Tandem Achmatowicz-Knoevenagel protocol: Diastereoselective synthesis and anticancer evaluation of cyclopenta[b]pyrane derivatives

Taleb H. Al-Tel, $*^{\dagger}$ M. H. Semreen ${ }^{\dagger}$ and Wolfgang Voelter ${ }^{\S}$
${ }^{\dagger}$ College of Pharmacy, University of Sharjah, P.O.Box 27272, Sharjah, UAE, and Sharjah Institute for Medical Research-Cancer Division,27272, Sharjah, UAE, ${ }^{\S}$ Interfakultäres Institut für Biochemie, Eberhard-Karls-Universität Tuebingen, Hoppe-Seyler-Straße, 72076, Tuebingen-Germany.

Tel.: +971 501732950; fax: +971 6 5585812; E-mail: taltal@sharjah.ac.ae,

Supporting information

Content page
Procedures and data of all compounds 1-9
Copies of NMR spectra of compounds 5a-11g 10-36

Experimental Section

All reagents were used as purchased from commercial suppliers without further purification. The reactions were carried out in oven dried or flamed graduated vessels. Solvents were dried and purified by conventional methods prior use. Flash column chromatography was performed with Silica gel $60,0.040-0.063 \mathrm{~mm}(230-400 \mathrm{mesh})$. Aluminium backed plates pre-coated with silica gel 60 (UV254) were used for thin layer chromatography. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ spectra were recorded on $250 \mathrm{MHz} / 63 \mathrm{MHz}$ or $400 / 100.7 \mathrm{MHz}$ spectrometers. Splitting patterns are designated as s , singlet; d , doublet; t , triplet; q , quartet; m , multiplet; br , broad. Chemical shifts (δ) are given in ppm relative to the resonance of their respective residual solvent peak, $\mathrm{CHCl}_{3}\left(7.27 \mathrm{ppm}, 1 \mathrm{H} ; 77.16 \mathrm{ppm}\right.$, the middle peak, $\left.{ }^{13} \mathrm{C}\right)$. Elemental analysis was performed on elemental analyzer. The FD mass spectra were recorded using a mass spectrometer connected to a PDO 11/34 (DEC) computer system. All compounds were determined to be $>95 \%$ pure by high-performance liquid chromatography (HPLC). Purity of compounds
were determined on a Phenomenex Luna C18-(2), 3 mm column, 4.6 mm i.d. $\times 30 \mathrm{~mm}$ length, with $30-75 \%$ acetonitrile/water/0.1\% trifluoroacetic acid, $1.0 \mathrm{~mL} / \mathrm{min}$ elution at rt using 210,254 , or 280 nm wavelength.

General procedure of the synthesis of compounds $\mathbf{5 a}$ and $\mathbf{5 b}$. A suspension of $\mathrm{NaH}(174 \mathrm{mg}, 4.4 \mathrm{mmol}, 65 \%$ dispersion in mineral oil) in 10 mL of THF at $0^{\circ} \mathrm{C}$ was cautiously treated with tert-butyl acetoacetate ($0.66 \mathrm{~mL}, 4 \mathrm{mmol}$) under argon over a 15 min period. After stirring at this temperature for 30 min , a solution of $n-\mathrm{BuLi}(2.75 \mathrm{~mL}, 4.4 \mathrm{mmol}, 1.6 \mathrm{M}$ in n-hexane) was added dropwise over 10 min . The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . The resultant milky solution was cooled to $-78{ }^{\circ} \mathrm{C}$ then 4 mmoles of either furfural (384 m) or 2-acetylfuran (440 mg) in 10 ml of THF was added. The reaction was then stirred at the same tempreture for 1 h , after which the mixture was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$, extracted with EtOAc $(3 \times 30 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum to give a yellowish crude oil. The crude was purified through a short silica gel column using hexane/ EtOAc (9:1) as eluent to afford compounds $\mathbf{5 a}(917 \mathrm{mg}, 95 \%$ yield) and $\mathbf{5 b}(977 \mathrm{mg}, 91 \%$ yield) as a yellowish oils.
tert-Butyl 5-(2-furyl)-5-hydroxy-3-oxopentanoate (5a). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}^{3}\right) \delta 7.31\left(\mathrm{dd}, J=0.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 6.30(\mathrm{dd}, J$ $=1.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ '), 6.22 (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 '), 5.13$ (dd, $J=3.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 3.37 (s, 2H, H-2a, H-2b), 3.10 (dd, $J=8.3$, $17.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{a}), 2.97(\mathrm{dd}, J=3.3,17.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{~b}), 1.39\left(\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.7(\mathrm{C}-2), 166.1$ $\left(\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 154.8\left(\mathrm{C}-2^{\prime}\right), 110.3(\mathrm{C}-5 '), 110.2\left(\mathrm{C}-4{ }^{\prime}\right), 106.3\left(\mathrm{C}-3^{\prime}\right), 82.3\left(\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 63.5(\mathrm{C}-5), 51.1(\mathrm{C}-2), 47.8(\mathrm{C}-4), 27.9$ $\left(\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;$ FD-MS m/z $=255(\mathrm{M}+1)^{+}$, Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{5}(254.28) ; \mathrm{C}, 61.40 ; \mathrm{H}, 7.14$. Found: C, 61.20; H, 7.31 .
tert-Butyl 5-(2-furyl)-5-hydroxy-3-oxohexanoate (5b). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22$ (dd, $\left.J=0.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5{ }^{\prime}\right), 6.02(\mathrm{dd}, \mathrm{J}=$ $\left.1.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}-4{ }^{\prime}\right), 6.15(\mathrm{dd}, J=0.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 '), 3.25(\mathrm{bs}, 2 \mathrm{H}, \mathrm{H}-2 \mathrm{a}, \mathrm{H}-2 \mathrm{~b}), 3.18(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{a}), 2.82(\mathrm{~d}, J=16.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-4 \mathrm{~b}), 1.43\left(\mathrm{CH}_{3}\right), 1.63\left(\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.63 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta 203.0(\mathrm{C}-3), 165.0\left(\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 158.5\left(\mathrm{C}-2^{\prime}\right), 110.3\left(\mathrm{C}-5{ }^{\prime}\right)$,
$110.2\left(\mathrm{C}-4^{\prime}\right), 104.7(\mathrm{C}=3 '), 82.0\left(\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 70.0(\mathrm{C}-5), 51.7(\mathrm{C}-2), 51.5(\mathrm{C}-4), 28.2\left(\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 27.6\left(\mathrm{CH}_{3}\right) ; \mathrm{FD}-\mathrm{MS} \mathrm{m} / \mathrm{z}=269$ $(\mathrm{M}+1)^{+}$, Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{5}$ (268.31); C, 62.67 ; H, 7.51. Found: C, 62.51; H, 7.42.

General procedure for the synthesis of compounds $\mathbf{7 a}$ and $\mathbf{7 b}$. A solution of $\mathbf{5 a}(1270 \mathrm{mg}, 5 \mathrm{mmol})$ or $\mathbf{5 b}(1341.5 \mathrm{mg}, 5 \mathrm{mmol}) \mathrm{in}$ dicholomethane $(40 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was treated with m-chloroperbenzoic acid ($1376 \mathrm{mg}, 8.0 \mathrm{mmol}$ of 80% aqueous slurry) which was dissolved in 30 ml DCM, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, diluted with 50 ml toluene and dried under reduced pressure) and stirred at $0{ }^{\circ} \mathrm{C}$ for 6 h . Sodium sulfite solution (30 mL of 10%) was introduced, and the layers were separated after 1 h of rapid mixing. The aqueous phase was washed with saturated sodium bicarbonate solution $(30 \mathrm{~mL})$, brine and water (30 mL) prior to drying and solvent evaporation. The crude viscous yellowish oils ($\mathbf{6 a}$ and $\mathbf{6 b}$) was used in the next step without further purification.
A solution of the crude anomeric mixture of $\mathbf{6 a}(852 \mathrm{mg}, 3 \mathrm{mmol})$ or $\mathbf{6 b}(810 \mathrm{mg}, 3 \mathrm{mmol})$ in dry toluene (30 ml), freshly prepared piperidinium acetate (3.9 mmol) and $4^{\circ} \mathrm{A}$ molecular sieves (250 mg) was stirred at $50{ }^{\circ} \mathrm{C}$ for 4 h . The hot mixture was filtered and evaporated under reduced pressure. The brown viscous oil was dissolved in EtOAc and extracted with saturated solution of NaHCO_{3}, brine, water and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude was purified on a silica gel column using hexane/ EtOAc (7:3) as eluent to afford compounds 7a ($350 \mathrm{mg}, 68 \%$ yield) and $7 \mathbf{b}$ ($425 \mathrm{mg}, 73 \%$ yield) as amorphous solids.
tert-Butyl (7aS)-2-hydroxy-6-oxo-2,6,7,7a-tetrahydrocyclopenta[b]pyran-5-carboxylate (7a). ${ }^{1} \mathrm{H}$ NMR (250 MHz, CDCl3) $\delta 7.25$ (bt, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 6.42(\mathrm{dd}, J=3.3,10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.60(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}-2), 5.16(\mathrm{dd}, J=4.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a}), 2.84(\mathrm{dd}, J=$ $6.8,17.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 2.51\left(\mathrm{dd}, J=4.6,17.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7{ }^{\prime}\right), 15.3\left(\mathrm{~s}, 9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{BuO}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.1,199.2(\mathrm{C}-6), 170.5$, $170.7(\mathrm{C}-4 \mathrm{a}), 166.2\left(\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 142,138.2(\mathrm{C}-3), 125.0,123.0(\mathrm{C}-4), 92.7,89.1(\mathrm{C}-2), 82.0,71.5\left(\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 65.5(\mathrm{C}-7 \mathrm{a}), 42.5$, $42.3(\mathrm{C}-7), 28.2\left(\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ; \mathrm{FD}-\mathrm{MS} \mathrm{m} / \mathrm{z}=252(\mathrm{M})+$, Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{5}(252.10) ; \mathrm{C}, 61.90 ; \mathrm{H}, 6.39$. Found: C, 61.85; H, 6.43 .
tert-Butyl (7aS)-2-hydroxy-7a-methyl-6-oxo-2,6,7,7a-tetrahydrocyclopenta[b]pyran-5-carboxylate (7b). ${ }^{1} \mathrm{H}$ NMR (250 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.13(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3), 6.32(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4), 5.59,5.51(\mathrm{bs}, 2 \mathrm{H}, \mathrm{H}-2), 2.57\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-7,7\right.$), $1.42\left(\mathrm{bs}, 12 \mathrm{H}, \mathrm{CH}_{3}-7 \mathrm{a}, \mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.8,198.5(\mathrm{C}-6), 170.5,170.4(\mathrm{C}-4 \mathrm{a}), 161.1\left(\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 141.5,138.5(\mathrm{C}-3), 125.7,125.3(\mathrm{C}-5), 122.5$, $121.3(\mathrm{C}=4), 89.6,88.7(\mathrm{C}-2), 82.5\left(\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 77.5,73.9(\mathrm{C}-7 \mathrm{a}) 52.2,51.9(\mathrm{C}-7), 28.9,24.2\left(\mathrm{CH}_{3}=7 \mathrm{a}\right), 28.1,27.8\left(\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$; FD-MS m/z $=266(M)+$, Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{5}$ (266.12); C, 63.15; H, 6.81. Found: C, 63.09; H, 6.87.

General procedure for the synthesis of compounds $\mathbf{8 a}, \mathbf{8 b}$ and $\mathbf{9}$. A solution of the anomeric mixture of $\mathbf{7 a}(756 \mathrm{mg}, 3 \mathrm{mmol}) \mathrm{or} \mathbf{7 b}$ ($798 \mathrm{mg}, 3 \mathrm{mmol}$) in MeI $\left(15 \mathrm{~mL}\right.$) at rt was treated with 3.0 mmol of $\mathrm{Ag}_{2} \mathrm{O}$. The progress of reaction was monitored by TLC (12 h). When complete, the reaction mixture was filtered over celite. The filtrate was washed with saturated solutions of sodium sulfite, sodium bicarbonate, brine, dried and evaporated. The residue was purified on silica gel column using hexane/EtOAc (9:1) as an eluent.
tert-Butyl (2S,7aS)-2-methoxy-6-oxo-2,6,7,7a-tetrahydrocyclopenta[b]pyran-5-carboxylate (8a). Yiel: $540 \mathrm{mg}, 80 \%$; Significant NMR NOEs are $2-\mathrm{H}$ to $7 \mathrm{a}-\mathrm{H}, 36 \%$; $7 \mathrm{a}-\mathrm{H}$ to $2-\mathrm{H}, 32 \%$. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.20(\mathrm{dd}, J=0.4,10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 6.30(\mathrm{dd}, J=$ $3.3,10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.00(\mathrm{dd}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.96(\mathrm{dd}, J=4.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a}), 3.45(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.80$ (dd, $J=7.0,17.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-7$), $2.48\left(\mathrm{dd}, J=4.5,17.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7{ }^{\prime}\right), 1.48\left(\mathrm{~s}, 9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{BuO}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.8(\mathrm{C}-6), 166.1(\mathrm{C}-4 \mathrm{a}), 160.8$ $\left(\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 137.2(\mathrm{C}-3), 123.0(\mathrm{C}-4), 127.0(\mathrm{C}-5), 95.6(\mathrm{C}-2), 82.5\left(\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 65.5(\mathrm{C}-7 \mathrm{a}), 56.4(\mathrm{OMe}), 42.3(\mathrm{C}-7), 28.0$ $\left(\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;$ FD-MS m/z $=266(\mathrm{M})+$, Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5}$ (266.16); C 63.12, H 6.82. Found: C 63.51, H 6.55.
tert-Butyl (2S,7aS)-2-methoxy-7a-methyl-6-oxo-2,6,7,7a-tetrahydrocyclopenta[b]pyran-5-carboxylate (8b). Yiel: 742 mg , 94%; Significant NMR NOEs are $2-\mathrm{H}$ to $7 \mathrm{a}-\mathrm{CH}_{3}, 31 \% ; 7 \mathrm{a}-\mathrm{CH}_{3}$ to $2-\mathrm{H}, 33 \%$. ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26(\mathrm{dd}, J=1.7,10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 3), $6.62(\mathrm{dd}, J=1.6,10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.10(\mathrm{bd}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.44(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.74(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 2.57(\mathrm{~d}, J=$ $\left.17.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7{ }^{\prime}\right), 1.48\left(\mathrm{~s}, 3 \mathrm{H}, 7 \mathrm{a}-\mathrm{CH}_{3}\right), 1.47\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}\right.$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.7(\mathrm{C}-6), 169.4(\mathrm{C}-4 \mathrm{a}), 160.9$
$\left(\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 139.0(\mathrm{C}-2), 123.8(\mathrm{C}-3), 123.7(\mathrm{C}-5), 95.6(\mathrm{C}-2), 82.3\left(\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 76.7(\mathrm{C}-7 \mathrm{a}), 55.1(\mathrm{OMe}), 52.1(\mathrm{C}-7), 28.2$ $\left(\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 24.3\left(7 \mathrm{a}-\mathrm{CH}_{3}\right) ; \mathrm{FD}-\mathrm{MS} \mathrm{m} / \mathrm{z}=280(\mathrm{M})^{+}$, Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{5}(280.32)$; C 64.27, H 7.19; Found: C 63.95, H 7.32.
tert-Butyl (2R,7aS)-2-methoxy-6-oxo-2,6,7,7a-tetrahydrocyclopenta[b]pyran-5-carboxylate (9). Yield: 138 mg , 20\%; Significant NMR NOEs are $2-\mathrm{OMe}$ to $7 \mathrm{a}-\mathrm{H}, 37 \%$; $7 \mathrm{a}-\mathrm{H}$ to 2 -OMe, 29%. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25$ (dd, $J=2.1,10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 6.32 (dd, $J=1.4,10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.34(\mathrm{dd}, J=0.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.74(\mathrm{dd}, J=4.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a}), 3.47(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.83(\mathrm{dd}, J=$ $6.8,17.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 2.55(\mathrm{dd}, \mathrm{J}=4.6,17.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{~F}), 1.47\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}\right.$ NMR (63 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.5$ $\left(\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 169.7(\mathrm{C}-4 \mathrm{a}), 141.6(\mathrm{C}-3), 124.8(\mathrm{C}-4), 98.7(\mathrm{C}-2), 82.0\left(\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 71.4(\mathrm{C}-7 \mathrm{a}), 56.0(\mathrm{OMe}), 42.6(\mathrm{C}-7), 28.2$ $\left(\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;$ FD-MS m/z $=266(\mathrm{M})+$, Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5}$ (266.12); C 63.15, H 6.81; Found: C 62.98, H 7.11.
tert-Butyl (2S,4aS,5R,7aS)-2-methoxy-7a-methyl-6-oxooctahydrocyclopenta[b]pyran-5-carboxylate (10). To a stirred solution of 8b $(560 \mathrm{mg}, 2.0 \mathrm{mmol})$ in dry $\mathrm{EtOAc} / \mathrm{MeOH}(1: 1,20 \mathrm{~mL})$ was added $\mathrm{Pd} / \mathrm{C}(56 \mathrm{mg}, 15 \% \mathrm{Pd} / \mathrm{C} \mathrm{w} / \mathrm{w})$. The mixture was placed under 1.0 atm of H_{2} pressure, and the progress of reaction was monitored by TLC. After 2 h , the solid was removed by filtration through a celite pad, which was washed repeatedly with EtOAc. After concentration of the filtrate, the residue was purified on silica gel column (elution with 5% ethyl acetate in hexane) to give 10 as amorphous solid ($430 \mathrm{mg}, 87 \%$). Significant NMR NOEs are $4 \mathrm{a}-\mathrm{H}$ to $5-\mathrm{H}, 37 \% ; 7 \mathrm{a}-\mathrm{CH}_{3}$ to $2-$ $\mathrm{H}, 31 \% ; 7 \mathrm{a}-\mathrm{CH}_{3}$ to $2-\mathrm{H}, 35 \% ; 4 \mathrm{aH}$ to $2-\mathrm{OMe}, 21 \% .{ }^{1} \mathrm{H} \mathrm{NMR}\left(250 \mathrm{Mz}, \mathrm{CDCl}_{3}\right) \delta 4.73(\mathrm{dd}, J=2.4,9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.29(\mathrm{~d}, J=6.2 \mathrm{~Hz} ;$ $1 \mathrm{H}, \mathrm{H}-5), 3.24$ (s, 3H, OMe), 2.79 (d, $J=18.4 \mathrm{~Hz}, ; \mathrm{H}-7$), 2.45 (ddd, $J=2.3,4.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{a}$), 2.31 (d, $J=18.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$) , 1.97 $(\mathrm{m}, 2 \mathrm{H}), 1.74(\mathrm{dm}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}) 1.65(\mathrm{dm}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-7 \mathrm{a}\right), 1.41\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}(63 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 210.3(\mathrm{C}-6), 171.0\left(\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 95.7(\mathrm{C}-2), 82.2\left(\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 81.7(\mathrm{C}-7 \mathrm{a}), 60.2(\mathrm{C}-5), 56.8(\mathrm{OMe}), 55.0(\mathrm{C}-7), 51.5(\mathrm{C}-$ $4 \mathrm{a})$, $34.0(\mathrm{C}-3), 28.4\left(\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $25.4(\mathrm{C}-4), 24.7\left(\mathrm{CH}_{3}-7 \mathrm{a}\right) ; \mathrm{FD}-\mathrm{MS} \mathrm{m} / \mathrm{z}=284(\mathrm{M})^{+}$, Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{5}(284.35) ; \mathrm{C} 63.40, \mathrm{H}$ 8.51; Found: C 63.52, H 8.46.

General procedure for the synthesis of compounds 11a-f. The bicyclic β-ketoester $\mathbf{1 0}$ derived from the reduction product of $\mathbf{8 b}$ (142 $\mathrm{mg}, 0.5 \mathrm{mmol}$) and the desired hydrazine derivative (0.52 mmol) in 20 ml absolute ethanol was refluxed, and the progress of reaction was monitored by TLC. After 6 h , the reaction mixture was concentrated on a rotary evaporator, the residue was purified on silica gel column (elution with 10% ethyl acetate in hexane) to give 11a-f as amorphous solids.
(3bS,6S,7aS)-6-Methoxy-7a-methyl-2-(4-methylphenyl)-1,2,3b,4,5,6,7a,8-octahydro-3H-pyrano[3',2':3,4]cyclopenta[1,2-c]pyrazol-3-one (11a). Yield: $122 \mathrm{mg}, 88 \% ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{Mz}, \mathrm{CDCl}_{3}$) $\delta 7.70(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.17(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.64(\mathrm{dd}$, $J=2.7,7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.04(\mathrm{bd}, J=6.2 \mathrm{~Hz} ; 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.25(\mathrm{dd}, J=4.6,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~m}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-$ CH3), $1.90(\mathrm{~m}, ~, ~ 3 H), 1.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-7 \mathrm{a}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100.7 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.6,143.0,141.7$, 137.4, 133.4, 132.6, 125.9, 115.6, $94.2,84.1,60.2,56.8,55.0,34.1,25.4,24.7,20.9 ;$ FD-MS m/z = $314(\mathrm{M})+$, Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$ (314.38); C, 68.77; H, 7.05; N, 8.91. Found: C, 68.56; H, 7.24; N, 9.07.

4-[(3bS,6S,7aS)-6-Methoxy-7a-methyl-3-oxo-1,3,3b,4,5,6,7a,8-octahydro-2H

pyrano[3',2':3,4]cyclopenta[1,2-c]pyrazol-2-yl]benzonitrile (11b). Yield: $91.5 \mathrm{mg}, 75 \%{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{Mz}, \mathrm{CDCl}_{3}$) $\delta 7.81$ (dd, $J=1.2$, $7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.73(\mathrm{dd}, J=1.1,7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.90(\mathrm{dd}, J=3.1,8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.01(\mathrm{bd}, J=6.4 \mathrm{~Hz} ; 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}$, OMe), $2.62(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{dd}, J=4.3,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{~m}, ~, 2 \mathrm{H}), 1.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-7 \mathrm{a}\right) ;$ FD-MS m/z=325(M)+, Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$ (325.14); C, 66.45; H, 5.89; N, 12.91. Found: C, 66.27; H, 5.95; N, 12.70.
(3bS,6S,7aS)-6-Methoxy-7a-methyl-2-(4-nitrophenyl)-1,2,3b,4,5,6,7a,8-octahydro-3H-pyrano[3',2':3,4]cyclopenta[1,2-c]pyrazol-3one (11c). Yield: $104 \mathrm{mg}, 78 \% ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{Mz}, \mathrm{CDCl}_{3}\right) \delta 8.34(\mathrm{dd}, J=0.9,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.18(\mathrm{dd}, 1.0, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$,
$4.85(\mathrm{dd}, J=2.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.01(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.01(\mathrm{dd}, J=2.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{dt}, J=3.3$, $10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{~m}, 2 \mathrm{H}), 1.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-7 \mathrm{a}\right) ;{ }^{13} \mathrm{C}$ NMR (100.7 MHz, CDCl ${ }_{3}$) $\delta 161.6,144.3,142.1,133.0,122.7$, $119.5,115.0,94.9,84.7,55.7,49.2,44.1,30.8,22.4,22.0 ;$ FD-MS m/z $=345(\mathrm{M})+$, Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{5}(345.13) ; \mathrm{C}, 59.12 ; \mathrm{H}$, $5.55 ;$ N, 12.1. Found: C, 59.22; H, 5.67; N, 12.31.
(3bS,6S,7aS)-6-Methoxy-2-(4-methoxyphenyl)-7a-methyl-1,2,3b,4,5,6,7a,8-octahydro-3H-pyrano[3',2':3,4]cyclopenta[1,2-c]pyrazol-3-one (11d). Yield: $110 \mathrm{mg}, 82 \% ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{Mz}, \mathrm{CDCl}_{3}\right) \delta 7.61$ (dd, $\left.J=0.9,6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 6.95$ (dd, $1.0, J=6.5$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 4.93 (dd, $J=2.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 3.77 (s, 3H, Ar-OMe), 3.00 (m, 1H), 3.40 (s, 3H, OMe), 2.75 (dd, J=2.3, 4.4 Hz , $1 \mathrm{H}), 1.88(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{dt}, J=3.3,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 1.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-7 \mathrm{a}\right) ;{ }^{13} \mathrm{C}$ NMR ($100.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.75,132.5$, $132.4,115.1,112.6,94.2,84.6,55.7,55.6,46.1,39.8,32.8,25.7,25.2 ;$ FD-MS m/z $=330(M)+$, Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}(330.16)$; C, 65.44; H, 6.71; N, 8.48, 12.1. Found: C, 65.53; H, 6.65; N, 8.52.
(3bS,6S,7aS)-2-(4-Chlorophenyl)-6-methoxy-7a-methyl-1,2,3b,4,5,6,7a,8-octahydro-3H-pyrano[3',2':3,4]cyclopenta[1,2-c]pyrazol-3-one (11e). Yield: $120.7 \mathrm{mg}, 85 \%$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{Mz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{dd}, J=0.8,6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.30(\mathrm{dd}, 0.9, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-$ H), $5.00(\mathrm{dd}, J=2.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.03(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.76(\mathrm{dd}, J=2.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.46(\mathrm{~m}, 3 \mathrm{H}), 1.89(\mathrm{~m}, 3 \mathrm{H})$, 1.47 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-7 \mathrm{a}$); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(100.7 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 160.9,151.8,151.3,139.0,132.4,116.8,115.1,94.7,84.6,55.7,49.3,46.1,30.2$, 21.8, 21.4; FD-MS m/z = 334 (M)+, Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{3}$ (334.11); C, 60.99; H, 5.72; Cl, 10.59; N, 8.37. Found: C, 60.85; H, 5.79; Cl, 10.61; N, 8.42.
(3bS,6S,7aS)-2-(1H-Indol-2-yl)-6-methoxy-7a-methyl-1,2,3b,4,5,6,7a,8-octahydro-3H-pyrano[3',2':3,4]cyclopenta[1,2-c]pyrazol-3one (11f). Yield: $98 \mathrm{mg}, 76 \% ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{Mz}, \mathrm{CDCl}_{3}\right) \delta 10.62(\mathrm{bs}, 1 \mathrm{H}), 10.26(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~d}$,
$J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=1.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{t}, J=1.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{dd}, J=2.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.00(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}$, OMe), $2.77(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.46(\mathrm{~m}, 2 \mathrm{H}), 1.88(\mathrm{~m}, 2 \mathrm{H}), 1.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-7 \mathrm{a}\right)$; FD-MS m/z=334(M)+, Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$ (339.16); C, 67.24 ; H, 6.24; N, 12.38. Found: C, 67.33 ; H, 6.13 N, 12.45.
(3bS,6S,7aS)-6-Methoxy-7a-methyl-2-pyridin-2-yl-1,2,3b,4,5,6,7a,8-octahydro-3H-pyrano[3',2':3,4]cyclopenta[1,2-c]pyrazol-3one (11g). Yield: $119 \mathrm{mg}, 79 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{Mz}, \mathrm{CDCl}_{3}\right) \delta 8.41(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.98(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.08(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.65(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.38(\mathrm{~m}, 3 \mathrm{H}), 1.85(\mathrm{~m}, 2 \mathrm{H})$, $1.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-7 \mathrm{a}\right)$; FD-MS m/z = $301(\mathrm{M})+$, Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$ (301.14); C, 63.77; H, 6.36; N, 13.94. Found: C, 63.65; H, 6.42; N, 13.81.

Molecular Modeling. ChemBio3D Ultra 11 was used to calculate the thermodynemicall more preferred conformations of compounds 10 and 10a using force field MM2 method. ${ }^{18}$

In vitro cytotoxicity assay. The cytotoxic activity of the cyclopenta[b]pyrane derivatives 11a-11g was determined using a standard (MTT)-based colorimetric assay. ${ }^{12}$ This assay quantifies viable cells by observing the reduction of tetrazolium salt, MTT, to formazan crystals by the cells. Based on the absorbance of the cell samples after the test is carried out, cell viability can be measured. Cells were plated with nutritional medium in 96 well plates (2000 and 5000 cells/well for HCT116, SK-N-SH and the non-tumorigenic cell line derived from breast tissue (MCF10A)). After 24 hours, cells were treated with different concentrations ($0.1,0.5,1,3$ and $10 \mu \mathrm{M}$) of the new compounds, each concentration in 3 repetitions. The plates were incubated with the pyrazolone derivatives for 72 hours. At the end of treatment, cells were washed with PBS solution. Then, $100 \mu \mathrm{l}$ of fresh medium and $50 \mu \mathrm{l}$ from a stock solution of MTT ($3 \mathrm{mg} / \mathrm{ml} \mathrm{PBS}$)
were added to each well. After 4 hours of incubation at $37^{\circ} \mathrm{C}$, the medium was discarded and $100 \mu \mathrm{l}$ of DMSO solution were added to each well, in order to dissolve the crystals that were formed. After a 30 minute period, the absorbance of the samples was measured by an Elisa reader. The absorbance data were converted to \% cell viability. The IC50 were calculated using Graphpad Prism software.

(ba)

TALEB 17396/4784日

z

E

[^0]
TALEE 18054/18186

Taleb-2010-10

18.Jan 2010 TA reduction product

mucreus	150	mumber or franseens	\%	1 ungma ronrs couns	3<100	Pomes couns	002144
Fulse Sequence	zgde30	Solvent	CHLO			Sweep Width / Hz)	18028.85

Taleb-2010-11a

Taleb-2010-11b

Taleb-2010-11c
18 Jan 2010
Taleb-nitorpheny!

```
8लन%
&"%
```



```
% 95NNNNNMNOE5二5
```


Taleb－2010－11d

19 Jan 2010 Taleb palamethoy

$$
\begin{aligned}
& \text { 56458 } \\
& \text { 弐介 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { i ¢ ¢ivinck }
\end{aligned}
$$

Mudeus	13 C	Number of Transients	2400	Original foints Count	32768	Points Count	32768
Fulse Sequence	zgde30	Solvent	CHLOROFORM-D	Sueep Wioth (tiz)	18028.85	Temperature/	27.000

Taleb-2010-11e

Nucteus	13 C	Number of Transjents	2400	Original Foints Count	32768	Foints Count	32768
Fulse Sequerce	zgde 30	Solvent	CHLOROFORM-D	Sueep Wioth (tiz)	18028.85	Temperature,	27.000

Taleb-2010-11f

Ta Jan 2010

Taleb-2010-11g

19. Jan 2010 Taleb-2-pyidinyl

[^0]:

