Supplementary Information for:

Gelatin as a Bioorganic Reductant, Ligand and Support for Palladium Nanoparticles. Application as a Catalyst for Ligand- and Amine-Free Sonogashira-Hagihara Reaction

Habib Firouzabadi,*^a Nasser Iranpoor*^a and Arash Ghaderi^a

^aDepartment of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran. Tel: +98 711 2284822; Fax: +98 711 2280926 E-mail: <u>firouzabadi@chem.susc.ac.ir</u>, <u>iranpoor@chem.susc.ac.ir</u>

TABLE OF CONTENTS

Contents	Page
Instrumentation, Analysis and Starting Materials	
Experimental	
Figure S1. Close view of the TEM picture of the freshly prepared palladium na	noparticles
supported on gelatin	
Spectral data	5
References	

Instrumentation, Analysis and Starting Materials:

Experimental:

General: All chemicals were purchased from Merck, Fluka or acros companies and used without any further purification. NMR spectra were recorded with a Bruker Avance DPX- 250 spectrometer (¹H NMR 250 MHz and ¹³C NMR 62.9 MHz) in pure deuteriated chloroform with tetramethylsilane (TMS) as the internal standard. UV spectra (PerkinElmer, Lambda 25, UV/Vis spectrometer) were used to ensure the complete conversion of Pd(II) to Pd(0). Scanning electron micrographs were obtained by SEM (SEM, XL-30 FEG SEM, Philips, at 20 KV). Transmission electron microscope, TEM (Philips CM10) was also used to obtain TEM images. X-ray diffraction (XRD, D8, Advance, Bruker, axs) spectra were used to characterize the heterogeneous catalyst. Atomic force microscope, AFM (DME, Dual ScopeTM DS 95-200-E) was also used to obtain AFM images. Palladium content was measured by ICP analyzer (Varian, Vistapro) and atomic absorption analysis.

Figure S1. Close view of the TEM picture of the freshly prepared palladium nanoparticles supported on gelatin

Spectral data:

 $(3a)^{1}$

White solid (mp: 58-59 °C); ¹H NMR (CDCl₃, 250 MHz): δ (ppm): 7.35 (m, 6 H), 7.54 (m, 4 H); ¹³C NMR (CDCl₃, 62.9 MHz): δ (ppm): 89.38, 123.27, 128.35, 129.21, 131.61; MS (m/e)= 178 [M⁺]; Elemental Analysis: Calcd. C: 94.33, H: 5.67, Found. C: 94.01, H: 5.66.

¹H NMR of 3a

¹³C NMR of 3a

Mass spectrum of 3a

 $(3b)^{1}$

Yellow solid (mp: 55-56 °C); ¹H NMR (CDCl₃, 250 MHz): δ (ppm): 3.75 (s, 3 H), 6.80 (d, 2 H, J= 10 Hz), 7.18-7.46 (m, 7 H); ¹³C NMR (CDCl₃, 62.9 MHz): δ (ppm): 55.29, 89.22, 98.31, 113.99, 115.38, 123.59, 126.76, 127.91, 128.29, 128.83, 131.44, 133.04, 137.46; MS (m/e)= 208 [M⁺]; Elemental Analysis: Calcd. C: 86.50, H: 5.82, Found. C: 86.31, H: 5.80.

¹H NMR of 3b

¹³C NMR of 3b

Mass spectrum of 3b

 $(3c)^{1}$

Yellow solid (mp: 49-50 °C); ¹H NMR (CDCl₃, 250 MHz): δ (ppm): 2.28 (s, 3 H), 7.07 (dd, 2 H, J= 7.84 Hz, J'= 0.56 Hz), 7.22-7.44 (m, 7 H); ¹³C NMR (CDCl₃, 62.9 MHz): δ (ppm): 21.52, 88.74, 89.58, 123.49, 128.08, 128.33, 128.46, 129.13, 131.51, 131.56, 132.51, 138.39; MS (m/e)= 192 [M⁺]; Elemental Analysis: Calcd. C: 93.70, H: 6.30, Found. C: 93.43, H: 6.28.

¹H NMR of 3c

¹³C NMR of 3c

Mass spectrum of 3c

 $(3d)^{1}$

Viscose pale yellow oil; ¹H NMR (CDCl₃, 250 MHz): δ (ppm): 2.44 (s, 3 H), 7.14-7.46 (m, 9 H); ¹³C NMR (CDCl₃, 62.9 MHz): δ (ppm): 20.75, 86.01, 94.25, 123.01, 125.58, 128.17, 128.30, 128.35, 129.46, 131.51, 131.83, 140.19; MS (m/e)= 192 [M⁺]; Elemental Analysis: Calcd. C: 93.70, H: 6.30, Found. C: 94.03, H: 6.15.

¹H NMR of 3d

¹³C NMR of 3d

Mass spectrum of 3d

(**3e**)

Yellow solid (mp: 101-102 °C); ¹H NMR (CDCl₃, 250 MHz): δ (ppm): 2.52 (s, 3 H), 7.30-7.32 (m, 3 H), 7.46-7.55 (m, 3 H), 7.93-8.03 (m, 2 H); ¹³C NMR (CDCl₃, 62.9 MHz): δ (ppm): 20.85, 86.64, 98.50, 120.84, 122.35, 124.26, 128.54, 128.95, 130.02, 131.74, 132.38, 141.68, 146.87; MS (m/e)= 237 [M⁺]; Elemental Analysis: Calcd. C: 75.93, H: 4.68, N: 5.90, Found. C: 75.95, H: 4.71, N: 5.89.

¹H NMR of 3e

¹³C NMR of 3e

Mass spectrum of 3e

 $(3g)^{1}$

Viscose yellow oil; ¹H NMR (CDCl₃, 250 MHz): δ (ppm):7.26-7.74 (m, 11 H), 8.36 (d, 1 H, J= 8.2 Hz); ¹³C NMR (CDCl₃, 62.9 MHz): δ (ppm): 87.59, 94.37, 120.94, 123.45, 125.32, 125.66, 126.26, 126.47, 126.82, 128.35, 128.43, 128.47, 128.81, 130.41, 131.71, 133.25, 133.31, 141.16; MS (m/e)= 228 [M⁺]; Elemental Analysis: Calcd. C: 94.69, H: 5.31, Found. C: 94.83, H: 5.61.

¹H NMR of 3g

¹³C NMR of 3g

Mass spectrum of 3g

 $(3h)^{1}$

Yellow solid (mp: 121-122 °C); ¹H NMR (CDCl₃, 250 MHz): δ (ppm): 7.31-7.59 (m, 7 H), 8.12 (d, 2 H, J= 7.5 Hz); ¹³C NMR (CDCl₃, 62.9 MHz): δ (ppm): 87.55, 94.71, 122.09, 123.63, 124.83, 128.54, 129.28, 130.25, 131.84, 132.26, 138.64, 146.95; MS (m/e)= 224 [M⁺]; Elemental Analysis: Calcd. C: 75.32, H: 4.07, N: 6.27, Found. C: 75.52, H: 4.02, N: 6.03.

¹H NMR of 3h

¹³C NMR of 3h

Mass spectrum of 3h

 $(3i)^{1}$

¹H NMR (CDCl₃, 250 MHz): δ (ppm): 7.26-7.52 (m, 9 H); ¹³C NMR (CDCl₃, 62.9 MHz): δ (ppm):87.75, 93.79, 111.46, 118.53, 122.22, 128.52, 130.89, 131.79, 132.04, 132.29, 132.58; MS (m/e)= 203 [M⁺]; Elemental Analysis: Calcd. C: 88.64, H: 4.47, N: 6.89, Found. C: 88.50, H: 4.18, N: 6.53.

¹H NMR of 3i

¹³C NMR of 3i

Mass spectrum of 3i

 $(3j)^{2}$

Dark yellow oil; ¹H NMR (CDCl₃, 250 MHz): δ (ppm): 7.29-7.32 (m, 3 H), 7.45-7.48 (m, 2 H), 8.77 (s, 2 H), 9.06 (s, 1 H); ¹³C NMR (CDCl₃, 62.9 MHz): δ (ppm): 82.32, 96.30, 119.91, 121.75, 129.12, 131.76, 139.38, 156.66, 158.59; MS (m/e)= 180 [M⁺]; Elemental Analysis: Calcd. C: 79.98, H: 4.48, N: 15.54, Found. C: 79.99, H: 4.77, N: 15.54.

¹H NMR of 3j

¹³C NMR of 3j

Mass spectrum of 3j

 $(3k)^{3}$

¹H NMR (CDCl₃, 250 MHz): δ (ppm): 7.29 (m, 4 H), 7.45 (m, 2 H), 7.70 (m, 2H), 8.45 (m, 2 H), 8.68 (s, 1 H); ¹³C NMR (CDCl₃, 62.9 MHz): δ (ppm): 85.90, 92.71, 120.50, 122.48, 123.06, 128.45, 128.82, 131.68, 138.49, 148.44, 152.14; MS (m/e)= 179 [M⁺]; Elemental Analysis: Calcd. C: 87.12, H: 5.07, N: 7.81, Found. C: 87.47, H: 4.89, N: 7.73.

¹H NMR of 3k

¹³C NMR of 3k

Mass spectrum of 3k

(3l)³

Viscose yellow oil; ¹H NMR (CDCl₃, 250 MHz): δ (ppm): 7.01-7.68 (m, 8 H); ¹³C NMR (CDCl₃, 62.9 MHz): δ (ppm): 87.30, 94.51, 128.33, 128.43, 129.20, 131.51, 132.50; MS (m/e)= 184 [M⁺]; Elemental Analysis: Calcd. C: 78.22, H: 4.39, Found. C: 78.43, H: 4.08.

¹H NMR of 3l

¹³C NMR of 31

Mass spectrum of 31

 $(3m)^4$

¹H NMR (CDCl₃, 250 MHz): δ (ppm): 6.31 (d, 1 H, J= 16.25 Hz), 6.97 (d, 1 H, J= 16.25 Hz), 7.18-7.61 (m, 10 H); ¹³C NMR (CDCl₃, 62.9 MHz): δ (ppm): 85.00, 97.12, 108.17, 126.30, 128.18, 128.33, 128.62, 128.73, 131.50, 141.25; MS (m/e)= 204 [M⁺]; Elemental Analysis: Calcd. C: 94.07, H: 5.93, Found. C: 93.85, H: 6.06.

¹H NMR of 3m

¹³C NMR of 3m

Mass spectrum of 3m

References:

- 1. J. C. Hierso, J. Boudon, M. Picquet and P. Meunier, Eur. J. Org. Chem., 2007, 583.
- H. Firouzabadi, N. Iranpoor and M. Gholinejad, J. Mol. Catal. A: Chem., 2010, 321, 110.
- 3. F. Yang, X. Cui, Y. Li, J. Zhang, G. Ren and Y. Wu, *Tetrahedron*, 2007, **63**, 1963.
- 4. M. Rubina and V. Gevorgyan, J. Am. Chem. Soc., 2001, **123**, 11107.