

0

0.5

80000000000000000000000000000000000000	03 05 05 23 28 48	92 92 93 93 94 95 95 95 95 95 95 95 95	00 100 100
		\vec{n}	277
	או אורך הד		

8

6. References

- (1) Vervoort, N. Daemen, D. Török, G. J. Chromatogr. A., 2008, 1189, 92.
- (2) Viebel, Biochem. Z., 1931, 239, 350
- (3) Fernández, J.M.G. Mellet, C.O. Blanco, J.L.J. Mota, J.F. Gadelle, A. Coste-Sarguet, A.Defaye J. *Carbohydr. Res.*, **2005**, 268, 57.
- (4) Chittenden, G.J.F. Carbohydr. Res., 1969, 9, 323.