Total Synthesis of *cis*-Reticulatacin-10-ones A and B: Absolute Stereochemical Assignment

Sherif B. Abdel Ghani, Lynda J. Brown, Bruno Figadère, and Richard C. D. Brown*

*Corresponding author rcb1@soton.ac.uk; FAX: +44 (0)23 80593781

Contents		Page
1.0 General methods		SI 2
2.0	Preparation of compounds	SI 3
2.1	$6\text{-}Bromo-\textit{N}\text{-}methoxy-\textit{N}\text{-}methyhexanamide} \text{ (contains} \sim 20\% \text{ 6-chloro-}\textit{N}\text{-}methyhexanamide) \\$	SI 3
2.2	1-Bromotridec-12-en-6-one (9) (contains ~ 20% 1-chlorotridec-12-en-6-one)	SI 4
2.3	1-Bromotridec-12-en-6-ol (contains ~ 20% 1-chlorotridec-12-en-6-ol)	SI 5
2.4	(±)-1-(Phenylsulfonyl)tridec-12-en-6-ol (6)	SI 6
2.5	$(1S, 3R/S, 8R/S) - 1 - [(2S, 5R) - Tetrahydro - 5 - ((1R) - 1 - hydroxytridecyl) furan - 2 - yl] - 3 - (phenylsulfonyl) pentadec - 14 - ene - 1, 8 - diol^{\Psi}$	SI 7
2.6	(1S, 8R/S)-1-[$(2S, 5R)$ -Tetrahydro-5-($(1R)$ 1-hydroxytridecyl)furan-2-yl]pentadec-14-ene-1,8-diol (10B/A , ratio ~ 1:9)	SI 8
2.7	$(15S)$ -15- $[(2S,5R)$ -Tetrahydro-5- $((1R)$ 1-hydroxytridecyl)furan-2-yl]-15-hydroxypentadec-1-en-8-one ^{Ψ}	SI 9
2.8	(4 <i>E</i>)-4,5-Didehydro- <i>cis</i> -reticulatacin-10-one B/A (11B/A, dr \sim 9:1)	SI 10
2.9	<i>cis</i> -Reticulatacin-10-one B/A (4B /A, dr \sim 9:1)	SI 12
3.0	NMR Spectra	SI 3
3.1	1 H NMR 6-Bromo- <i>N</i> -methoxy- <i>N</i> -methyhexanamide (contains ~ 20% 6-chloro- <i>N</i> -methoxy- <i>N</i> -methyhexanamide)	SI 13
3.2	13 C NMR 6-Bromo- <i>N</i> -methoxy- <i>N</i> -methyhexanamide (contains ~ 20% 6-chloro- <i>N</i> -methoxy- <i>N</i> -methyhexanamide)	SI 14
3.3	¹ H NMR 1-Bromotridec-12-en-6-one (9) (contains ~ 20% 1-chlorotridec-12-en-6-one)	SI 15
3.4	¹³ C NMR 1-Bromotridec-12-en-6-one (9) (contains ~ 20% 1-chlorotridec-12-en-6-one)	SI 16
3.5	¹ H NMR 1-Bromotridec-12-en-6-ol (contains ~ 20% 1-chlorotridec-12-en-6-ol)	SI 17
3.6	¹³ C NMR 1-Bromotridec-12-en-6-ol (contains ~ 20% 1-chlorotridec-12-en-6-ol)	SI 18
3.7	¹ H NMR (±)-1-(Phenylsulfonyl)tridec-12-en-6-ol (6)	SI 19
3.8	¹³ C NMR (±)-1-(Phenylsulfonyl)tridec-12-en-6-ol (6)	SI 20
3.9	¹ H NMR (1 <i>S</i> ,3 <i>R</i> / <i>S</i> ,8 <i>R</i> / <i>S</i>)-1-[(2 <i>S</i> ,5 <i>R</i>)-Tetrahydro-5-((1 <i>R</i>)-1-hydroxytridecyl)furan-2-yl]-3-(phenylsulfonyl)pentadec-	SI 21
	14-ene-1,8-diol ^{Ψ}	51 -1
3.10	¹³ C NMR (1 <i>S</i> ,3 <i>R</i> / <i>S</i> ,8 <i>R</i> / <i>S</i>)-1-[(2 <i>S</i> ,5 <i>R</i>)-Tetrahydro-5-((1 <i>R</i>)-1-hydroxytridecyl)furan-2-yl]-3-(phenylsulfonyl)pentadec- 14-ene-1,8-diol ^Ψ	SI 22
3.11	¹ H NMR (1 <i>S</i> ,8 <i>R/S</i>)-1-[(2 <i>S</i> ,5 <i>R</i>)-Tetrahydro-5-((1 <i>R</i>)1-hydroxytridecyl)furan-2-yl]pentadec-14-ene-1,8-diol (10A/B, ratio ~ 1:9)	SI 23

 $^{^{\}Psi}$ Mixture of A and B isomers in a ratio of 1:9

3.12	¹³ C NMR ($1S,8R/S$)-1-[($2S,5R$)-Tetrahydro-5-(($1R$)1-hydroxytridecyl)furan-2-yl]pentadec-14-ene-1,8-diol (10A/B , ratio ~ 1:9)	SI 24
3.13	¹ H NMR (15S)-15-[(2S,5R)-Tetrahydro-5-((1R)1-hydroxytridecyl)furan-2-yl]-15-hydroxypentadec-1-en-8-one ^{Ψ}	SI 25
3.14	13 C NMR (15 <i>S</i>)-15-[(2 <i>S</i> ,5 <i>R</i>)-Tetrahydro-5-((1 <i>R</i>)1-hydroxytridecyl)furan-2-yl]-15-hydroxypentadec-1-en-8-one ^{Ψ}	SI 26
3.15	¹ H NMR (4 <i>E</i>)-4,5-Didehydro- <i>cis</i> -reticulatacin-10-one A/B (11A/B , dr \sim 1:9)	SI 27
3.16	¹ H NMR (4 <i>E</i>)-4,5-Didehydro- <i>cis</i> -reticulatacin-10-one A/B (11A/B , dr \sim 1:9)	SI 28
3.17	¹³ C NMR (4 <i>E</i>)-4,5-Didehydro- <i>cis</i> -reticulatacin-10-one A/B (11A/B , dr \sim 1:9)	SI 29
3.18	¹ H NMR (R ,2 Z ,5 E)-4-Nitrobenzyl 18-(($2R$,5 S)-tetrahydro-5-((S)-1-hydroxyheptyl)furan-2-yl)-18-hydroxy-3-((S)-1-hydroxyethyl)-11-oxooctadeca-2,5-dienoate (dr ~ 1:9)	SI 30
3.19	¹³ C NMR (R ,2 Z ,5 E)-4-Nitrobenzyl 18-(($2R$,5 S)-tetrahydro-5-((S)-1-hydroxyheptyl)furan-2-yl)-18-hydroxy-3-((S)-1-hydroxyethyl)-11-oxooctadeca-2,5-dienoate (dr ~ 1:9)	SI 31
3.20	¹ H NMR <i>cis</i> -Reticulatacin-10-one A/B ($4A/B$, dr ~ 1:9)	SI 32
3.21	¹ H NMR <i>cis</i> -Reticulatacin-10-one A/B ($4A/B$, dr ~ 1:9)	SI 33
3.22	¹³ C NMR <i>cis</i> -Reticulatacin-10-one A/B ($4A/B$, dr ~ 1:9)	SI 34
3.23	¹ H NMR hydrazone byproduct	SI 35
3.24	Mass spectrum of hydrazone byproduct	SI 36
4.0	Chromatograms	SI 36
4.1	Chiral HPLC chromatogram of synthetic <i>cis</i> -reticulatacin-10-one A/B (4A/B, dr ~ 1:9)	SI 36
4.2	Chiral HPLC chromatogram of natural <i>cis</i> -reticulatacin-10-one A/B (4A/B)	SI 37
4.3	Overlay of chiral HPLC chromatograms of natural <i>cis</i> -reticulatacin-10-one A/B (4A/B) synthetic <i>cis</i> -reticulatacin- 10-one A/B (4A/B, dr ~ 1:9)	SI 37

1.0 General methods

All reactions were carried out under an inert atmosphere in oven dried glassware. THF and Et₂O were distilled from sodium and benzophenone prior to use. Triethylamine and dichloromethane were dried by distillation from CaH₂. ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ solution using Bruker AC300, AV300 (300 and 75 MHz respectively) or Bruker DPX400 (400 and 100 MHz respectively) spectrometers. Chemical shifts are reported in δ units using CHCl₃ as an internal standard (δ 7.27 ppm ¹H, δ 77.15 ppm ¹³C respectively). Infrared spectra were recorded on a Nicolet 380 spectrometer fitted with a Diamond platform, as solids or neat liquids. Melting points are uncorrected. Electron impact and chemical ionisation mass spectra were obtained using a Fisons VG platform single quadropole mass spectrometer. Electrospray mass spectra were obtained using a Micromass platform mass analyser with an electrospray ion source. Chiral HPLC separations were performed on a Agilent 1120 Compact LC using a Chiral CD-Ph column (4.6 x 250 mm) eluting with isopropanol:hexane (1:4, 1 mL/min), monitored by UV detection at 210 nm.

2.0 Preparation of Compounds

2.1 6-Bromo-*N*-methoxy-*N*-methyhexanamide (contains ~ 20% 6-chloro-*N*-methoxy-*N*-methy hexanamide)

To a stirred suspension of *O*,*N*-dimethylhydroxylamine hydrochloride (2.73 g, 27.98 mmol) in anhydrous CH₂Cl₂ (60 mL), 6-bromohexanoyl chloride (**8**, 5.00 g, 23.4 mmol) was added slowly, followed by dropwise addition of *i*-Pr₂NEt (9 mL, 51.6 mmol) at 0 °C. The solution was allowed to warm to rt, then stirred at rt for 4 h before dilution with CH₂Cl₂. The reaction mixture was washed with 1 N HCl (3 x 50 mL), brine (25 mL) and dried (MgSO₄) followed by concentration *in vacuo* affording the title Weinreb amide as a mixture (~4:1) with the corresponding alkyl chloride (5.30 g, 27.7 mmol, 99%).* IR v_{max} (neat)/cm⁻¹ 2937 (s), 2865 (s), 1658 (s), 1460 (s), 1415 (m), 997 (s); ¹H-NMR (300 MHz, CDCl₃) δ 3.66 (3H, s, NOCH₃), 3.39 (2H, t, *J* = 6.7 Hz, CH₂Br), 3.15 (3H, s, NCH₃), 2.41 (2H, t, *J* = 7.4 Hz, CH₂CON-), 1.87 (2H, quintet, *J* = 7.0 Hz, CH₂), 1.64 (2H, quintet, *J* = 7.1 Hz, CH₂), 1.51-1.42 (2H, m, CH₂); [selected signals for the alkyl chloride: 3.52 (2H, t, *J* = 6.7 Hz, CH₂Cl), 1.83-1.77 (m, CH₂)]; ¹³C-NMR (75 MHz, CDCl₃) δ 174.4 (C=O), 61.3 (OCH₃), 33.6 (CH₂), 32.6 (CH₂), 27.7 (CH₂), 23.7 (NCH₃); [selected signals for the alkyl chloride: 44.9 (CH₂), 33.5 (CH₂), 32.5 (CH₂), 27.7 (CH₂), 23.9 (NCH₃)]; LRMS (EI⁺) *m*/*z* 238 ([M+H]⁺), 158 ([M-halide]⁺); HRMS (ES⁺) *m*/*z* C₈H₁₆BrNNaO₂ Calcd. 260.026, found 260.028.

*Yield calculated based on a 4:1 mixture of bromide and chloride

2.2 1-Bromotridec-12-en-6-one (9) (contains ~ 20% 1-chlorotridec-12-en-6-one)

At -40 °C hept-7-enylmagnesium bromide in THF (30 mL of a 1.0 M solution, 30 mmol) was added dropwise to a solution of 6-bromo-*N*-methoxy-*N*-methyhexanamide* (2.10 g, 9.17 mmol)* in THF (25 mL). The mixture was left to stir at -35 °C for 2 h. The reaction was quenched at -35 °C by dropwise addition of cold water, then allowed to warm to rt. The mixture was extracted with ether (3 x 30 mL). The combined organic extract was washed with 1 N H₂SO₄ solution (20 mL) then water, brine, dried (MgSO₄) and concentrated *in vacuo* to give a colourless oil. Purification by silica gel column chromatography (Et₂O/hexane, 1:19 \rightarrow 1:9) gave the haloketones as a colourless oil (1.452 g, 5.41 mmol, 59%).* IR v_{max} (neat)/cm⁻¹ 2931 (s), 2857 (s), 1712 (s), 1640 (s), 1460 (s), 1412 (m), 994 (s), 911 (s); ¹H-NMR (300 MHz, CDCl₃) δ 5.77 (1H, tdd, *J* = 6.8, 10.2, 17.0 Hz, C<u>H</u>=CH₂), 5.02-4.87 (2H, m, CH=CH₂), 3.38 (2H, t, *J* = 6.7 Hz, CH₂Br), 2.39 (4H, q, *J* = 7.3 Hz, C<u>H₂C=OCH₂), 2.03 (2H, q, *J* = 6.8 Hz, C<u>H₂CH=CH₂), 1.90-1.80 (2H, m, CH₂CH₂Br), 1.65-1.49 (4H, m, CH₂), 1.41-1.20 (6H, m, CH₂); [selected signals for the alkyl chloride: 3.51 (2H, t, *J* = 6.6 Hz, CH₂Cl), 1.81-1.75 (2H, m, CH₂]; ¹³C-NMR (75 MHz, CDCl₃) δ 210.8 (C=O), 138.8 (<u>C</u>H=CH₂), 114.4 (CH=<u>C</u>H₂), 42.8 (CH₂), 42.4 (CH₂), 33.6 (CH₂), 32.6 (CH₂), 28.7 (CH₂), 27.8 (CH₂), 23.7 (CH₂), 22.9 (CH₂) [selected signals for the alkyl chloride: 44.8 (CH₂Cl), 32.4 (CH₂), 26.5 (CH₂), 23.1 (CH₂)]; LRMS (CI⁺ *m/z* 275 ([M+H]⁺), 195 ([M-halide]⁺); HRMS (ES⁺) *m/z* C₁₃H₂₃BrNaO Calcd. 297.083, found 297.083.</u></u>

*Amounts and yields calculated based on a 4:1 mixture of bromide and chloride

2.3 1-Bromotridec-12-en-6-ol (contains ~ 20% 1-chlorotridec-12-en-6-ol)

To a solution of the ketone (9, 30 mg, 0.112 mmol)* in EtOH (1 mL) was added NaBH₄ (12 mg, 0.33 mmol) at 0 °C. The reaction was left to warm to rt. After 30 min 1 N HCl was added dropwise to the reaction mixture [**CAUTION:** evolution of H₂ gas]. The mixture was extracted with ether (2 x 10 mL). The combined organic extract was washed with water, brine, then dried (MgSO₄) and concentrated *in vacuo*. Purification by silica gel column chromatography (EtOAc/hexane, 1:19 \rightarrow 1:9) gave the title alcohol as a colourless oil (29.9 mg, 0.112 mmol, 100%).* IR *v_{max}* (neat)/cm⁻¹ 3347 (br), 2927 (s), 2855 (s), 1640 (s), 1460 (s), 994 (s), 909 (s); ¹H-NMR (400 MHz, CDCl₃) δ 5.81 (1H, tdd, *J* = 6.5, 10.3, 17.1 Hz, CH=CH₂), 5.00 (1H, d, *J* = 17.1 Hz, CH=CHH), 4.94 (1H, d, *J* = 10.3 Hz, CH=CHH), 3.59 (1H, m, CHOH), 3.41 (2H, t, *J* = 6.8 Hz, CH₂Br), 2.10-2.00 (2H, m, CH₂CH=CH₂), 1.90-1.80 (2H, m, CH₂CH₂Br), 1.55-1.25 (14H, m) [selected signals for the alkyl chloride: 3.56 (2H, t, *J* = 6.7 Hz, CH₂Cl), 1.83-1.77 (2H, m, CH₂), 33.8 (CH₂), 32.8 (CH₂), 29.2 (CH₂), 28.9 (CH₂), 28.3 (CH₂), 25.6 (CH₂), 24.9 (CH₂) [selected signals for the alkyl chloride: 45.2 (CH₂Br), 37.4 (CH₂), 32.7 (CH₂), 27.1 (CH₂), 25.1 (CH₂)]; LRMS (EI⁺) *m/z* 277 ([M+H]⁺).

*Amounts and yields calculated based on a 4:1 mixture of bromide and chloride

2.4 (±)-1-(Phenylsulfonyl)tridec-12-en-6-ol (6)

To a stirred solution of the 1-bromotridec-12-en-6-ol (120 mg, 0.45 mmol)* in dry DMF (2 mL) at rt, was added PhSO₂Na (78 mg, 0.47 mmol). The reaction mixture was heated a 60 °C for 5 h. The cooled reaction mixture was partitioned between ether and water. The combined ether extract was washed with 1 N HCl (aq), water, brine, then dried (MgSO₄) and concentrated *in vacuo* to give a cloudy oil. Purification by silica gel column chromatography (EtOAc/hexane, 2:8 \rightarrow 3:7) gave the title sulfone as a colourless oil (125 mg, 0.37 mmol, 82%). IR v_{max} (neat)/cm⁻¹ 3526 (br), 2927 (s), 2855 (s), 1639 (s), 1447 (s), 1303 (s), 1144 (s), 1086 (s); ¹H-NMR (400 MHz, CDCl₃) δ 7.90 (2H, d, *J* = 7.8 Hz), 7.65 (1H, t, *J* = 7.5 Hz), 7.56 (2H, t, *J* = 7.5 Hz), 5.80 (1H, m, tdd, *J* = 6.8, 10.0, 17.1 Hz, CH=CH₂), 4.98 (1H, d, *J* = 17.1 Hz, CH=CH_H), 4.92 (1H, d, *J* = 10.0 Hz, CH=CH_H), 3.53 (1H, m, CHOH), 3.07 (2H, m, CH₂SO₂), 2.03 (2H, q, *J* = 6.8 Hz, CH₂CH=CH₂), 1.77-1.67 (2H, m, CH₂CH₂S), 1.48-1.20 (14H, m); ¹³C-NMR (100 MHz, CDCl₃) δ 139.3 (CSO₂), 139.1 (CH=CH₂), 133.6 (CH), 129.3 (CH), 128.1 (CH), 114.3 (CH=<u>C</u>H₂), 71.6 (CHOH), 56.2 (CH₂), 37.5 (CH₂), 37.0 (CH₂), 33.7 (CH₂), 29.1 (CH₂), 28.9 (CH₂), 28.3 (CH₂), 25.5 (CH₂), 25.1 (CH₂), 22.7 (CH₂); LRMS (Cl⁺) *m*/z 361.2 ([M+Na]⁺).

*Amounts calculated based on a 4:1 mixture of bromide and chloride

2.5 (1*S*,3*R*/*S*,8*R*/*S*)-1-[(2*S*,5*R*)-Tetrahydro-5-((1*R*)-1-hydroxytridecyl)furan-2-yl]-3-(phenylsulfonyl)pentadec-14-ene-1,8-diol (mixture of B/A isomers ~1:9)

To a solution of the sulfone 6 (300 mg, 0.891 mmol) in dry THF (10 mL) at -78 °C, was added *n*-BuLi (730 µL of 2.45 M in hexane, 1.76 mmol) dropwise. The reaction mixture left to stir at -78 °C for 30 min before adding BF₃•Et₂O (225 µL, 1.76 mmol). The mixture was left to stir at -78 °C for 30 min, then a solution of enantiomeric epoxides (5 B/A, er ~ 9:1, 138.6 mg, 0.444 mmol) in THF (1 mL) was added dropwise. The mixture was left to stir at -78 °C for 1 h, then the cooling bath was removed and the reaction was allowed to warm to rt. Aqueous 1 N HCl (10 mL) was added dropwise, and the mixture was extracted with EtOAc (3 x 20 mL). The combined organic extract was washed with water, brine, then dried (MgSO₄) and concentrated *in vacuo*. Purification by silica gel column chromatography (EtOAc/hexane, $2:8\rightarrow 3:7$) gave a mixture of diastereoisomeric sulfones as a colourless oil (160 mg, 0.246 mmol, 55%). IR v_{max} (neat)/cm⁻¹ 3381 (br), 2923 (s), 2853 (s), 1464 (s), 1447 (s), 1301 (s), 1143 (s), 1084 (s); ¹H-NMR (300 MHz, CDCl₃) δ 7.89 (2H, d, J = 7.7 Hz), 7.64 (1H, t, J = 6.9 Hz), 7.55 (2H, t, J = 7.4 Hz), 5.80 (1H, m, CH=CH₂), 5.02-4.91 (2H, m, CH=CH₂), 3.90-3.70 (2H, m, CHO x 2), 3.60-3.48 (2H, m, CHOH x 2), 3.47-3.30 (2H, m), 2.10-1.70 (10H, m), 1.55-1.20 (39H, m), 0.92 (3H, t, J = 6.4 Hz, CH₃); ¹³C-NMR (75 MHz, CDCl₃) [multiple signals observed due to the presence of diastereoisomers] δ 139.1 (C), 138.0 (CH), 133.6 (CH), 129.2 (2CH), 128.9 (2CH), 114.3 (CH₂), 82.6 (CH), 82.4 (CH), 82.3 (CH), 74.1 (CHOH), 72.0 (CHOH), 71.8 (CHOH), 71.6 (CHOH), 71.2 (CHOH), 60.9 (CHSO₂), 37.7 (CH₂), 37.6 (CH₂), 34.7 (CH₂), 33.8 (CH₂), 32.7 (CH₂), 32.0 (CH₂), 29.7 (CH₂), 29.4 (CH₂), 29.2 (CH₂), 28.9 (CH₂), 28.9 (CH₂), 28.1 (CH₂), 26.6 (CH₂), 25.4 (CH₂), 25.3 (CH₂), 22.7 (CH₂), 14.2 (CH₃); LRMS (ES⁺) *m/z* 651.5 $([M+H]^+)$, 673.5 $([M+Na]^+)$.

2.6 (1*S*,8*R*/*S*)-1-[(2*S*,5*R*)-Tetrahydro-5-((1*R*)1-hydroxytridecyl)furan-2-yl]pentadec-14-ene-1,8-diol (10B) (+ 10A, ratio ~ 9:1)

To a solution of 1-tetrahydro-5-(1-hydroxytridecyl)furan-2-yl)-3-(phenylsulfonyl)pentadec-14-ene-1,8-diol (A/B isomers, ratio ~ 1:9) (130 mg, 0.200 mmol) in dry MeOH (5 mL) at 0 °C, was added Na₂HPO₄ (80 mg, 0.56 mmol) and stirred for 2 min before the addition of Na/Hg amalgam 10% (600 mg). The reaction was allowed to warm to rt, left to stir for 3 h, then diluted with ether and dropwise addition of saturated NH₄Cl (aq). The mixture was extracted with EtOAc (4 x 10 mL) and the combined organic solution washed with water, brine, dried (MgSO₄) and concentrated in vacuo. Purification by silica gel column chromatography (EtOAc-hexane, 1:4 \rightarrow 1:1) gave the title isomeric triols as a white solid (83 mg, 0.162 mmol, 81%). $[\alpha]^{27}_{D}$ -0.07 (CHCl₃, c 1.00); Mp 55-58 °C; IR v_{max} (neat)/cm⁻¹ 3381 (br), 2917(s), 2849 (s), 1466 (s), 1308 (s), 1086 (s), 1026 (s); ¹H-NMR (400 MHz, CDCl₃) δ 5.81 (1H, tdd, *J* = 6.8, 10.0, 17.1 Hz, CH=CH₂), 4.99 (1H, qd, *J* = 1.8, 17.1 Hz, CH=CHH), 4.93 (1H, tdd, J = 1.3, 1.8, 10.0, CH=CHH), 3.85-3.78 (2H, m, CHO x 2), 3.62-3.54 (1H, m, CHOH), 3.45-3.38 (2H, m, CHOH x 2), 2.42 (3H, br, OH), 2.05 (2H, tq, J = 1.3, 6.8, CH₂CH=CH₂), 1.98-1.88 (2H, m, CH₂ THF), 1.80-1.71 (2H, m, CH₂ THF) 1.56-1.2 (42H, m), 0.88 (3H, t, J = 6.9 Hz, CH₃); ¹³C-NMR (100 MHz, CDCl₃) δ 139.2 (CH), 114.3 (CH₂), 82.8 (2 x CH), 74.5 (CH), 74.4 (CH), 72.1 (CH), 37.5 (CH), 34.2 (CH₂), 34.1 (CH₂), 33.8 (CH₂), 32.0 (CH₂), 29.8 (CH₂), 29.8 (CH₂), 29.7 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.0 (CH₂), 28.3 (CH₂), 25.8 (CH₂), 25.7 (CH₂), 25.7 (CH₂), 25.6 (CH₂), 22.8 (CH₂), 14.2 (CH₃); LRMS (ES⁺) *m/z* 511.5 ([M+H]⁺), 533.5 ($[M+Na]^+$); HRMS (ES⁺) m/z C₃₂H₆₂NaO₄ Calcd. 533.455, found 533.453.

2.7 (15*S*)-15-[(2*S*,5*R*)-Tetrahydro-5-((1*R*)1-hydroxytridecyl)furan-2-yl]-15-hydroxypentadec-1-en-8-one (+ A isomer, dr ~ 9:1)

At 0 °C, Dess-Martin periodinane (51.1 mg, 0.117 mmol) was added in two batches to a solution of the triols (**10B/A** ratio ~ 9:1, 60 mg, 0.117 mmol) in dry CH₂Cl₂ (2 mL). After 5 h, the mixture was diluted with ether and filtered through a plug of silica eluting with 30% EtOAc in hexane and then concentrated *in vacuo*. Purification by silica gel column chromatography (EtOAc-hexane, 1:4 \rightarrow 1:1) gave the title ketones as a white solid (33 mg, 0.064 mmol, 56%). The starting triols (10B/A ratio ~9:1, 20mg, 0.039mmol, 33%) were also recovered. [α]²⁷_D – 0.06 (CHCl₃, *c* 1.00); Mp 54-57 °C; IR *v_{max}* (neat)/cm⁻¹ 3441 (br), 2918 (s), 2849 (s), 1708 (s), 1640 (s), 1467 (s), 1414 (s), 1310 (s), 1079 (s), 1027 (s); ¹H-NMR (400 MHz, CDCl₃) δ 5.80 (1H, tdd, *J* = 6.5, 10.3, 16.8 Hz, CH=CH₂), 4.99 (1H, d, *J* = 16.8 Hz, CH=CH₄H), 4.94 (1H, d, *J* = 10.3, CH=CH₄H), 3.85-3.75 (2H, m, CHO x 2), 3.45-3.35 (2H, m, CHO H x 2), 2.43 (2H, br, OH), 2.38 (4H, t, *J* = 7.4 Hz, CH₂C=OCH₂), 2.08-2.01 (2H, m, CH₂CH=CH₂), 1.98-1.88 (2H, m, CH₂ THF), 1.80-1.71 (2H, m, CH₂ THF) 1.56-1.2 (40H, m), 0.88 (3H, t, *J* = 6.7 Hz, CH₃); ¹³C-NMR (100 MHz, CDCl₃) δ 211.6 (C=O), 139.0 (CH), 114.4 (CH₂), 82.8 (CH x 2), 74.5 (CH), 74.4 (CH), 42.9 (CH₂), 42.9 (CH₂), 29.3 (CH₂), 28.8 (CH₂), 28.8 (CH₂), 28.8 (CH₂), 29.8 (CH₂), 29.8 (CH₂), 29.9 (CH₂), 23.8 (CH₂), 22.8 (CH₂), 23.9 (CH₂), 23.8 (CH₂), 23.8 (CH₂), 23.8 (CH₂), 23.8 (CH₂), 23.8 (CH₂), 23.8 (CH₂), 23.9 (CH₂), 23.9 (CH₂), 23.8 (CH₂), 23.9 (CH₂), 23.9 (CH₂), 23.9 (CH₂), 23.8 (CH₂), 23.8 (CH₂), 23.8 (CH₂), 23.8 (CH₂), 23.9 (CH₂), 23.8 (CH₂), 23.8 (CH₂), 23.8 (CH₂), 23.9 (CH₂), 23.8 (CH₂), 23.8 (CH₂), 23.8 (CH₂), 23.9 (CH₂), 23.8 (C

2.8 (4*E*)-4,5-Didehydro-*cis*-reticulatacin-10-one B/A (11B/A, dr ~ 9:1)

To a stirred solution of (15S)-15-[(2S,5R)-tetrahydro-5-((1R)1-hydroxytridecyl)furan-2-yl]-15-hydroxypentadec-1-en-8-one (+ A isomer, $dr \sim 9:1$) (26 mg, 0.051 mmol) and alkyne (7, 14.0 mg, 0.056 mmol) in DMF (3 mL) was added CpRu(MeCN)₃PF₆ (2.2 mg, 0.005 mmol, 10 mol %). The reaction was stirred at rt for 1 h, then diluted with ether and filtered through a plug of silica eluting with 40 % EtOAc in hexane. The solvents were removed in vacuo. Purification by silica gel column chromatography (EtOAc/hexane, $1:4\rightarrow 3:2$) gave the title butenolide (21.8 mg, 0.036 mmol, 71 %) as a white solid, and the uncyclised nitrobenzyl ester byproduct (3 mg, 0.004 mmol, 8 %). Data for 11B/A: $[\alpha]_{D}^{26}$ +10.4 (CHCl₃, c 1.0); Mp 63-66 °C; IR v_{max} (neat)/cm⁻¹ 3431 (w), 3321 (s), 2918 (s), 2849 (s), 1737 (s), 1703 (s), 1469 (s), 1409 (s), 1377 (s), 1323 (s), 1086 (s); ¹H-NMR (400 MHz, CDCl₃) δ 7.00 (1H, q, J = 1.5 Hz, CH=C), 5.59-5.43 (2H, m, CH=CHCH₂C), 5.00 (1H, dq, J = 1.5, 6.9 Hz, CHCH₃), 3.85-3.77 (2H, m, CHO x 2), 3.45-3.34 (2H, m, CHOH x 2), 2.95 (2H, d, J = 6.5 Hz, =CHCH₂C), 2.44 (2H, br s, OH x 2), 2.40 (2H, t, J = 7.5 Hz, CH₂C=OCH₂), 2.38 (2H, t, J = 7.5 Hz, CH₂C=OCH₂), 2.07-1.99 (2H, m, CH₂CH=CH),1.98-1.89 (2H, m, CH₂ THF), 1.81-1.71 (2H, m, CH₂ THF), 1.54-1.20 (34H, m), 1.41 (3H, d, J = 6.9 Hz, CH₃CH), 0.89 (3H, t, J = 6.8 Hz, CH₃CH₂); ¹³C-NMR (100 MHz, CDCl₃) δ 211.4 (C), 173.6 (C), 149.6 (CH=C), 134.3 (CH=CH), 133.7 (CH=C), 124.4 (CH=CH), 82.8 (CH), 82.7 (CH), 77.7 (CH), 74.5 (CH), 74.4 (CH), 42.9 (CH₂C=OCH₂), 42.6 (CH), 34.2 (CH₂), 34.1 (CH₂), 32.3 (CH₂), 32.0 (CH₂), 30.5 (CH₂), 29.8 (CH₂), 29.8 (CH₂), 29.8 (CH₂), 29.8 (CH₂), 29.7 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 28.9 (CH₂), 28.5 (CH₂), 28.2 (CH₂), 25.8 (CH₂), 25.6 (CH₂), 23.9 (CH₂), 23.4 (CH₂), 22.8 (CH₂), 19.2 (CH₃), 14.2 (CH₃); LRMS $(ES^{+}) m/z 628 ([M + Na]^{+}).$

Data for (R,2Z,5E)-4-nitrobenzyl 18-((2R,5S)-tetrahydro-5-((S)-1-hydroxyheptyl)furan-2-yl)-18-hydroxy-3-((S)-1-hydroxyethyl)-11-oxooctadeca-2,5-dienoate (+ A isomer, dr ~ 9:1)

IR v_{max} (neat)/cm⁻¹ 3384 (br), 2922 (s), 2852 (s), 1738 (s), 1719 (s), 1457 (s), 1346 (s), 1148 (s), 1071 (s); ¹H-NMR (300 MHz, CDCl₃) δ 8.23 (2H, d, J = 8.7 Hz ArH), 7.54 (2H, d, J = 8.7 Hz ArH), 6.14 (1H, s, CH=C), 5.57-5.36 (2H, m, C<u>H</u>=C<u>H</u>CH₂C), 5.25 (2H, s, OCH₂Ar), 4.37 (1H, m, C<u>H</u>OHCH₃), 3.86-3.75 (2H, m, CHO x 2), 3.63 (1H, dd, J = 5.4, 13.4 Hz, =CHCH<u>H</u>C=), 3.45-3.35 (2H, m, CHOH x 2), 3.07 (1H, dd, J = 6.2, 13.4 Hz, =CHC<u>H</u>HC=), 2.46 (2H, br s, OH), 2.42-2.37 (4H, m, C<u>H₂C=OCH₂), 2.02-1.88 (4H, m, CH₂), 1.82-1.65 (2H, m, CH₂), 1.52-1.17 (40H, m, CH₂), 1.34 (3H, d, J = 6.4 Hz, C<u>H₃CHOH</u>), 0.88 (3H, t, J = 6.6 Hz, <u>CH₃CH₂); ¹³C-NMR (75 MHz, CDCl₃) δ 211.8 (C=O), 166.0 (C), 143.7 (CH), 132.5 (CH), 128.4 (CH), 126.9 (CH), 123.9 (CH), 112.9 (CH), 82.8 (CH), 82.7 (CH), 74.5 (CH), 74.4 (CH), 70.5 (CH), 64.3 (CH₂), 42.9 (<u>C</u>H₂C=OCH₂), 42.5 (CH₂C=O<u>C</u>H₂), 34.2 (CH₂), 32.0 (CH₂), 32.0 (CH₂), 28.2 (CH₂), 25.8 (CH₂), 25.5 (CH₂), 23.8 (CH₂), 23.1 (CH₂), 22.8 (CH₂), 22.4 (CH₂), 14.2 (CH₃); LRMS (ES⁺) *m/z* 780 ([M+Na]⁺).</u></u>

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2010

2.9 *cis*-Reticulatacin-10-one B/A (4B/A, dr ~ 9:1)

To a solution of (4*E*)-4,5-didehydro-*cis*-reticulatacin-10-one B/A (11B/A, dr \sim 9:1, 10 mg, 0.0165 mmol) and NsNHNH₂ (30.4 mg, 0.14 mmol) in THF (3 mL) was added a solution of NaOAc (11.5 mg, 0.14 mmol) in H₂O (1 mL). The mixture was stirred at rt for 36 h before EtOAc (10 mL) and brine (3 mL) were added. The organic phase was separated, re-extracting the aqueous solution with EtOAc (2 x 10 mL) and the combined organics was dried (MgSO₄), and concentrated *in vacuo*. ¹H NMR analysis of the crude product indicated that the reduction had not proceeded to completion, so the crude material was heated in THF (1 mL) containing TsNHNH₂ (6.0 mg, 0.032 mmol) and NaOAc (6.0 mg, 0.032 mmol) for 24 h. Following the same work-up procedure described above, the obtained residue was dissolved in ether and washed with 1 M HCl (aq), brine, saturated KHCO₃ (aq), then dried (MgSO₄). Purification by preparative normal phase HPLC (EtOAc/hexane, 35:65) gave cisreticulatacin-10-ones B/A (4B/A, dr ~ 9:1) (7 mg, 0.0115 mmol, 69 %) as a white solid along with the hydrazone byproduct* (3.5 mg, 0.004 mmol, 25%). $[\alpha]_{D}^{26}$ +13.7 (CHCl₃, c 0.5); Mp 68-72 °C; IR v_{max} (neat)/cm⁻¹ 3449 (br), 2918 (s), 2849 (s), 1743 (s), 1703 (s), 1470 (s), 1458 (s), 1412 (s), 1321 (s); ¹H-NMR (400 MHz, CDCl₃) δ 6.98 (1H, q, J = 1.5 Hz, CH=C), 4.99 (1H, dq, J = 1.5, 6.8 Hz, CHCH₃), 3.85-3.77 (2H, m, CHO x 2), 3.45-3.38 (2H, m, CHOH x 2), 2.43 (2H, br, s, OH), 2.26 (4H, t, J = 7.4 Hz, $CH_2C=OCH_2$), 2.26 (2H, t, J = 7.8 Hz, CH₂C=), 1.98-1.89 (2H, m, CH₂ THF), 1.80-1.69 (2H, m, CH₂ THF), 1.62-1.20 (48H, m), 1.41 (3H, d, J = 6.8 Hz, CH₃CH), 0.87 (3H, t, J = 6.7 Hz, CH₃CH₂); ¹³C-NMR (100 MHz, CDCl₃) δ 211.6 (C), 174.0 (C) 149.0 (CH), 134.3 (C), 82.8 (CH), 82.7 (CH), 77.5 (CH), 74.5 (CH), 74.4 (CH), 42.9 (<u>CH</u>₂C=OCH₂), 42.8 (CH₂C=OCH₂), 34.2 (CH₂), 34.1 (CH₂), 32.0 (CH₂), 29.8 (CH₂), 29.8 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.2 (CH₂), 29.1 (CH₂), 28.2 (2CH₂), 27.4 (CH₂), 25.8 (CH₂), 25.6 (CH₂), 25.2 (CH₂), 23.9 (CH₂), 23.8 (CH₂), 22.8 (CH₂), 19.3 (CH₃), 14.2 (CH₃); LRMS (ES⁺) m/z 630 ([M+Na]⁺); HRMS (ES⁺) m/z C₃₇H₆₆Na O₆ Calcd. 629.476, found 629.476.

*The hydrazone byproduct (12 mg, 0.014 mmol) was converted to the mixture of *cis*-reticulaticin-10-ones B/A (dr ~ 9:1) by dissolving in THF (1 mL), water (0.2 mL) and AcOH (0.2 mL). The reaction mixture was left to stir at rt for 3 days. The mixture was neutralised with saturated NaHCO₃ (aq) and extracted with EtOAc (3 x 10 mL), dried (MgSO₄) and purified by silica gel column chromatography (20 % to 50 % EtOAc/hexane, 1:41:1) to give the diastereomeric mixture of acetogenins **4B/A** (7 mg, 0.011 mmol, 78%).

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2010

3.0 NMR Spectra

shbf4719/2 big scale crude amide

3.2 ¹³C NMR 6-Bromo-*N*-methoxy-*N*-methyhexanamide (contains ~ 20% 6-chloro-*N*-methoxy-*N*-methyhexanamide)

OMe I N Br/Cl O

3.3 ¹H NMR 1-Bromotridec-12-en-6-one (9) (contains ~ 20% 1-chlorotridec-12-en-6-one)

shbf4719/9 Ketone

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2010

3.4 ¹³C NMR 1-Bromotridec-12-en-6-one (9) (contains ~ 20% 1-chlorotridec-12-en-6-one) (¶₄ ∏ Br/Cl O 9 (Br/Cl ~ 4:1) shbf4719/9 Ketone 210.8735 - 138.8837 114.4525 77.1500 76.7251 44.8583 42.8584 42.4774 33.

(ppm)

SI 16

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2010

3.5 ¹H NMR 1-Bromotridec-12-en-6-ol (contains ~ 20% 1-chlorotridec-12-en-6-ol)

4921/21 Br-6-OH-13-tri

SI 17

(ppm)

3.6 ¹³C NMR 1-Bromotridec-12-en-6-ol (contains ~ 20% 1-chlorotridec-12-en-6-ol)

4921/21 Br-6-OH-13-tri

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2010

3.7 ¹H NMR (±)-1-(Phenylsulfonyl)tridec-12-en-6-ol (6)

4719/66.1-sulphone-6-OH-tride-

13-ene

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2010

3.8 ¹³C NMR (±)-1-(Phenylsulfonyl)tridec-12-en-6-ol (6)

΄4

ÓН

PhO₂S

Δ

3.9 ¹H NMR (1*S*,3*R*/*S*,8*R*/*S*)-1-[(2*S*,5*R*)-Tetrahydro-5-((1*R*)-1-hydroxytridecyl)furan-2-yl]-3-(phenylsulfonyl)pentadec-14-ene-1,8-diol (mixture of

A and B isomers in a ratio of 1:9)

3.10 ¹³C NMR (1*S*,3*R*/*S*,8*R*/*S*)-1-[(2*S*,5*R*)-Tetrahydro-5-((1*R*)-1-hydroxytridecyl)furan-2-yl]-3-(phenylsulfonyl)pentadec-14-ene-1,8-diol (mixture

of A and B isomers in a ratio of 1:9)

3.11 ¹H NMR (1*S*,8*R*/*S*)-1-[(2*S*,5*R*)-Tetrahydro-5-((1*R*)1-hydroxytridecyl)furan-2-yl]pentadec-14-ene-1,8-diol (10A/B, ratio ~ 1:9)

3.12 ¹³C NMR (1*S*,8*R*/*S*)-1-[(2*S*,5*R*)-Tetrahydro-5-((1*R*)1-hydroxytridecyl)furan-2-yl]pentadec-14-ene-1,8-diol (10A/B, ratio ~ 1:9)

3.13 ¹H NMR (15S)-15-[(2S,5R)-Tetrahydro-5-((1R)1-hydroxytridecyl)furan-2-yl]-15-hydroxypentadec-1-en-8-one (mixture of A and B isomers in

SI 25

3.14 ¹³C NMR (15S)-15-[(2S,5R)-Tetrahydro-5-((1R)1-hydroxytridecyl)furan-2-yl]-15-hydroxypentadec-1-en-8-one (mixture of A and B isomers

SI 26

3.15 ¹H NMR (4*E*)-4,5-Didehydro-*cis*-reticulatacin-10-one A/B (11A/B, dr ~ 1:9)

3.16 ¹H NMR (4*E*)-4,5-Didehydro-*cis*-reticulatacin-10-one A/B (11A/B, dr ~ 1:9)

3.17 ¹³C NMR (4*E*)-4,5-Didehydro-*cis*-reticulatacin-10-one A/B (11A/B, dr ~ 1:9)

3.18 ¹H NMR (*R*,2*Z*,5*E*)-4-Nitrobenzyl 18-((2*R*,5*S*)-tetrahydro-5-((*S*)-1-hydroxyheptyl)furan-2-yl)-18-hydroxy-3-((*S*)-1-hydroxyethyl)-11-oxoocta

3.19 ¹³C NMR (*R*,2*Z*,5*E*)-4-Nitrobenzyl 18-((2*R*,5*S*)-tetrahydro-5-((*S*)-1-hydroxyheptyl)furan-2-yl)-18-hydroxy-3-((*S*)-1-hydroxyethyl)-11-oxoocta

SI 31

3.20 ¹H NMR *cis*-Reticulatacin-10-one A/B (4A/B, dr ~ 1:9)

SI 33

3.23 ¹H NMR Hydrazone byproduct

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2010

3.24 Mass spectrum Hydrazone byproduct

4.0 Chromatograms

4.1 Chiral HPLC chromatogram of synthetic *cis*-reticulatacin-10-one A/B (4A/B, dr ~ 1:9)

4.2 Chiral HPLC chromatogram of natural *cis*-reticulatacin-10-one A/B (4A/B)

