SUPPORTING INFORMATION

Heronamides A – C, new polyketide macrolactams from an Australian marine-derived *Streptomyces* sp. A biosynthetic case for synchronized tandem electrocyclization.

Ritesh Raju, Andrew M. Piggott, Melissa M. Conte and Robert J. Capon*

[†]Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia

Table of Contents

Figure S1a. ¹ H NMR (600 MHz, methanol- d_4) and UV-vis (inset) spectra of heronamide A (1) Figure S1b. COSY spectrum (600 MHz, methanol- d_4) of heronamide A (1)	2
Figure S1c. HSQC spectrum (600 MHz, methanol- d_4) of heronamide A (1)	4
Figure S1d. HMBC spectrum (600 MHz, methanol- d_4) of heronamide A (1)	5
Figure S1e. ROESY spectrum (600 MHz, methanol- d_4) of heronamide A (1)	6
Figure S1f. IR spectrum for heronamide A (1)	7
Eigen 62 JUNNAD ((00 MIL) and and 1 d) and UN are (in at) an other of home with D (2)	0
Figure S2a. H NMR (600 MHZ, methanol- a_4) and UV-vis (inset) spectra of heronamide B (2)	ð
Figure S2b. COSY spectrum (600 MHz, methanol- d_4) of heronamide B (2)	9
Figure S2c. HSQC spectrum (600 MHz, methanol- d_4) of heronamide B (2)	10
Figure S2d. HMBC spectrum (600 MHz, methanol- d_4) of heronamide B (2)	11
Figure S2e. ROESY spectrum (600 MHz, methanol- d_i) of heronamide B (2)	
Figure S2f ⁻¹ H NMR (600 MHz CDC1) spectrum of 13 methylmyristic acid	13
Figure 321. If Wirk (600 Mill2, CDCI3) spectrum of 15-meurymyrisue actu	13
Figure S3a. ⁴ H NMR (600 MHz, pyridine- d_5) and UV-vis (inset) spectra of heronamide C (3)	14
Figure S3b. COSY spectrum (600 MHz, methanol- d_4) of heronamide C (3)	15
Figure S3c. HSQC spectrum (600 MHz, methanol- d_A) of heronamide C (3)	16
Figure S3d. HMBC spectrum (600 MHz, methanol- d_1) of heronamide C (3)	17
Figure Sta DOESV speatrum (600 MHz, methanol d.) of heronomide $C(3)$	18
Figure SSE. ROEST spectrum (000 MTI2, methanol- a_4) of neronaline C (3)	10
Figure S4. ¹ H NMR (600 MHz, methanol- d_4) and UV-vis (inset) spectra of heronamide A acetonide (1a)	
Eigune S5 , ¹ H NMR (600 MHz, methanol d) and UV us (inset) spectra of haranamida A triagetete (1b)	20
Figure 35a. If NMR (600 MHZ, inclusion a_4) and 0^{-1} (inset) spectra of neronanide A tracetate (1b)	
Figure S56. H NMR (600 MHz, CDCl ₃) and UV-vis (inset) spectra of heronamide A triacetate (1b)	21
Figure S6 ¹ H NMR (600 MHz, methanol.d.) and UV-vis (inset) spectra of heronamide C diacetate (3a)	22
Figure 50. If 10000 (1000 100 1000	
E	22
Figure S/a. H NMR (600 MHZ, CDCl ₃) spectra of <i>R</i> and S Mosner ester of neronamide A acetonide	
Figure S7b. LC-MS trace analysis for Mosher esters for heronamide A acetonide	24
Figure S8. Reported <i>Streptomyces</i> polyketide 20-membered macrolactams	25
Figure SQ. Other reported polyketide macrolactams	26
Figure 39. Other reported polyketide macrolacians	20
Table S1. NMR (600 MHz, methanol- d_4) data for heronamide A (1)	27
Table S2. NMR (600 MHz, methanol- d_4) data for heronamide B (2)	
Table S3 NMP (600 MHz, puriding d) data for heronomide $C(3)$	20
Table 55. Wirk (600 Wirz, pyrianc-a ₅) data for neronannae C (5)	
	20
Table S4. NMR (600 MHz, methanol- d_4) data for heronamide A acetonide (1a)	
Table S5a. NMR (600 MHz, methanol- d_4) data for heronamide A triacetate (1b)	
Table S5b. NMR (600 MHz, CDCl ₃) data for heronamide A triacetate (1b)	
Table S6 NMR (600 MHz, methanol d) data for heronomide C diagetate (3a)	22
Function (000 mills, incluantion u_4) data for incronalities C unactate (5a)	
	2.4
Table S7. $\Delta \delta (=\delta_s - \delta_R)$ data for the S- and R-MTPA-heronamide A acetonide Mosher esters	

Figure S1a. ¹H NMR (600 MHz, methanol- d_4) and UV-vis (inset) spectrum of heronamide A (1)

Figure S1b. COSY spectrum (600 MHz, methanol- d_4) of heronamide A (1)

Figure S1c. HSQC spectrum (600 MHz, methanol- d_4) of heronamide A (1)

Figure S1d. HMBC spectrum (600 MHz, methanol- d_4) of heronamide A (1)

Figure S1e. ROESY spectrum (600 MHz, methanol- d_4) of heronamide A (1)

Figure S1f. IR spectrum of heronamide A (1)

Figure S2a. ¹H NMR (600 MHz, methanol- d_4) and UV-vis (inset) spectrum of heronamide B (2)

Figure S2b. COSY spectrum (600 MHz, methanol- d_4) of heronamide B (2)

Figure S2c. HSQC spectrum (600 MHz, methanol- d_4) of heronamide B (2)

Figure S2d. HMBC spectrum (600 MHz, methanol- d_4) of heronamide B (2)

Figure S2e. ROESY spectrum (600 MHz, methanol- d_4) of heronamide B (2)

Figure S2f. ¹H NMR (600 MHz, CDCl₃) spectrum of 13-methylmyristic acid for comparison with isomyristic acid signals in NMR spectra of 2

Figure S3a. ¹H NMR (600 MHz, pyridine- d_5) and UV-vis (inset) spectrum of heronamide C (3)

Figure S3d. HMBC spectrum (600 MHz, methanol- d_4) of heronamide C (3)

Figure S3e. ROESY spectrum (600 MHz, methanol- d_4) of heronamide C (3)

Figure S4. ¹H NMR (600 MHz, methanol- d_4) and UV-vis (inset) spectrum of heronamide A acetonide (1a)

Figure S5a. ¹H NMR (600 MHz, methanol- d_4) and UV-vis (inset) spectrum of heronamide A triacetate (1b)

Figure S5b. ¹H NMR (600 MHz, CDCl₃) spectrum of heronamide A triacetate (**1b**)

Figure S6. ¹H NMR (600 MHz, methanol- d_4) and UV-vis (inset) spectrum of heronamide C diacetate (3a)

Figure S7a. ¹H NMR (600 MHz, CDCl₃) spectra of *R* and *S* Mosher esters of heronamide A acetonide (1a)

Figure S7b. HPLC trace analysis (210 nm) for A) heronamide A acetonide (**1a**), B) *S*-MTPA ester of heronamide A acetonide (**1c**), C) *R*-MTPA ester of heronamide A acetonide (**1d**). HPLC-DAD-ESI(\pm) MS conditions (Zorbax C₈ column, 150 × 4.6 mm, 5 µm, 1 mL/min, gradient from 10-100 % MeCN/H₂O (isocratic 0.05% formic acid) over 15 min, with a hold at 100 % MeCN for 5 min.

Figure S8. Reported *Streptomyces* polyketide 20-membered macrolactams

Figure S9. Other reported polyketide macrolactams

pos	$\delta_{\rm H}$, mult (<i>J</i> in Hz)	$\delta_{\rm C}$	COSY	ROESY	¹ H- ¹³ C HMBC
1		177.3			
2	3.64, ddd (9.2, 7.2, 2.4)	55.6	3,15	5	1, 3, 4, 15, 16
3	5.45, dd (10.8, 7.2)	125.4	2,4		1, 2, 5
4	6.68, ddd (10.8, 9.8, 2.4)	133.4	3,5	28	2
5	5.51, d (9.8)	130.7	4	2, 7, 13	3, 7, 28
6		132.9			
7	2.07, m ^a	53.6	8,12	5,13	8, 9, 12
8	3.84, dd (11.4, 4.2)	70.8	7,9	12,28	7, 9, 12
9	4.12, dd (4.8, 4.2)	67.7	8,10		7, 8, 10, 11
10	5.87, m ^b	128.1	9,11	8	9,12
11	5.88, m ^b	133.6	10, 12	13	7, 9, 13
12	2.82, m	43.7	7, 11, 13	8,29	7, 13, 14
13	5.05, d (<i>10.8</i>)	133.1	12	5, 7, 11, 15	15,29
14		137.8			
15	3.22, dd (9.2, 8.6)	59.0	2,16	13	2, 3, 4, 14, 16, 17, 29
16	3.90, m ^c	68.5	15		14, 17
17	3.89, m ^c	76.0	18α, 18β		15
18α	2.50, m ^d	42.3	17, 18β, 19		16, 17
18β	1.81, ddd (13.1, 7.8, 7.8)		$17,18\alpha,19$		17, 19, 20
19	3.91, m ^c	53.3	18a/b, 20a/b		
20a	$2.46, m^{d}$	37.9	19,20b,21		19, 21, 22
20b	$2.43, m^{d}$		19, 20a, 21		18, 19, 21, 22
21	5.57, dt (14.8, 7.5)	126.7	20a/b, 22		20,23
22	6.12, dd (14.8, 10.4)	135.2	21,23		20,24
23	6.05, dd (14.5, 10.4)	131.4	22,24	25	25
24	5.64, dt (14.5, 7.2)	134.1	23,25		22,25
25	2.06, m ^a	35.6	24, 26	23	23, 26, 27
26	1.42, sxt (7.4)	23.5	25,27		25,27
27	0.92, t (7.4)	13.9	26		25,26
28	1.75, s	12.6		4,8	5, 6, 7
29	1.41, s	16.8		12	13, 14, 15

Table S1. NMR (600 MHz, methanol- d_4) data for heronamide A (1)

[^{a-d}] overlapping signals

pos	$\delta_{\rm H}$, mult (<i>J</i> in Hz)	$\delta_{\rm C}$	COSY	ROESY	¹ H- ¹³ C HMBC
1		175.5			
2	2.68, dd (10.5, 10.1)	56.0	3,17	4,16	1, 3, 4, 17
3	5.05, dd (15.1, 10.1)	130.8	2,4	17	5
4	5.92, dd (15.1, 11.0)	135.4	3,5	2,28	2
5	5.63, m ^a	134.2	4	7	3, 7, 28
6		135.5			
7	2.33, m ^b	55.7	8,12	5	8, 12, 28
8	3.81, dd (11.6, 4.2)	71.4	7,9	12,28	
9	4.13, m	67.9	8,10		
10	5.81, m ^c	128.3	9,11		9,12
11	5.81, m ^c	134.4	10, 12		7,9,12
12	3.18, dd (10.5, 9.7)	43.6	7, 11, 13	8,28,29	7, 13, 14
13	4.86*	133.8	12		15,29
14		137.8			
15	5.73, d (<i>16.0</i>)	142.1	16	17	13, 14, 17, 29
16	4.96, dd (16.0, 9.7)	127.3	15,17	2, 18α, 29	14, 17
17	2.42, m	47.4	2, 16, 18α, 18β	3, 15, 19	2, 15, 16
18α	2.15, ddd (13.3, 4.8, 2.6)	34.8	17, 18β, 19	16, 19	16, 17
18β	1.60, m		17, 18α, 19		17, 19, 20
19	3.56, m	53.7	18α, 18β, 20	17,21	
20	2.31, m ^b	40.7	19,21	22	18, 19, 21
21	5.54, dt (15.0, 7.4)	126.6	20,22	19	20,23
22	6.14, dd (15.0, 10.4)	135.5	21,23	20	20, 23, 24
23	6.05, dd (15.0, 10.4)	131.3	22,24	25	21,25
24	5.65, m ^a	134.5	23,25		22,25
25	2.06, m	35.6	24,26	23	23, 24, 26, 27
26	1.41, m	23.5	25,27		24, 25, 27
27	0.92, t (7.4)	13.9	26		25,26
28	1.69, s	13.1		4, 8, 12	5, 6, 7
29	1.64, s	14.1		12,16	13, 14, 15

Table S2. NMR (600 MHz, methanol- d_4) data for heronamide B (2)

[^{a-c}] overlapping signals, * obscured by H₂O signal

pos	$\delta_{\rm H}$, mult (<i>J</i> in Hz)	δ_{C}	COSY	ROESY	¹ H- ¹³ C HMBC
1		168.3			
2	6.34, m ^a	129.9	3		1
3	7.38, dd (14.9, 11.0)	141.5	2,4		1
4	6.22, m ^b	125.5	3,5		5
5	6.36, m ^a	143.9	4		3, 7, 28
6		132.5			
7	5.84, br d (8.2)	140.0	8	5	5,28
8	5.33, dd (8.2, <i>3.0</i>)	73.4	7,9	28	6,7,9
9	5.01, dd, (8.9, 3.0)	71.5	8,10	28	
10	6.18, m ^b	132.6	9,11		11
11	6.33, m ^a	124.4	10, 12		9
12	6.24, m ^b	124.7	11, 13		
13	6.21, m ^b	137.4	12		
14		133.7			
15	6.11, d (<i>11.4</i>)	131.3	16	17	13, 14, 17, 29
16	6.51, dd (<i>14.9</i> , <i>11.4</i>)	131.3	15,17	18β, 29	
17	5.88, ddd (14.9, 10.5, 5.4)	131.2	16, 18α, 18β	15,19	16
18α	2.53, m	34.8	17, 18β, 19	16	16, 17
18β	2.07, dd (23.1, 10.5)		17, 18α, 19	16	17, 19
19	4.56, m	50.4	18α, 18β, 20a/b	17,21	
20a	2.45, ddd (14.3, 7.3, 7.1)	39.0	19, 20b, 21	19	18, 19, 21, 22
20b	2.39, ddd (14.3, 7.1, 6.7)		19, 20a, 21		18, 19, 21, 22
21	5.77, dt (15.1, 7.1)	128.9	20a/b, 22	19	20,23
22	6.19, m ^b	133.2	21,23		20
23	6.02, dd (14.8, 10.3)	131.1	22,24		21, 24, 25
24	5.58, dt, (14.8, 6.9)	133.1	23,25		22, 25, 26
25	1.96, td (7.5, 6.9)	34.8	24,26		23, 24, 26, 27
26	1.30, sxt, (7.5)	22.7	25,27		24, 25, 27
27	0.81, t (7.5)	13.8	26		25,26
28	1.77, s	12.7		8,9	5, 6, 7
29	1.72, s	12.5		16	13, 14, 15
NH	7.98, d (<i>10.3</i>)		19	2	1

Table S3. NMR (600 MHz, pyridine- d_5) data for heronamide C (3)

[^{a,b}] overlapping signals

pos	$\delta_{\rm H}$, mult (<i>J</i> in Hz)	$\delta_{\rm C}$	COSY	ROESY	¹ H- ¹³ C HMBC
1		177.4			
2	3.62, ddd (9.2, 7.1, 2.3)	55.7	3,15	5	1, 3, 4, 15, 16
3	5.47, m ^a	125.7	2,4		1,5
4	6.70, ddd (12.0, 10.2, 2.1)	133.4	3,5	28	2
5	5.48, m ^a	131.3	4	2	3, 7, 28
6		132.0			
7	1.81, m ^b	55.0	8,12	13	6, 12, 28
8	4.47, dd (11.1, 6.0)	76.0	7,9	12, 28, 31	9,32
9	4.61, dd (6.0, 3.8)	72.6	8,10	12,31	7, 8, 10, 11
10	5.94, ddd (9.8, 3.8, 2.8)	124.7	9,11		8,12
11	6.05, m ^c	136.5	10,12		7, 9, 12, 13
12	2.81, br dd (10.9, 8.4)	41.2	7, 11, 13	8,9	7, 10, 11, 13, 14
13	5.06, d (<i>10.9</i>)	132.9	12	7,15	11,15,29
14		138.3			
15	3.24, dd (9.4, 8.6)	58.9	2,16	2,13	2, 3, 13, 14, 16, 17, 29
16	3.90, m ^d	68.4	15,17		14, 17
17	3.89, m ^d	75.9	16, 18α, 18β		
18α	2.50, m	42.3	17, 18β, 19		16, 17
18β	1.82, m ^b		17, 18α, 19		
19	3.92, m ^d	53.3	18α, 18β, 20a/b		
20a	2.47, m ^e	37.9	19,20b,21		18, 19, 21, 22
20b	2.43, m ^e		19, 20a, 21		18, 19, 21, 22
21	5.57, dt (<i>14</i> .7, 7.5)	126.8	20a/b, 22		20,23
22	6.12, dd (14.7, 10.4)	135.2	21,23		20,24
23	6.06, m ^c	131.6	22,24	25	21,25
24	5.64, dt (<i>14.5</i> , <i>7.0</i>)	134.3	23,25		22, 25, 26
25	2.06, m	35.6	24,26	23	23, 24, 26, 27
26	1.42, sxt (7.4)	23.5	25,27		25,27
27	0.92, t (7.4)	13.9	26		25,26
28	1.71, s	13.4		4,8	6,7
29	1.36, s	16.7		12,16	13, 14, 15
30	1.40, s	28.7			31, 32
31	1.38, s	26.2		8,9	30, 32
32		110.2			

Table S4. NMR (600 MHz, methanol- d_4) data for heronamide A acetonide (1a)

[^{a-d} overlapping signals]

pos	$\delta_{\rm H}$, mult (J in Hz)	δ _C	COSY	ROESY	¹ H- ¹³ C HMBC
1	•••	177.7			
2	3.67, ddd (9.5, 7.2, 1.8)	54.9	3,15	5	1, 3, 4, 15, 16
3	5.49, dd (10.6, 7.2)	126.0	2,4		1, 2, 5
4	6.68, ddd (10.6, 10.0, 1.8)	133.2	3,5	28	2,5
5	5.55, d ^a (10.0)	130.9	4	2,7	3, 7, 28
6		136.9			
7	2.32, m	51.7	8,12	5,13	5, 8, 12, 28
8	5.23, dd (12.3, 3.9)	71.6	7,9	12,28	7,9,12
9	5.62, m ^b	67.0	8,10		
10	5.76, ddd (8.9, 5.4, 2.4)	123.6	9,11	8	8, 9, 12
11	6.11, m ^c	136.6	10,12		7,9,12
12	2.98, dd (10.4, 10.3)	43.4	7, 11, 13	8,28,29	6, 7, 10, 13, 14
13	5.08, d (10.9)	132.0	12	7,15	15,29
14		138.5			
15	3.33*	58.3	2,16	13	2, 3, 13, 14, 16, 17, 29
16	4.14, dd (9.7, 5.7)	67.0	15,17	18β, 29	17
17	4.90^{*}	77.3	16, 18α, 18β	18α	15
18α	2.62, ddd (13.8, 7.7, 7.2)	39.0	17, 18β, 19	17, 19	16, 17, 19, 20
18β	1.89, ddd (13.8, 11.4, 5.8)		17, 18α, 19		17, 19, 20
19	4.06, dddd (7.2, 6.9, 6.4, 5.8)	54.0	18α, 18β, 20a/b	18α, 20a	21
20a	2.45, m	37.9	19,20b,21	19	18, 19, 21, 22
20b	2.41, m		19, 20a, 21		18, 19, 21, 22
21	5.58, dt ^a (14.8, 7.4)	126.9	20a/b, 22		20,23
22	6.12, m ^c	135.1	21,23		
23	6.05, dd (14.9, 10.4)	131.5	22,24		21,25
24	$5.64, dt^{b}$ (14.9, 7.2)	134.3	23,25		22,25
25	2.06, m ^d	35.6	24,26		23, 24, 26, 27
26	1.43, sxt (7.4)	23.4	25,27		24, 25, 27
27	0.92, t (7.4)	13.8	26		25,26
28	1.55, s	12.2		4, 8, 12	5,7
29	1.36, s	16.5		12,16	13, 14, 15
8-OC(O) <u>Me</u>	2.07, s ^a	20.7			8-O <u>C</u> (O)
9-OC(O) <u>Me</u>	1.98, s	20.7			9-O <u>C</u> (O)
17-OC(O) <u>Me</u>	2.03, s	20.7			17-O <u>C</u> (O)
8-0 <u>C</u> (O)		172.1			
9-O <u>C</u> (O)		172.3			
17-0 <u>C(</u> 0)		171.8			

Table S5a. NMR (600 MHz, methanol- d_4) data for heronamide A triacetate (1b)

[^{a,b}] partially overlapping signals, [^{c,d}] overlapping signals, *obscured by solvent signal

pos	$\delta_{\rm H}$, mult (<i>J</i> in Hz)	δ _C	COSY	ROESY	¹ H- ¹³ C HMBC
1	••	174.9			
2	3.55, ddd (8.9, 7.5, 2.2)	53.5	3,15	5,15	1, 3, 4, 15, 16
3	5.52, m ^a	125.0	2,4		2,5
4	6.61, dd (10.4, 9.7)	132.0	3,5	28	2
5	5.42, d (9.7)	130.1	4	2,7	3,7,28
6		129.0			
7	2.28, dd (12.4, 9.8)	50.2	8,12	5,13	5, 8, 12, 28
8	5.19, dd (12.4, 4.0)	70.1	7,9	12,28	
9	5.62, m ^b	65.6	8,10		
10	5.75, ddd (8.2, 5.5, 2.6)	123.1	9,11		8,9,12
11	6.06, m ^c	135.0	10, 12	12,13	7, 9, 12
12	2.81, dd, (11.0, 9.8)	42.3	7, 11, 13	8, 11, 29	7, 11, 13
13	4.98, d (11.0)	130.6	12	7,15	15,29
14		137.1			
15	3.10, dd (9.6, 8.9)	57.3	2,16	2, 13, 17, 19	2, 3, 13, 14, 16, 17, 29
16	4.05, dd (9.6, 5.6)	65.1	15, 17	29	
17	4.83, ddd (13.9, 11.6, 5.6)	76.2	16, 18α, 18β	15, 18α, 19	15
18α	$2.53, m^{d}$	38.0	17, 18β, 19	17	16,20
18β	1.82, ddd (13.9, 12.0, 6.0)		17, 18α, 19		17, 19, 20
19	4.09, m	52.6	18α, 18β, 20a/b	15, 17, 18α, 20b	17
20a	2.50, m ^d	37.1	19, 20b, 21		21,22
20b	2.35, ddd (15.0, 13.9, 7.9)		19, 20a, 21	19,22	18, 19, 21, 22
21	5.48, ddd ^a (14.8, 7.9, 7.2)	125.5	20a/b, 22		20,23
22	6.08, m ^c	133.8	21,23	20b	20
23	6.01, dd (14.9, 10.6)	129.7	22,24	25	25
24	5.61, m ^b	133.7	23, 25		22, 25, 26
25	2.03, m	34.5	24,26	23	23, 26, 27
26	1.39, sxt (7.3)	22.3	25,27		24, 25, 27
27	0.88, t (7.3)	13.6	26		25,26
28	1.50, s	12.1		4,8	5, 6, 7
29	1.30, s	16.1		12,16	13, 14, 15
8-OC(O) <u>Me</u>	2.09, s	21.0			8-O <u>C</u> (O)
9-OC(O) <u>Me</u>	2.02, s	20.8			9-O <u>C</u> (O)
17-OC(O) <u>Me</u>	2.01, s	20.8			17-O <u>C(</u> O)
8-O <u>C</u> (O)		170.4			
9-O <u>C</u> (O)		170.2			
17-O <u>C</u> (O)		170.2			

 Table S5b. NMR (600 MHz, CDCl₃) data for heronamide A triacetate (1b)

[^{a-d}] overlapping signals

pos	$\delta_{\rm H}$, mult (<i>J</i> in Hz)	$\delta_{\rm C}$	COSY	¹ H- ¹³ C HMBC
1		170.2		
2	5.98, d (15.1)	124.5	3	1
3	6.81, dd (15.1, 10.5)	142.4	2,4	1,5
4	6.34, dd (15.1, 10.5)	127.6	3,5	5
5	$6.22, d^{a}(15.1)$	143.8	4	3, 4, 28
6		137.0		
7	5.23, br d (8.2)	132.4	8	5,28
8	5.66, dd (9.3, 2.6)	72.0	7,9	10, 8-O <u>C</u> (O)
9	6.09, m ^b	72.6	8,10	8
10	5.43, dd (<i>10.8</i> , <i>9.3</i>)	123.4	9,11	12
11	6.28, dd (11.0, 10.8)	133.7	10, 12	8,13
12	$6.01, dd^{c}(15.1, 11.1)$	124.2	11, 13	
13	$6.21, d^{a}(15.1)$	140.0	12	
14		134.5		
15	5.93, d (11.0)	132.6	16	13, 17, 29
16	6.20, m ^a	132.2	15,17	
17	5.55, m ^d	131.4	16, 18α, 18β	
18α	2.45, m	41.6	17, 18β, 19	
18β	1.85, m		17, 18α, 19	
19	3.97, m	51.6	18α,18β, 20	
20	2.29, m	39.0	19,21	
21	5.57, m ^d	128.5	20,22	
22	6.08, m ^b	134.0	21,23	
23	6.03, m ^c	131.5	22,24	
24	5.59, m ^d	133.9	23,25	
25	2.04, m	35.7	24,26	26,27
26	1.41, sxt, (7.3)	23.6	25,27	24, 25, 27
27	0.91, t (7.3)	13.9	26	25,26
28	2.00, s	12.9		5, 6, 7
29	1.67, s	12.7		13, 14, 15
8-OC(O) <u>Me</u>	2.09, s	20.9		8-O <u>C</u> (O)
9-OC(O) <u>Me</u>	2.03, s	20.9		9-0 <u>C</u> (O)
8-0 <u>C</u> (O)		172.1		
8-0 <u>C</u> (0)		172.1		

Table S6. NMR (600 MHz, methanol- d_4) data for heronamide C diacetate (**3a**)

[^{a,c} partially overlapping signals] [^{b,d} overlapping signals]

Proton		Chemical shift (δ)	$A S^{SR} (H_{z})$	
	Free alcohol (1a)	<i>S</i> -MTPA (1c)	<i>R</i> -MTPA (1d)	$\Delta 0$ (HZ)
16	3.90	4.09	4.02	+42
17	3.89	5.03	5.10	-42

4.13

-30

4.08

Table S7. $\Delta \delta^{SR} (= \delta_S - \delta_R)$ data for the *S*- and *R*-MTPA-heronamide A acetonide Mosher esters

3.92

19

1c R = *S*(–)-MTPA **1d** R = *R*(+)-MTPA