Reversible circularization of an anthracene-modified DNA conjugate through bimolecular triplex formation and its analytical application

Pelin Arslan* ${ }^{a}$, Akinori Jyo ${ }^{a}$ and Toshihiro Ihara* ${ }^{a, b}$
${ }^{a}$ Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan. E-mail: toshi@chem.kumamoto-u.ac.jp; Fax: +81-96-342-3873; Tel: +81-96-342-3873
${ }^{b}$ PRESTO, Japan Science and Technology Agency, San-bancho Building, 3-5 Sanbancho, Chiyoda-ku, Tokyo 332-0012, Japan.

The melting curve of the bimolecular triplex of the circular photoproduct, ant ${ }^{\wedge} \mathbf{a n t 1 8 c}$, with $\mathbf{f m} 7$ is shown in Figure S1. Thermal stability was higher than that of the linear conjugate, 53ant 18 .

Figure S1 Melting curve of the ant ${ }^{\wedge}$ ant18c/fm7.

The melting curves of the control tandem duplexes are shown in Figure $\mathbf{S 2}$ and $\mathbf{S 3}$ for the longer (5 ant $15 / \mathrm{fm} 30 / 3$ ant 15 and 5 ant $15 / \mathrm{mm30} 3$ 3ant15) and shorter duplexes (5ant7/fm22/3ant15 and 5ant7/mm22/3ant15), respectively. While the both conjugates in the longer duplex, 5ant15/fm30/3ant15, melted almost simultaneously to give apparently monophasic melting, one-base substitution on mm30 destabilized the duplex of 5 ant 15 in 5 ant15/mm30/3ant15 to change the curve to biphasic. For the shorter duplexes, while 5 ant $7 / \mathrm{fm} 22 / 3$ ant 15 showed a biphasic melting due to the difference in the length of both conjugates, the melting at lower temperature disappeared (decreased to lower than $0{ }^{\circ} \mathrm{C}$) from the melting curve of 5 ant $7 / \mathrm{mm} 22 / 3$ ant 15 .

Figure S2 Melting curves of the 5ant15/fm30/3ant15 (left) and 5ant15/mm30/3ant15 (right), respectively.

Figure S3 Melting curves of the 5ant7/fm22/3ant15 (left) and 5ant7/mm22/3ant15 (right), respectively.

